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Abstract 

The oscillation of the first order neutral difference equation 0)()]()([ =−+−−Δ στ nqxnpxnx  is studied in this paper, 
where 0>p or 0<p , q is a positive constant,σ is a non-negative integer,τ is a positive integer. The sufficient 
conditions for nonoscillation of the equation is obtained by suitable inequality and characteristic equation. 
Keywords: Difference equation, Neutral, Nonoscillation 
1. Introduction 
Qualitative behavior of solutions of difference equations has received considerable interest recently. In [1] the 
oscillation of the first order neutral difference equation  

              0)()]()([ =−+−−Δ στ nqxnpxnx ,                               (1) 

was considered and some oscillation criterias were given, q is a positive constant, σ  is a non-negative integer, τ  is 
a positive integer. In this paper nonoscillation of the solutions of the equation (1) are studied, 
where 0>p or 0<p andΔ is the forward difference, i.e., nnn xxx −=Δ +1 . 

A solution of equation (1) is called oscillatory, if it is neither finally positive nor negative. Otherwise it is called 
nonoscillatory. 
2. main result  

Lemma 1 ]2[   A necessary and sufficient condition for all solutions of equation (1) to oscillate is that the characteristic 
equation 

0)()1()( =+−−= − qpF ττσ λλλλ                             (2) 

has no positive real root. 
Theorem 1 Assume that qp .0< is a positive constant,σ is a non-negative integer andτ is a positive integer, all 
solutions of equation (1) are nonoscillatory. 

Proof: Since 0)()1()( =+−−= − qpF ττσ λλλλ  and 0<q , the equation (2) possibly has roots on interval ( )∞,1 . 
Obviously ( ) 01 <= qF .From 0<p  we can get  

( ) ( ) ( ) ( ) ( ) qqpqpF +−>+⎟
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Assume that ( ) qG +−= σλλλ )1( ,the values of ( )λG  increase on interval ( )∞,1 .Obviously when 
∞→λ , ( ) ∞→λG .So there is a positive constant N ,such that ( ) 0>NG .From ( ) ( )λλ GF >  we can get 

( ) 0>NF .So ( ) ( ) 01 <FNF ,and ( )λF  is continuous on interval [ ]N,1 ,we can get there is at least a point ζ on 
interval ( )N,1  such that ( ) 0=ζF . Therefore the equation (2)  has  roots on ( )∞,1 , so all solutions of equation (1) 
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are nonoscillatory. 
Theorem 2 Assume that qp .0> is a positive constant,σ is a non-negative integer andτ is a positive integer, all 
solutions of equation (1) are nonoscillatory. 

Proof: When 01 >> p , Obviously the equation (2) has positive roots only on ( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∪∞∈ τλ

1

,0,1 p . ( ) 01 <= qF . 

When 0≥−τσ , the values of ( )λF  increase on interval ( )∞,1 . Obviously when ∞→λ , we can get ( ) ∞→λF .So 
there is a positive constant 1M , such that ( ) 01 >MF .So ( ) ( ) 011 <FMF ,and ( )λF  is continuous on interval [ ]1,1 M , 
we can get there is at least a point 1ξ  on ( )1,1 M  such that ( ) 01 =ξF . Therefore the equation (2)  has a root at least 

on interval ( )∞,1 .So the equation (2)  has a root at least on interval
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,0,1 p  and all solutions of equation (1) 

are nonoscillatory.   
When 0<−τσ , we can get  
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Obviously when ∞→λ , we have 0→
−στλ
p

 and ( ) ∞→λF . So there is a positive constant 2M  such that 

( ) 02 >MF .So ( ) ( ) 012 <FMF , and ( )λF  is continuous on interval [ ]2,1 M , we can get there is at least a point 2ξ on 
interval ( )2,1 M  such that ( ) 02 =ξF . Therefore the equation (2) has a root at least on interval ( )∞,1 .So the equation 

(2)  has a root at least on interval
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1

,0,1 p  and all solutions of equation (1) are nonoscillatory.   

When 1=p , obviously the equation (2) has positive roots only on interval ( ) ( )1,0,1 ∪∞ .The process of the proof is 
similar with above-mentioned. We can get the equation (2) has a root at least on interval ( ) ( )1,0,1 ∪∞ .So all solutions 
of equation (1) are nonoscillatory. 

When 1>p , obviously the equation (2) has positive roots only on interval ( )1,0,
1

∪⎟
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⎜
⎜
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⎛
∞τp .The process of the proof is 

similar with above-mentioned. We can get the equation (2) has a root at least on interval ( )1,0,
1

∪⎟
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⎛
∞τp .So all 

solutions of equation (1) are nonoscillatory. 
3. Examples  
Example 1.Consider difference equation ( ) 042 23 =−+Δ −− nnn xxx where 2−=p , 3=τ , 

2=σ , 4−=q .  

So the conditions in theorem 1 are satisfied and the characteristic equation is 

                   ( ) ( ) ( ) 0421 31 =−+−= − λλλλF                            (3) 

From the figure 1 we can see the equation (2) has a real root. Therefore all solutions of equation (1) are nonoscillatory. 

Example 2.Consider difference equation 02
2
1

31 =−⎟
⎠
⎞

⎜
⎝
⎛ −Δ −− nnn xxx  where

2
1

=p , 1=τ , 

3=σ , 2−=q .  

So the conditions in theorem 2 are satisfied and the characteristic equation is 

                   ( ) ( ) 02
2
11 2 =−⎟
⎠
⎞

⎜
⎝
⎛ −−= λλλλF                           (4) 

From the figure 2 we can see the equation (2) has a real root. Therefore all solutions of equation (1) are nonoscillatory. 
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Example 3. Consider difference equation 02
2
1

13 =−⎟
⎠
⎞

⎜
⎝
⎛ −Δ −− nnn xxx  , where 

2
1

=p , 3=τ , 

1=σ , 2−=q . 

So the conditions in theorem 2 are satisfied and the characteristic equation is 

                 ( ) ( ) 02
2
11 32 =−⎟
⎠
⎞

⎜
⎝
⎛ −−= − λλλλF                          (5) 

From the figure 3 we can see the equation (2) has no real root. Therefore all solutions of equation (1) are oscillatory. 
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Figure 1. The figure of (3) on interval ），（ 164−  
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Figure 2. The figure of (4) on interval )4,2(−  

 
Figure 3. The figure of (5) on interval )4,2(−  

 
 
 
 
 
 




