Nonoscillation of First-order Neutral Difference Equation

Jianqiang Jia (Corresponding author)
Department of Science, Yanshan University
438 West of He Bei Avenue, Qinhuangdao 066004, China
E-mail: wyy_1246@sina.com.cn
Xiaozhu Zhong, Xiaohui Gong, Rui Ouyang \& Hongqiang Han
Department of Science, Yanshan University
438 West of He Bei Avenue, Qinhuangdao 066004, China

Abstract

The oscillation of the first order neutral difference equation $\Delta[x(n)-p x(n-\tau)]+q x(n-\sigma)=0$ is studied in this paper, where $p>0$ or $p<0, q$ is a positive constant, σ is a non-negative integer, τ is a positive integer. The sufficient conditions for nonoscillation of the equation is obtained by suitable inequality and characteristic equation.

Keywords: Difference equation, Neutral, Nonoscillation

1. Introduction

Qualitative behavior of solutions of difference equations has received considerable interest recently. In [1] the oscillation of the first order neutral difference equation

$$
\begin{equation*}
\Delta[x(n)-p x(n-\tau)]+q x(n-\sigma)=0 \tag{1}
\end{equation*}
$$

was considered and some oscillation criterias were given, q is a positive constant, σ is a non-negative integer, τ is a positive integer. In this paper nonoscillation of the solutions of the equation (1) are studied, where $p>0$ or $p<0$ and Δ is the forward difference, i.e., $\Delta x_{n}=x_{n+1}-x_{n}$.

A solution of equation (1) is called oscillatory, if it is neither finally positive nor negative. Otherwise it is called nonoscillatory.

2. main result

Lemma $1{ }^{[2]}$ A necessary and sufficient condition for all solutions of equation (1) to oscillate is that the characteristic equation

$$
\begin{equation*}
F(\lambda)=(\lambda-1) \lambda^{\sigma-\tau}\left(\lambda^{\tau}-p\right)+q=0 \tag{2}
\end{equation*}
$$

has no positive real root.
Theorem 1 Assume that $p<0 . q$ is a positive constant, σ is a non-negative integer and τ is a positive integer, all solutions of equation (1) are nonoscillatory.
Proof: Since $F(\lambda)=(\lambda-1) \lambda^{\sigma-\tau}\left(\lambda^{\tau}-p\right)+q=0$ and $q<0$, the equation (2) possibly has roots on interval $(1, \infty)$. Obviously $F(1)=q<0$. From $p<0$ we can get
$F(\lambda)=(\lambda-1) \lambda^{\sigma-\tau}\left(\lambda^{\tau}-p\right)+q=(\lambda-1)\left(\lambda^{\sigma}-\frac{p}{\lambda^{\tau-\sigma}}\right)+q>(\lambda-1) \lambda^{\sigma}+q$
Assume that $G(\lambda)=(\lambda-1) \lambda^{\sigma}+q$,the values of $G(\lambda)$ increase on interval $(1, \infty)$.Obviously when $\lambda \rightarrow \infty, G(\lambda) \rightarrow \infty$. So there is a positive constant N,such that $G(N)>0$. From $F(\lambda)>G(\lambda)$ we can get $F(N)>0$. So $F(N) F(1)<0$, and $F(\lambda)$ is continuous on interval $[1, N]$, we can get there is at least a point ζ on interval $(1, N)$ such that $F(\zeta)=0$. Therefore the equation (2) has roots on $(1, \infty)$, so all solutions of equation (1)
are nonoscillatory.
Theorem 2 Assume that $p>0 . q$ is a positive constant, σ is a non-negative integer and τ is a positive integer, all solutions of equation (1) are nonoscillatory.
Proof: When $1>p>0$, Obviously the equation (2) has positive roots only on $\lambda \in(1, \infty) \cup\left(0, p^{\frac{1}{\tau}}\right) . F(1)=q<0$.
When $\sigma-\tau \geq 0$, the values of $F(\lambda)$ increase on interval $(1, \infty)$. Obviously when $\lambda \rightarrow \infty$, we can get $F(\lambda) \rightarrow \infty$. So there is a positive constant M_{1}, such that $F\left(M_{1}\right)>0$.So $F\left(M_{1}\right) F(1)<0$, and $F(\lambda)$ is continuous on interval $\left[1, M_{1}\right]$, we can get there is at least a point ξ_{1} on $\left(1, M_{1}\right)$ such that $F\left(\xi_{1}\right)=0$. Therefore the equation (2) has a root at least on interval $(1, \infty)$.So the equation (2) has a root at least on interval $(1, \infty) \cup\left(0, p^{\frac{1}{\tau}}\right)$ and all solutions of equation (1) are nonoscillatory.
When $\sigma-\tau<0$, we can get

$$
F(\lambda)=(\lambda-1) \lambda^{\sigma-\tau}\left(\lambda^{\tau}-p\right)+q=(\lambda-1)\left(\lambda^{\sigma}-\frac{p}{\lambda^{\tau-\sigma}}\right)+q
$$

Obviously when $\lambda \rightarrow \infty$, we have $\frac{p}{\lambda^{\tau-\sigma}} \rightarrow 0$ and $F(\lambda) \rightarrow \infty$. So there is a positive constant M_{2} such that $F\left(M_{2}\right)>0$. So $F\left(M_{2}\right) F(1)<0$, and $F(\lambda)$ is continuous on interval $\left[1, M_{2}\right]$, we can get there is at least a point ξ_{2} on interval $\left(1, M_{2}\right)$ such that $F\left(\xi_{2}\right)=0$. Therefore the equation (2) has a root at least on interval $(1, \infty)$.So the equation (2) has a root at least on interval $(1, \infty) \cup\left(0, p^{\frac{1}{\tau}}\right)$ and all solutions of equation (1) are nonoscillatory.

When $p=1$, obviously the equation (2) has positive roots only on interval $(1, \infty) \cup(0,1)$.The process of the proof is similar with above-mentioned. We can get the equation (2) has a root at least on interval $(1, \infty) \cup(0,1)$.So all solutions of equation (1) are nonoscillatory.
When $p>1$, obviously the equation (2) has positive roots only on interval $\left(p^{\frac{1}{\tau}}, \infty\right) \cup(0,1)$. The process of the proof is similar with above-mentioned. We can get the equation (2) has a root at least on interval $\left(p^{\frac{1}{\tau}}, \infty\right) \cup(0,1)$.So all solutions of equation (1) are nonoscillatory.

3. Examples

Example 1.Consider difference equation $\Delta\left(x_{n}+2 x_{n-3}\right)-4 x_{n-2}=0$ where $p=-2, \tau=3$,
$\sigma=2, q=-4$.
So the conditions in theorem 1 are satisfied and the characteristic equation is

$$
\begin{equation*}
F(\lambda)=(\lambda-1) \lambda^{-1}\left(\lambda^{3}+2\right)-4=0 \tag{3}
\end{equation*}
$$

From the figure 1 we can see the equation (2) has a real root. Therefore all solutions of equation (1) are nonoscillatory.
Example 2.Consider difference equation $\Delta\left(x_{n}-\frac{1}{2} x_{n-1}\right)-2 x_{n-3}=0 \quad$ where $p=\frac{1}{2}, \tau=1$,
$\sigma=3, q=-2$.
So the conditions in theorem 2 are satisfied and the characteristic equation is

$$
\begin{equation*}
F(\lambda)=(\lambda-1) \lambda^{2}\left(\lambda-\frac{1}{2}\right)-2=0 \tag{4}
\end{equation*}
$$

From the figure 2 we can see the equation (2) has a real root. Therefore all solutions of equation (1) are nonoscillatory.

Example 3. Consider difference equation $\Delta\left(x_{n}-\frac{1}{2} x_{n-3}\right)-2 x_{n-1}=0 \quad$, where $p=\frac{1}{2}, \tau=3$,
$\sigma=1, q=-2$.
So the conditions in theorem 2 are satisfied and the characteristic equation is

$$
\begin{equation*}
F(\lambda)=(\lambda-1) \lambda^{-2}\left(\lambda^{3}-\frac{1}{2}\right)-2=0 \tag{5}
\end{equation*}
$$

From the figure 3 we can see the equation (2) has no real root. Therefore all solutions of equation (1) are oscillatory.

References

D A Georgiou, E A Grove and G Ladas. (1989). Oscillations of neutral difference equations, Applicable Analysis, 33(1989), 243-253.
He, Xinguang, Luo, Zhiguo, \& Li, hua. (2003). Oscillation of neutrul difference equations with positive and nagative coefficients. Journal of Mathematical Study. 36[4]:388-393.
I Gyori, G Ladas and L Pakula. (1991). Condition for oscillation of difference equations with applications to equations with piecewise constant arguments, IAM J.Math.Anal., 22(1991), 769-773.
Li, Qiaoluan, Liu, Zhaoshuang, \& Bai, Jingshan. (2004). Oscillation of First-order Neutral Difference Equation. Journal of Hebei Normal University. 28(6): 569-570.
Li, Yumei, Wang, Youbin, \& Fan, Yehua. (2007). Qscillation of First-order Neutral Difference Equation. Math in practice and theory. 27(31), 188-191.
PARHIN, \& TRIPATHY A K. (2003). Oscillation of a class of nonlinear neutral difference equation of higher order. J.Math.Anal Appl. 28(4):756-774.

SABER N E. (1995). .An Introduction to Difference Equation. New York: Spring-verlag.
Zhou, Yinggao, \& Tang, Xianhua. (2002). Oscillation of First-order Nonlinear Delay Difference Equations. Acta mathematical Applicatae sinica.15(3):132-135.

Figure 1. The figure of (3) on interval ($-4,16$)

Figure 2. The figure of (4) on interval $(-2,4)$

Figure 3. The figure of (5) on interval $(-2,4)$

