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Abstract 

There are two mathematical models of Hepatitis C virus (HCV) being discussed; the original model of HCV 
viral dynamics (Neumann et al., 1998) and its extended model (Dahari et al., 2007). The key aspects of the 
mathematical models have provided resources for analysing the stability of the uninfected and the infected 
steady states, in evaluating the antiviral effectiveness of therapy and for estimating the ranges of values of the 
parameters for clinical treatment. The original model is considered to be a deterministic model because of the 
predictive nature of the antiviral therapy within the constant target cells. Numerical simulations are carried out in 
the extended model, to explain the stability of the steady states in the absence or existence of migration in 
hepatocytes and, drug efficacy in treating HCV infection. 
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1. Introduction 

Hepatitis C virus (HCV) infection is a major primary cause of chronic liver disease, liver cancer and liver 
cirrhosis. According to recent statistics, approximately 130 and 170 million people are chronically infected by 
HCV worldwide (WHO, 1999). The causative agent of HCV was only identified in 1989, with modern 
techniques of molecular cloning and, identifying the genome of the previously uncharacterised non-A and non-B 
hepatitis virus. The HCV are clustered into six genotypes with varying prevalence around the world (Table 1) 
and some genotypes showed evidence of being less responsive to interferon therapy (Di Bisceglie, 1998). Since 
most patients are infected with a single genotype of HCV, then phylogenetic analysis of the nucleotide sequence 
of HCV is highly feasible for diagnostic testing. 

 

Table 1. HCV genotypes, their distribution and clinical significance (Source: Di Bisceglie, 1998) 

Genotypes 
of HCV 

Geographical predominance Clinical significance 

1a USA and developed western 
countries 

Less responsive to interferon therapy 

1b USA, Japan, Europe Less responsive to interferon therapy and more likely 
to lead to cirrhosis or hepatocellular carcinoma 

2 Most developed countries, but 
not very common 

Responsive to interferon therapy 

3 Rising in prevalence among 
injection-drug users 

Responsive to interferon therapy 

4 Confined to the middle east and 
north Africa 

Less responsive to interferon therapy 

5 South Africa Responsive to interferon therapy 
6 Asia Responsive to interferon therapy 
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The HCV is a positive-stranded RNA virus of the flaviviridae family which appears to have a narrow host range 
(WHO, 2014). Each single-stranded RNA genome of HCV is approximately 10,000 nucleotides in length that 
codes for both structural and non-structural proteins. The structural proteins are coated by two envelope proteins, 
E1 and E2 that contain a hypervariable portion of the E2/NS1 region. Within this region, the virus seemed to 
accumulate mutations easily under immune pressure and resulting in neutralisation and viral persistence (Di 
Bisceglie, 1998). While the non-structural proteins seemed to be significant for viral replication (Figure 1 and 
Figure 2). In clinical practice, the usual approach for testing HCV infection (Table 2) is to test initially for 
antibodies to HCV (anti-HCV), then to use HCV ribonucleic acid (RNA) to quantify the HCV RNA levels before 
providing and monitoring HCV treatment (Strader et al., 2004). 

 

Table 2. The diagnostic tests in Hepatitis C. (Source: Di Bisceglie, 1998) 

Category ELISA RIBA HCV RNA ALT 
Chronic Hepatitis C Positive Positive Positive Raised 
Hepatitis C carrier Positive Positive Positive Normal 
Recovered HCV infection Positive Positive Negative Normal 
False positive anti HCV Positive Negative Negative Normal 

Note: ELISA: anti HCV by enzyme linked immunoassay; RIBA: anti HCV by recombinant immonoblot assay 
(identifies antibodies which react with individual HCV antigen); and ALT: alanine aminotransferase (commonly 
measured clinically as part of a diagnostic test to determine liver health). 

 

Viral dynamics is rapid for HCV with production of 1012 virions daily (Table 3) but the free viral particles have a 
short half-life, between 2 and 3 hours (Neumann et al., 1998). 

 

Figure 1. The sequence of biological events explaining how the virus enters a liver cell, makes numerous copies 
of RNA with the protein components manufactured by the ribosomes and, enter an empty vesicle to form 

complete virions then releasing new virions to infect other cells (Adapted: 
http://www.hepccenter.org/hepcvirus.php) 
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Figure 2. Hepatitis C virus life cycle (Source: Firpi & Nelson, 2007, p. 684) 

 

However, once infected, the cell death rate exhibits large lifespan variation with half-life between 1.7 and 70 
days. This implies that early monitoring of viral load is essential to control HCV infection through faster killing 
of infected cells with IFN-α doses of 10 and 15 million international units (mIU) daily; standard current dose is 
between 3 to 15 mIU (Neumann et al., 1998). Soriano et al. (2008) also presented that the fragile nature and 
short turnover of HCV-RNA molecules served as an opportunity for early eradication. 

 

Table 3. The viral dynamic features of HCV. (Source: Soriano et al. 2008) 

HCV Dynamic features 
Virus 
Daily production of virions per day 1012

Half-life of free virions 2 – 3 hours 
Half-life of intracellular virions Hours (not dependent on infected cells t1/2) 
Mutation rate Very high 
Immune-mediated escape mutants Frequent 
Target Cells 
Half-life of infected cells 1.7 – 70 days (weeks) 
Size of susceptible cells compartment Probably large 
Intracellular viral reservoir No 

 

Chronic HCV infection is considered to be the main cause of chronic liver disease (Table 4), which, eventually 
evolves to cirrhosis or primary hepatocellular carcinoma (HCC), progressing to patients needing liver 
transplantation or even death (Dahari et al., 2005). HCV is described to be a clinically silent disease because 15 
-30% of infected are asymptomatic patients and has an alarming prevalence of 2-15% throughout the world 
(Neumann et al., 1998). The transmission of HCV is commonly via unscreened blood transfusion, direct contact 
with infected blood, unsafe sharing of needles and syringes and perinatal transmission. 

 

Table 4. The risk of developing chronic infection, liver disease, cirrhosis and death in every 100 infected 
individuals. (Source: CDC, 2009) 

Of every 100 persons infected with HCV: 
75 - 85 Develop chronic infection 
60 - 70 Develop chronic liver disease 
5 - 20 Develop cirrhosis over a period of 20–30 years
1 - 5 Die from the consequences of chronic infection 
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A vaccine against HCV infection is still currently unavailable. However, a combined standard treatment with 
interferon - α (IFN) and ribavirin has shown an almost 50% rate of sustained viral response (SVR) in the chronic 
phase (Reluga, Dahari & Perelson, 2009) and, 100% rate when treated with IFN in early initiation (89 days) after 
infection (Dahari et al., 2005).  

According to Dahari et al. (2007), a typical therapy response should show a rapid viral decline at the start 
followed by a second slower decline until the virus becomes undetectable. A triphasic decline is also observed in 
some patients that indicated a promising initial rapid decline in viral load, followed by “shoulder phase” (slow or 
remains constant), and final phase of resumed viral decay (Dahari et al., 2007). However, upon therapy cessation, 
approximately 50% of treated HCV patients exhibited a rebound of viral plateau, to pretreatment levels that 
define whether, the antiviral therapy is only partially effective during treatment phase or will it be successful in 
eradicating HCV. 

Therefore the aim of this study is to undertake a mathematical analysis of the stability of the classical 
mathematical model of HCV dynamics in order to reveal significant insights of HCV pathogenesis and dynamics. 
The methodology allows us to use similar techniques to model and study other infections. Hence, mathematical 
models are developed to study the kinetics and dynamics of HCV and evaluating the effectiveness of antiviral 
therapy. We then characterise the stability of the steady states of the mathematical model thereby offering a more 
complete understanding of the HCV dynamics. Our studies focus on the original model of HCV infection under 
therapy (Neumann et al., 1998), where we present results for the stability of both the uninfected and infected 
steady states, and finally compare the behaviour of the original model to the extended model (Dahari et al., 2007) 
that account for the ultimate HCV elimination. In order to accomplish these goals, the models and their 
parameters are presented and described, followed by linear stability analysis of the models to examine the 
asymptotic stability of each their steady states. 

2. Mathematical Model and Analysis of Hepatitis C Virus 

Numerous mathematical models describing the temporal dynamics of HCV have been proposed (Guedj & 
Neumann, 2010; Chatterjee, Guedj & Perelson, 2012; Rong & Perelson, 2013). In all these studies, mathematical 
modelling plays a pivotal role in understanding and quantifying the biological mechanisms that govern HCV 
dynamics with or without therapy. For example, mathematical modelling has been shown to play a key role in 
highlighting the significance of obtaining frequent viral load measurements during treatment and has provided 
efficient tools for early prediction and the effects of therapeutic drugs on patient treatment (Mihm et al., 2006; 
Guedj et al., 2010; Guedj et al., 2013). Given the recent surge in the development of new direct acting antivirals 
agents for HCV therapy, mathematical modelling of viral kinetics under treatment continues to play an 
instrumental role in improving our knowledge and understanding of virus pathogenesis and in guiding drug 
development (Guedj et al., 2010; Chatterjee et al., 2012; Rong & Perelson, 2013). Our study complements 
substantially these studies by offering a new perspective and understanding of the dynamics of HCV through 
detailed linear stability analysis. Our study is inspired by the Neumann et al. (1998) model that considers both 
extracellular and intracellular levels of infection. The original model has since been extended to take into 
account the direct-acting antiviral agents against HCV (Guedj & Neumann, 2010). In this study, we focus on the 
original model and incorporate drug effectiveness bases on pegylated interferon and ribavirin; we do not take 
into account direct-acting antiviral agents (Guedj & Neumann, 2010). 

To proceed, we assume that the uninfected target cells are produced at a rate s, die at constant rate d per cell. On 
the other hand, the target cells are infected with de novo infection rate constant of β and the infected cells die at a 
constant rate of δ per cell. The hepatitis C virions are produced inside the infected cells at an average rate p per 
infected cell and have a constant clearance rate c per virion. Thereby, viral persistence will occur when rate of 
viral production (p), de novo infection (β), and production of target cells (s) exceeds the clearance rate (c), death 
rate of infected cells (δ) and target cells death rate (d). In addition, the therapeutic effect of IFN treatment in this 
model involved blocking virions production (referred to as drug effectiveness) and reducing new infections 
which, are described in fractions (1 − ε) and (1 − η), respectively. 
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Figure 3. Schematic representation of the model of HCV infection. T represents the target uninfected cells, I is 
the infected cells and V represents the free virus 

 

2.1 Mathematical Model of Hepatitis C 

The above assumptions lead to the following differential equations (Neumann et al., 1998): 

   = − − (1 − ) ,                          (1) 

    = (1 − ) − 	 ,                          (2) 

   = (1 − 	 ) − ,                       (3) 

where the equations relate the dynamics relationship between, T as the uninfected target cells (hepatocytes), Ι  
as the infected cells and V as the viral load (amount of viruses present in the blood). In this article, model system 
(1) - (3) is taken as the original model used to analyse the HCV dynamics. 

2.2 Stability Analyses 

The above model (1) – (3) predicts two possible steady states, one with no virus present (an uninfected steady 
state, V = Ι = 0), and another with a constant level of virus (an endemically infected steady state). Thus, the 
equilibrium solutions of (1) – (3) must satisfy the following algebraic equations: 

   	 − − (1 − ) = 0,                            (4) 

               (1 − ) − 	 = 0,                               (5) 

       (1 − 	 ) − = 0 .                          (6) 

In the disease free equilibrium (V = Ι = 0) the population of the uninfected hepatocytes is derived as = , 

where  also indicates complete viral eradication (cure) after the antiviral therapy (Dahari et al., 2007). 

Here, if one assumes the target cell population remains constant during the course of the antiviral therapy, then 

the pre-treatment (ε = η = 0) quasi-steady state level of infected cells are derived from setting  = 0  and  

= 0  in equations (2) and (3) (Neumann et al., 1998). This gives  

=   = , 

where T0 represents the baseline target cell level and V0 represents any given baseline pre-therapy HCV level. 

Before therapy, ε =η = 0 and constant target cells. 

Workings: 

(3):  =    =   

(2):  βVT	 − δI = 0 	 − = 0,    
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V βT	 −	 = 0, 

                       ∴ V = 0     or     pβ T0 = cδ. 

(1):  − − = 0     =	 ,    

∴ 	 = −	 . 
Thus, the full steady state solution is further obtained by setting  = 0 giving  

=	 	,  = −	 	,    = −	  , 

where =	  is the population of uninfected hepatocytes in the chronic infection prior to antiviral treatment.  

Now, it can be seen that the equilibrium points during antiviral therapy satisfy the following relations in the 
original model (1) – (3): 

when  0 < 	 	 < 1		 		0 < 	 < 1, 

Workings: 

(6):   (1 − ) =        ∗ = 	 	( )  

(5):  (1 − ) − 	 = 0    (1 − ) − 	 ( ) = 0,  

        	 (1 − ) −	 ( ) = 0, 

       ∴ V = 0     or     ∗ = ( ) ( )  . 

(4):            − − (1 − )  = 0 

 − ( ) ( ) = (1 − ) ( ) ( ) 	, 
∴  ∗ = ( )( )( ) 	. 

If V* = 0, the following uninfected steady state solution 

U* (T*, Ι*, V*) = ( ) ( ) 	 , 0,			0  

is obtained in which there is no infection. As a result, ∗ = ( ) ( )  is assumed to be the number of liver 

cells (hepatocytes) present in a recovered patient, with effective drug efficacy and complete viral eradication 

during therapy. 
If V* ≠ 0, the following infected steady state solution 

ΙF* (T*, Ι*, V*) = ( ) ( ) 	 , ( )( )( )( ) ,			 ( )( )( )  

is obtained where, the infection is termed endemic and analysis of the two steady states will exhibit a 
transcritical bifurcation point, that separates the regions of stability of the uninfected and infected steady states 
(Dahari et al., 2007). 
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Since the model (1) – (3) predicts two steady states: the uninfected and the infected steady states, then the local 

stability of the steady states can be determined by linearising the non-linear equations of the model (1) – (3) 

around each steady state, and examining the corresponding eigenvalues of the characteristic equations (Dahari et 

al., 2007). The analysis of these eigenvalues which, will be discussed later, will indicate that there exists a 

bifurcation point at (1 − )(1 − ) = . This bifurcation point will separate the regions of stability for the 

uninfected and the infected steady states. Thus, for a simple assumption that in the case of successful drug 

therapy, the viral load should approach zero, such that 0 < 
( )( )

 < 1. 

Theorem 1. Let R0 be given by 

    ≡	 .                               (7) 

If R0 ≤ 1, then U* = ( ) ( ) 	 , 0,			0  is the only equilibrium point and is stable to small perturbations. If 

R0 > 1, then the endemically infected equilibrium ΙF* = ( ) ( ) 	 , ( )( )( )( ) ,			 ( )( )( )  is 

asymptotically stable. The threshold parameter R0 is called the basic reproduction rate of the infection 

(Avendaño et al., 2002). 
In order to prove Theorem 1, several different infection scenarios are investigated: infection may fade out 
without being established (disease-free); infection may spread with limited success (partial infection); or viral 
eradication with effective drug efficacy. Therefore, the analysis of the dynamics of the original model is further 
discussed corresponding to these scenarios, under the following conditions: 

a) Disease-free equilibrium, Ι = V = 0 requiring no therapy η = ε = 0. 

b) Chronic infection before therapy, η = ε = 0. 

c) Spontaneous cure, Ι = V = 0, before treatment (ε = η = 0) or during therapy (0 < ε < 1, and 0 < η < 1). 

d) Partial infection during therapy, 0 < ε < 1, 0 < η < 1. 

e) 100% drug effectiveness (ε = η = 1) for viral eradication, Ι = V = 0. 

Proof of Theorem 1. 

(a) Stability of the disease-free equilibrium (Ι = V = 0) requiring no antiviral therapy (η = ε = 0). 

Since the antiviral drugs are not administered in a healthy individual with no HCV infection, Ι = V = 0 

(disease-free), the drug efficacy is considered to be zero ( 	=  = 0). In this case, the original model (1) – (3) 

admits the uninfected steady state where the population of hepatocytes in the uninfected steady state in a healthy 

individual is  =  . This gives the uninfected steady state before therapy as  (T*, I*, V*) = , 0, 0 .  

By linearising the non-linear equations of model (1) – (3), the Jacobian matrix J (T, I, V) of the system (1) – (3) 
is given by 

	( , , ) 		= 	 	− − (1 − ) 												0												 − (1 − )(1 − ) 																		 − 																(1 − )	0																											(1 − ) 															 −  

Firstly, the local stability of uninfected steady state before therapy initiation, (T*, I*, V*) = , 0, 0  is 

governed by the eigenvalues of the matrix 
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( ) = − 					 0					 −0					 − 						0					 					 −	  

which gives  −  and the other two roots are solutions of the quadratic equation 

  	+ 	( + ) 	 + 	 	 −	 = 0,                        (8) 

∴ , = ( )± ( ) 	 	 	
. 

Lemma 2. The Routh-Hurwitz criterion (Kot, 2001; Murray, 2002) states that a necessary and sufficient 
condition that the equation + +	…+	 = 0, 

(with real coefficients) have only roots of negative real part if the values of the determinants of the matrices are 
all positive, 

=	 > 0,  =	 1 > 0,  =	 10 > 0 

=	
1 3 . .						. .1 2 4 .						. .0 1 3 .						. .0 1 2 .						. .. . . .						. .0 0 . .						. > 0 

For quadratic and cubic polynomials, these conditions reduce to 

n = 2,   a1 > 0,  a2 > 0 

n = 3,   a1 > 0,  a2 > 0,  a1 a2 > a3. 

Therefore for equation (8), if a1 and a2 are both positive, then applying the Routh-Hurwitz criterion (Lemma 2) 
to this quadratic equation guarantees the eigenvalues to have negative real part, and that two conditions must be 
satisfied for asymptotic stability of the endemic equilibrium: 

(1)   a1 > 0,  	( + ) > 0,  (satisfied) 

(2)   a2 > 0,     	 − 	 	> 0 (satisfied if and only if   < 1)     

Similarly, the equilibrium of a model that consists of a system of ordinary differential equation is considered 

asymptotically stable if all the eigenvalues of the characteristic equation have negative real part (Brauer, 2004). 

Thus for stability, this occurs if and only if the coefficients of (8) are positive, which hold true provided 

 <          < 1         R0 < 1.  

Therefore, the disease-free steady state  = , 0, 0  is locally asymptotically stable for R0 < 1. This proves 

the first part of Theorem 1. If R0 > 1, then  = , 0, 0  becomes an unstable critical point. This means that 

for HCV to infect the liver, R0 must be greater than 1, indicating that once a cell become infected, it can cause 

more than one uninfected cell to be infected. Also if R0 > 1, the HCV infects new cells ( ) faster than 

infected cells die ( ) or being cleared ( ), thus Theorem 1 (R0 > 1) may correspond to partial infection of the 

liver. 
(b) Stability of the chronically infected steady state before therapy, η = ε = 0. 

=1λ
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Since HCV infection is sometimes symptomless, there is a possibility that an infected individual might not seek 

treatment until the chronic stage. In this case, the infected steady state solution before antiviral therapy is given 

by, =	     =	    and  	 = 	  

such that,  ΙF  (T0, Ι0, V0) = 	 , ,			 . 

Now, the local stability of the infected steady state, ΙF = 	 , ,			  is governed by the 

eigenvalues of the matrix 

	( ) = 	 −2 − 										 0						 −− 										 − 						0										 						 −  

The characteristic equation of the linearised system is given by the following cubic equation: 

F (λ) =  −	 −	 2 +	 +	( + ) −	 2 	( + ) +	 	( + ) + −  

F (λ) = λ3 + a1λ2 + a2λ + a3 

with coefficients given by 

a1 =	 2 +	 +	( + ) , 

a2 =	 2 	( + ) +	 	( + ) , 
a3 = − 	 . 

If a1, a2, and a3 are all positive, then applying the Routh-Hurwitz criterion (Lemma 2) to this cubic equation 
guarantees the eigenvalues to have negative real part, and that three conditions must be satisfied for asymptotic 
stability of the endemic equilibrium: 

(1)   a1 > 0,   	 2 +	 +	( + )  > 0, 

(2)   a2 > 0,      2 	( + ) +	 	( + ) 	> 0, 

(3)   a1 a2 > a3,   2 +	 +	( + ) 2 	( + ) +	 	( + )  > − 	 , 

       ⇒		 	 	( ) 	( ) 	 	( ) 	> 	 − 	1.  

All three conditions are satisfied if and only if   > 1 for asymptotic stability of the chronically infected 

steady state. The first and second conditions are satisfied such that d is always greater than zero and ( + ) is 

always positive. Thus, the third condition implies for asymptotic stability if, and only if R0 > 1. This further 

proves second part of Theorem 1. The stability of the chronically infected steady state is interpreted medically as 

the symptomless of the infection which is the silent killer of the disease.  

(c) Stability of spontaneous cure, Ι = V = 0, before treatment (ε = η = 0) or during therapy 

(0 < ε < 1 and 0 <η < 1). 
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Assuming that spontaneous cure is available, such that the infected cells and virions are successfully eradicated, 

where Ι = V = 0. The terms spontaneous regression or even spontaneous cure is commonly observed in cancer 

suffering patients where, they experienced an unexpected transient or final improvement from the disease. This 

was documented by Cole and Everson (1966): "The partial or complete disappearance of a malignant tumour in 

the absence of all treatment, or in the presence of therapy which is considered inadequate to exert significant 

influence on neoplastic disease." In similar context, spontaneous cure in HCV infection is recognised as 

infection that fades out in the absence of treatment or, during therapy to give the steady states,  ∗ = 	, 0,			0  and U* = ( ) ( ) 	 , 0,			0  respectively. Since, the Jacobian matrix J (T*, I*, V*) of 

the system (1)-(3) is given by 

J (T*, I*, V*) = 	− − (1 − ) 												0												 − (1 − )(1 − ) 																		 − 																(1 − )	0																											(1 − ) 															 − . 

Firstly, the local stability of spontaneous cure before therapy is ∗ = 	, 0,			0  is governed by the 

eigenvalues of the matrix 

( ∗) = 	 − 																0												 −			0																 − 																	0																		 															 −  

which are given  by  = −  and the other two are roots of the quadratic equation +	( + ) 	 = 0 

i.e.   = 0  or = −( + ). 
Secondly, the local stability of spontaneous cure during therapy is U* = ( ) ( ) 	 , 0,			0  is governed by 

the eigenvalues of the matrix 

( ∗) = 	 − 																				0															 − (1 − )					0																					 − 																 (1 − )0															(1 − ) 																		 −  

 
which are given by  = −  and the other two are roots of the quadratic equation +	( + ) 	 = 0 

i.e.   = 0  or = −( + ). 
Theorem 3. Consider the system = 	(, , )	 and	 = 	−	 +	 	(, , ) in the case where λ is a 

scalar parameter. If 	(0, 0, 0) ≠ 0, 	(0, 0, 0) ≠ 0		then there is a saddle-node bifurcation at λ = 0, that is 

when  	< 0, there are two hyperbolic equilibria, one saddle and the other an asymptotically stable 

node, and no equilibrium when > 0		(Hale & Kocak, 1991). 
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Using Hale and Kocak (1991) Theorem 3, both the steady states of spontaneous cure before and during therapy, 

that is ∗ = 	, 0,			0  and  U* = ( ) ( ) 	 , 0,			0  respectively, have no equilibrium because  

  is always greater zero. 

(d) Stability of the partial infected steady state during therapy 0 < ε < 1, 0 < η < 1. 

During the chronic stage of the infection, patients will be administered antiviral therapy  

(0 < ε < 1 and 0 < η < 1), and hepatocytes will be partially infected. Since, the linearised Jacobian matrix of 

model (1) – (3) is evaluated as 

	− − (1 − ) 												0												 − (1 − )(1 − ) 																		 − 																(1 − )	0																											(1 − ) 															 −  

For ΙF* (T*, Ι*, V*) = ( ) ( ) 	 , ( )( )( )( ) ,			 ( )( )( )  that can be written as 

( ∗) = − − (1 − )(1 − ) − 0 − (1 − )(1 − )(1 − ) − − (1 − )0 	(1 − ) 	 −	  

The characteristic equation of the linearised system is given by the following cubic equation: 

F (λ) =  − −	 + + ( + ) −	 ( + ) + 	 ( + ) + − (1 − )(1 − )  

F (λ) = λ3 + a1λ2 + a2λ + a3 

with =	 ( )( )
.  The coefficients are given by 

a1 =	 + ( )( ) + ( + ) , 

a2 =	 ( + ) +	 ( )( ) 	( + ) , 

a3 =	 (1 − )(1 − ) − 	 . 

If a1, a2 and a3 are all positive, then applying the Routh-Hurwitz criterion (Lemma 2) to this cubic equation 

guarantees the eigenvalues to have negative real part, and that two conditions must be satisfied for asymptotic 

stability of the endemic equilibrium: 

(1)   a1 > 0,    	 + ( )( ) + ( + )  > 0, 

(2)   a2 > 0,   ( + ) +	 ( )( ) 	( + )  > 0, 

(3)   a1 a2 > a3,  

+ ( )( ) + ( + ) ( + ) +	 ( )( ) 	( + )  > (1 − )(1 − ) − 	  

⟹ + ( )( ) + ( + ) ( + ) +	 ( )( ) 	( + ) > 	 (1 − )(1 − ) − 	1. 
All three conditions are satisfied if, and only if 

( )( )
 > 1 for asymptotic stability of partial infected 
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steady state. This further proves the earlier assumption that for successful drug therapy, the viral load should 

approach zero, such that 0 <
( )( )

< 1. 

(e) 100% drug effectiveness (ε = η = 1) for viral eradication, Ι = V = 0. 

If the efficacy of the drug is assumed to be 100% (ε = η = 1), then viral eradication (Ι = V = 0) should follow to 

clear the infection. The assumption leads to the model (1) – (3) differential equations reducing to = −     =	 +	 ( ) −	 ( 	 ) 
For d > 0, then as t → ∞, T → .  This equals the disease-free equilibrium.  This is termed as medicinal cure. 

In summary, for model (1) – (3), the stability of the uninfected and infected steady states were determined by the 
Jacobian matrix, which for the first steady state, that is the disease-free steady state is given by ( ∗, ∗, ∗) = , 0, 0  is 

stableunstable if 
< 1> 1 

Similarly, for the second steady state, the chronically infected state before therapy, = 	, − ,			 −
 is 

stableunstable if 
> 1< 1 

Finally, for the infected steady state during therapy,  ∗ = (1− ) (1− ) 	 , (1− )(1− ) −(1− )(1− ) ,			 (1− )(1− ) −(1− ) 	is	 stableunstable if 
(1 − )(1 − ) > 10 < (1 − )(1 − ) < 1. 

Now, let us consider the physiological implications of these results. In the case that R0 < 1, there is only one 
stable steady state where only disease-free individuals exist. In terms of the original parameters from (7), this 
corresponds to < 	 .  For example, if p (viral production), c (clearance rate of infected cells), β (de 
novo infection), and δ (death rate of infected cells) are approximately the same, then there will be no competition 
between the uninfected and infected cells.  

In the case where R0 > 1, if the production of uninfected and infected cells is always greater than the death rate 
of uninfected and infected cells, then the competition is such that the two infected steady states can exist. Thus, 
the ultimate viral eradication (neither stable nor unstable) will depend crucially on the starting advantage each 
cell has. 

3. The Extended Model 

As mentioned earlier, the original model of HCV infection proposed by Neumann et al. (1998) disregards the 
proliferation of both infected and uninfected cells and, its solutions did not predict the triphasic viral decay 
observed in some chronic patients. Therefore, we will look into another model by Dahari et al. (2007), which is 
termed the extended model. This model expands on the original HCV viral-dynamic model by incorporating 
density-dependent proliferation (r) that allows growth of liver to a maximum size, Tmax. The corresponding 
differential equation of the extended model is given by, 

  = + 1 −	 − 	 − (1 − ) ,                         (9) 

     = (1 − 	 ) + 1 −	 − 	 ,                      (10) 

  = (1 − ) − ,                          (11) 

where uninfected hepatocytes (T) and infected hepatocytes (Ι) can proliferate logistically with maximum 
proliferation rate r up to the number of hepatocytes being less than Tmax. The remaining parameters are defined 
similarly to the original model and the estimated parameter ranges and units are shown in Table 5. The analysis 
of the extended model involves nondimensionalisation to reduce the number of parameters. 
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Table 5. Estimated parameter ranges and units for HCV infection model (9) – (11). (Sources: Reluga et al., 2009 
and Dahari et al., 2009) 

Variables Units Parameter ranges 
Reluga et al. (2009) Dahari et al. (2009) 

s cells ml – 1 day – 1 1.0 ─ 1.8 × 105 1 < s ≤ dTmax 

r day – 1 0.002 ─ 3.4 1.0 – 3.0 
Tmax cells ml – 1 4.6 × 106 ─1.3 × 107 0.4× 107 ─ 1.3 × 107 
d day – 1 0.001 ─ 0.014 0.001 – 0.014 
β virus – 1 ml  day – 1 10– 8 ─ 10– 6 10– 9 ─ 10– 5 
δ day – 1 10 – 3 ─ 0.5 d ≤ δ ≤  0.5 
p virus cell – 1 day – 1 0.1 – 44 0.1 – 45 
c day – 1 0.8 – 22 0.8 – 22 

 

According to Reluga et al. (2009), the viral dynamics model (9) – (11) shall decompose into two time scales: a 

fast time scale starting at t0 where infected hepatocytes are relatively constant resulting in the following equation, 

 ( ) = 	 ( ) 	 ( ) +	 ( ) −	 ( 	 ) 	 ( ) 	 ( 	 	 )                     (12) 

and also a slow time scale where 

    ( ) ≈ 		 ( ) 	 ( ).                                (13) 

Before antiviral therapy being initiated, for a chronically infected patient where ( ) = ( )
, equation (12) 

simplified to become ( ) = 	 ( ) 	 ( ) +	 ( ) 	 ( 	 	 ). 
Workings for equation (12): 

(11):  = (1 − ) − , 
  + 	 = (1 − ) . 

Multiplying by an integrating factor  	 + 	 = 	 (1 − ) , 

( ) = 	 (1 − ) , 

( ) = ( ) ( ) + 	 	 . 

At t0,    ( ) = ( ) ( ) + 	 	 , 

=	 	 ( ) −	 ( 	 ) 	 ( ) , 

∴ 	 ( ) = 	 ( ) 	 ( ) +	 ( ) −	 ( 	 ) 	 ( ) 	 ( 	 	 ). 
Now, the dynamics of the model (9) – (11) can be reduced to two equations by introducing the dimensionless 
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state variables  = ̂   =	   =	  

and the dimensionless parameters  =	 ̂,   =  ,  =	 ,   =	  ,   ℎ = 	 ,   (1 − 	 ) = (1 − )(1 − ), 
such that on the time scales larger than  where ( ) ≈ 		 ( ) 	 ( ) we can approximate the dimensionless 

model as 

  = + 	(1 − − ) − 	 − (1 − 	 ) = 	( , )                 (14) 

  = 	(1 − − ) +	(1 − ) − ℎ = 	( , )                       (15) 

Workings for the dimensionless model based on time scales larger than  such that ( ) ≈ 		 ( ) 	 ( ): 
Let = ̂   = 	    =	  

∴ =	 ̂  = 	    = 	  

 	 = 	 	 + 1 −	 − 	 − (1 − )  

= 1̂	 + 1 −	 −	 − 	 −	(1 − )(1 − 	 )
 

= ̂ 	 + 1 −	 −	 −	 −	(1 − )(1 − 	 )
 

Choosing the following dimensionless parameters  = =	 , =	 ̂, =  ,   =	 , =	  ,  ℎ = 	   , (1 − 	 ) = (1 − )(1 − ), 
we get, = + 	(1 − − ) − (1 − 	 ) − 	  

Similarly, =	 ̂ 	 (1 − 	 ) + 1 −	 + − 	  

=	 ̂ 	 1 −	 −	 +	(1 − )(1 − 	 )∗ −	  

∴ 		 = 	(1 − − ) + (1 − 	 ) − ℎ  

3.1 Steady States of the Extended Model 

Assuming there is no increase in uninfected hepatocytes through migration or differentiation (a = 0) on the basis 
that liver damage occurs, the model (14) – (15) simplifies to 

   = 	(1 − − ) − 	 − (1 − 	 ) = 	( , )                   (16) 

   = 	(1 − − ) +	(1 − ) − ℎ = 	( , )                  (17) 
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The above model (16) – (17) can be used to study and understand the HCV dynamics in an infected individual as 

the ensuing dynamics depends on the relative parameter values. During pre-treatment ( = 0), the dynamics 

described in model (16) – (17) is a modification of the Lokta-Volterra equation such that, the equilibrium or 

steady states are solutions of  = 	( , ) = 0 and = 	( , ) = 0. When 	( , ) = 0, the solutions are 

u = 0 and v = 
	

. While 	( , ) = 	0	we have the solutions v = 0 and = 	 	 		 . There are four steady 

states that can be derived from model (16)-(17) through the intersections of the  = 0  and 	 = 0 solutions.  

The intersections of the =   and 	 =   are given by  

u = 0    and   v = 
	

 

v = 0    and   u = 
	 	 		  

resulting in the following steady states, 

(0, 0), (1 − , 0), (0, 1 ─ h), 
	( ) 	( ) 	 , 	(	 ) 	(	 )

 

The results from equations (16) and (17) are interpreted as liver-free solution (0, 0), disease-free solution  

(1 − , 0), total infection solution (0, 1─h) and partial-infection solution 
(	 ) 	( ) , 	( ) 	( )

. 

Now, assuming that in a healthy individual, the liver is constantly producing uninfected hepatocytes such that  

a ≠ 0 (migration occurs), then the steady states of equations (14) and (15) are solutions of  = ( , ) = 0 

and = ( , ) = 0. During pre-treatment ( = 0), the ( , ) = 0 gives, 

= 0  and  = (	 )(	 ) . 

The ( , ) = 0 gives only, =	 ( )	( ) . 

There are five steady states derived from the intersections of  and 	  solutions, , 0 , 
( ) 	 ( ) 	 , 0 ,  

( )	 	 ( ) 	 , 0 ,  and the other two steady states are 

=	 (	 ) 	( )( ) ± (	 ) 	( )( )
 with = (1 − ℎ) −	(1 − ) . In this case, the analysis of 

the steady states is best illustrated using phase portraits (a representative set of trajectories) to discuss the 

behaviour of the trajectories for stability.  

3.2 The Stability Analysis of the Extended Model 

Before we discuss the stability of the steady states, we will firstly look at the parameter ranges of values of 
model (14) – (15). From the results of the four steady states: liver-free solution (0, 0), disease-free solution 

(1 − , 0), total infection solution (0, 1─h) and partial-infection solution 
(	 ) 	( ) 	 , 	( ) 	( )

, it can 
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be deduced that 0 < 	 < ℎ < < 1. Thus, the ranges of values (Table 6) used for plotting the phase portraits 

have been estimated from the maximum and minimum of the original parameter values (Table 5). For any given 

value of g, h is considered to be a critical value such that it will pre-determine the values of b for < ℎ <  

(Table 7). 
 

Table 6. The parameters ranges are calculated from the ranges of parameters values given in Table 5. Note that 
the value of r is taken to be the maximum i.e. r = 3.4 

Parameters Parameter Ranges =	  
0.000294 – 0.00412 

ℎ = 	  
0.000294 – 0.1471 

=	 0.0000615 – 210.294 

+1 +  
0.00000168 – 210.285

 
Table 7. The parameters range of values for plotting phase portraits of equations (16) and (17) 

Parameters 

 +1 + < ℎ <  

Minimum  Maximum 
 = 0.004 0.063909 < 0.06399 < 0.064  0.146990 < 0.147 < 0.16763 
 = 0.001 0.03291 < 0.03295 < 0.033  0.146992 < 0.147 < 0.17115 
 = 0.0003 0.018940 < 0.01899 < 0.019  0.1469991 < 0.147 < 0.17198

 
Now, in order to determine the bifurcations and stability conditions of the four steady states of equations (16) 
and (17), the non-linear equations of the model (16) – (17) are linearised to give the eigenvalues of the 
Jacobian’s matrix, = 	1 − 2 − − − 										 −	 	(1 + )−	 	(1 − )									 1 − − 2 + − ℎ . 

Firstly, the characteristic equation of the linearised system for liver-free equilibrium (0, 0) before therapy is 
given by the following quadratic equation, 

   (1 − − 	 )(1 − ℎ − ) = 	0                              (18) ∴ 		 = (	1 − )									 											 = (	1 − ℎ). 
For equilibrium of the above characteristic equation (18), > 1 and ℎ > 1. If  ℎ = 	 > 1, where r is the 

maximum proliferation rate for infected cells and δ  is the infected cells death rate, then when > , the liver 

free steady state (0, 0) becomes a stable point implying that HCV can never totally infect the liver. However, 

from Table 6, it has been deduced that both h and  can never be greater than 1, thus the liver-free steady state 

(0, 0) can never be stable. This also leads to the idea that the total infection steady state (0, 1 – h) is only feasible 

when the proliferation rate of infected cells is greater than the excess death rate of infected cells (Reluga et al., 

2009) (Figure 4).  
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Figure 4. 

 

Figure 4. Phase diagram corresponding to the non-dimensionalised differential equations (16) and (17) for the 

extended model with no migration (a = 0) before therapy initiation (α = 0). The diagram is constructed using 

Maple (Maplesoft, 2014) and parameter values are taken to be = 0.004, bmax = 0.16763, and hmax = 0.147 

(Table 7). Since h < 1, the total- infected steady state (0, 1 − ℎ) = (0, 0.853) is an stable point. Here, the 

liver-free steady state (0, 0) is an unstable point. 

Therefore, the first steady state that is the liver-free steady state is given by 

 = (0,0)	 is 
stableunstable if 

> 1	and	ℎ > 1,< 1	and	ℎ < 1. 
Similarly, for the total- infected steady state, = (0,1 − ℎ)	 is 

stableunstable if 
	ℎ < 1,	ℎ > 1. 

Now, we compute for the disease-free steady state, the characteristic equation of the linearised system for 

disease-free steady state (1 − , 0) before therapy is given by the following quadratic equation, 

  −(1 − ) − ( − ℎ	) + 	 	(1 − ) − 	 = 	0                   (19) 

∴ 			 = 	−(1 − )      or      = ( − ℎ	) + 	 	(1 − ). 
For equilibrium of the above characteristic equation (19), < 1 and ( − ℎ	) + 	 	(1 − ) < 0. Using the 
parameter values from Table 7, if = 0.004, ℎ = 0.147, and = 0.16763, then the condition  ( + ) < (ℎ + ) is not satisfied such that 0.17163 is not less than 0.14767052. Therefore, for any parameter 
values taken from Table 7, ( − ℎ	) + 	 	(1 − ) is always greater than zero. Thus the eigenvalues for (19) are < 0 <	 , implying that the disease-free steady state (1 − , 0) is an unstable saddle point (Figure 5). 
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Figure 5. 

 

Figure 5. Phase diagram corresponding to the non-dimensionalised differential equations (16) and (17) for the 
extended model with no migration (a = 0) before therapy initiation (α = 0). The diagram is constructed using 
Maple (Maplesoft, 2014) and the parameter values are taken to be = 0.004, bmax = 0.16763, and hmax = 0.147 
(Table 7). Since the eigenvalues of the characteristic equation (19) are < 0 <	 , the disease-free steady 
state (1 − , 0) = (0.996, 0) is an unstable saddle point. Here, the liver-free steady state (0, 0) is an unstable point. 

Before therapy initiation (α = 0), the partial-infected steady state 
(	 ) 	( ) 	 , 	( ) 	( )

 is present 

when h lies between b and  . The local stability of the partial-infected steady state can be determined from 

the characteristic equation,   
  −	( + ) + = 0,                         (20) 

where             + = 2 − 3( + ) + 	( − ) −	( + ℎ) = 	 (1 − 2 − − − )(1 − − 2 + − ℎ)(1 −	 ). 
If  0 < 	 < ℎ < < 1, the constant term (A + B) of (20) is negative, and the constant term of C is positive. 

For example, = 0.001, h = 0.147, b = 0.17115, then u = 0.00030895 and v = 0.8527, giving  

(A + B) = − 0.8529 and C = 5.6147× 10 –8. This implies that the characteristic equation has both negative roots 

(by Decartes’ rule of sign) and that the partial-infected steady state is a stable nodal point (Figure 6). 

During therapy (α > 0), the steady states are the liver-free steady state (0, 0), disease-free solution (1 − , 0), 

total infection solution (0, 1─h) and partial-infection solution 
( ) 	( ( 	 ) )( ) 	 , ( ) 	( ( 	 ) )( ) . 

The phase portrait (Figure 7) below illustrates the stability of the steady states.  

 
Figure 6. 
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Figure 6. Phase diagram corresponding to the non-dimensionalised differential equations (16) and (17) for the 

extended model with no migration (a = 0) before therapy initiation (α = 0). The diagram is constructed using 

Maple (Maplesoft, 2014) and the parameter values are taken to be = 0.001, bmax = 0.17115, and hmax = 

0.147 (Table 7). While, the partial infected steady state 
(	 ) 	( ) 	 , 	( ) 	( ) = (0.00030895,0.85274) is a stable nodal point. 

 
For 100% drug efficacy (α = 1.0), the steady states are the liver-free steady state (0, 0), disease-free solution 
(1 − , 0), total infection solution (0, 1 ─ h). The phase portrait (Figure 8) below illustrates the stability of the 
steady states. 

Before therapy (α = 0) and with migration (a > 0), the steady states are , 0 ,  
( ) 	 ( ) 	 , 0 ,  

( )	 	 ( ) 	 , 0 , and the other two steady states are =	 (	 ) 	( )( ) ± (	 ) 	( )( )
 

with = (1 − ℎ) −	(1 − ) . The phase portrait (Figure 9) below illustrates the stability of the steady states. 

 
Figure 7. 

 

Figure 7. Phase diagram corresponding to the non-dimensionalised differential equations (16) and (17) for the 
extended model with no migration (a = 0) and 50% drug efficacy (α = 0.5). The diagram is constructed using 
Maple (Maplesoft, 2014) and the parameter values are taken to be = 0.001, and hmax = 0.147 (Table 7). 
Since h < 1, the total infection steady state (0, 1 - h) is a stable point so HCV can possibly fully infect the liver. 
Similarly, the liver-free steady state (0, 0) is again an unstable steady state. With 50% drug efficacy, there is 
significant treatment. 

 

Table 8. Stationary solutions for Dahari et al. (2007) model and their characteristics 

Stationary points Location Local stability condition 

(stable only) 

Liver-free solution   (0, 0) Never stable 

Disease-free solution (1 ─ g, 0) = < 1 

Total-infection solution   (0, 1 ─ h) ℎ = < 1 

Partial-infection solution 	( ) ( ) , ( ) ( )
  0 < +1 + < ℎ < < 1 
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Figure 8. 

 

Figure 8. Phase diagram corresponding to the non-dimensionalised differential equations (16) and (17) for the 
extended model with no migration (a = 0) and 100% drug efficacy (α = 1). The diagram is constructed using 
Maple (Maplesoft, 2014) and the parameter values are taken to be = 0.001, and hmax = 0.147 (Table 7). Here, 
the liver-free steady state (0, 0) is also an unstable steady state. With 100% drug efficacy, the only stable steady 
state is the disease-free equilibrium. 

 

 
Figure 9. 

 

Figure 9. Phase diagram corresponding to the non-dimensionalised differential equations (16) and (17) for the 
extended model with migration (a ≠ 0) before therapy (α = 0). The diagram is constructed using Maple 
(Maplesoft, 2014) and the parameter values are taken to be = 0.004, and hmax = 0.147 (Table 8). The steady 
states are (1.025, 0), (1.007, 0), (-0.0114, 0), (0.6402, 0.320) and (-0.6398, 1.036). 

4. Discussion 

The diversity of the disease manifestation associated in the mathematical models of HCV strongly suggested that, 
the infection is determined by the ranges of values of parameters that govern the infected patient response to 
therapy. A detailed analysis on the local stability of the mathematical models has been carried out.  

In the original model proposed by Neumann et al. (1998), it is shown that, if R0 < 1, the disease-free steady state 
before therapy is asymptotically stable. If R0 > 1, then the chronically infected steady state before therapy is 
asymptotically stable. Therefore, we have a threshold phenomenon, that is, if R0 < 1, the infected steady state is 
not feasible while if R0 > 1, infection ensues. The basic production rate of the infection, R0 is a crucial 
parameter in this model in dealing with the stability of the spread of the HCV infection. Furthermore, during 
therapy, the partial-infected steady state can become unstable (viral load approaches zero) if 0 < (1 − 	 )(1 −)  < 1. An important implication of this analysis is that, the infection can only be controlled with the constant 
presence of the antiviral therapy. Once the treatment ceases, the virus may return to the pre-treatment level which, 
indicate that viral eradication is highly not possible in this model. Similarly, the assumption made by Neumann 
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et al. (1998) that the target cells remain constant during therapy does not account for the liver, as an organ that 
compensate for the loss of infected cells, by proliferation of hepatocytes. Therefore, the original model needs to 
incorporate some general aspects of immunology control, effect of resistance to infection, and vaccination 
strategies (Murray, 2002). 

A more realistic model has been proposed by Dahari et al. (2007) as the extended model, to account for the 

maximum proliferation rate of hepatocytes (r). In this model, when the disease-free reproductive number =  

is less than 1, then infection is not feasible, because the maximum proliferation rate of uninfected cells are 
greater than the death rate of the uninfected cells. However, when an individual become fully infected (total 

infection), virus will infect the entire target cells, and remain infected (stable) if h = 	 < 1 (maximum 

proliferation rate of infected cells are greater than death rate of infected cells). According to Dahari et al. (2005), 
when an infected individual is treated with IFN in early initiation (89 days), there is 100% drug efficacy. This is 
shown in Figure 6 where disease-free steady state is the only stable equilibrium, when drug efficacy is 100% and 
treated within 100 days. Here, we have analysed a model with experimentally estimated parameters that, provide 
a satisfactory fit of the steady states corresponding to biological meanings, and successful feasibility testing of 
this model. 
It is clear that mathematical modelling of viral response to antiviral therapy can be used to understand the 
dynamics of chronic viral infection (Layden, Mika & Wiley, 2000). The approach to study the stability of the 
mathematical model is the reasonable starting point, for understanding the dynamics of HCV in pertaining a 
vaccine or cure for the disease. A combined analysis of HCV dynamics and viral kinetic studies, may prove 
useful in further work of understanding sustained viral response (SVR), and shed important light on the scale of 
patients responding to therapy. This may be the critical analysis for estimating the drug efficacy within the 
critical value that ultimately should eradicate the HCV infection.  
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