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Abstract 

The paper presents the simulation approach to some quantum transport effects, which arise in mesoscopic 
electromechanical transducers such as two-electrode tunneling transducer. The tunneling transducers are 
advanced nanoelectromechanical systems, which can be used for motion detection at nanoscale. It is very 
promising to adopt tunneling transducers as sensitive elements of the inertial microelectromechanical (or 
nanoelectromechanical) systems. In theory, their extremely high sensitivity is limited only by fundamental 
quantum relations. We propose theoretical model of the transducer based on the transfer-matrix formalism in this 
work. We provide the detailed derivation of transfer-matrix. Scattering potential of the transducer is a stepped 
representation of the electron potential energy. In addition, by using well-known formula proposed by L. Esaki 
and R. Tsu for finite superlattices we apply the numerical procedure for current density evaluation. The proposed 
model of the two-electrode mesoscopic tunneling transducer could be a useful tool for quantum transport 
simulation in high-performance nanoelectromechanical systems and advanced nanomaterials such as 
metal-polymer composites. 

Keywords: micromachined inertial sensors, electromechanical displacement transducers, quantum tunneling, 
numerical simulation 

1. Introduction 

Electromechanical transducer is an essential part of any inertial microelectromechanical system (MEMS). 
Transducer converts proof mass displacements to the electrical signals. There are many types of the transducers 
based on different physical effects (Bocko & Stephenson, 1991). Capacitive transducers are widely used in 
MEMS due to their flexibility and convenient microfabrication technology (Lysenko, 2013). However, these 
transducers have a lack of scalability. The displacements of the functional elements are negligible at nanoscale. 
Thus, corresponding capacity changing in transducer is very small and hard to detect. In addition, we should 
adopt comparatively complex service electronics to extract measurable signals out of capacitive transducers 
(Lysenko, Ryndin & Dudin, 2012). On the other hand, tunneling transducers require low-noise interface circuits 
(Liu, Wen, Chen, Wen & He, 2012). 

One assumes that quantum-tunneling transducers could replace modern capacitive transducers in future because 
of their extremely high sensitivity at nanoscale (Bocko & Stephenson, 1991; Gabrielson, 1993). Several designs 
for micromachined sensors augmented with quantum tunneling transducers have been reported (Patra & 
Bhattacharyya, 2009; Shashkin et al., 2004; Vopilkin et al., 2012, 2014). It is notable, that resonant tunneling 
diodes may also be treated as quantum tunneling transducers (Xiong, Mao, Zhang, Wang, 2009; Zhang, Guo, 
Tang, Liu & Wang, 2012). 

Physical modeling of the MEMS devices augmented with quantum tunneling transducers is a challenging 
problem to solve because of its interdisciplinary nature (Bhattacharyya, Ghosh & Paul, 2008; Konoplev, 
Pristupchik & Ryndin, 2012; Pristupchik, Zaikin, Zavyalov & Kosheleva, 2012). The main goal of our work is to 
provide a theoretical model of the mesoscopic two-electrode quantum-tunneling transducer based on 
transfer-matrix approach and tunneling current governing equation proposed by L. Esaki and R. Tsu (1973). This 
could be useful tool for quantum transport simulation in high-performance nanoelectromechanical systems.  
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In addition, we discuss application of the model to the conductive polymer nanocomposites filled with metal 
particles such as quantum tunneling composite (QTC). The QTC is an elastic metal-polymer material with 
unusual properties (Bloor, Donnely, Hands, Laughlin & Lussey, 2005; Bloor, Graham, Williams, Laughlin & 
Lussey, 2006; Hands, Laughlin & Bloor, 2012; Graham, Laughlin & Bloor, 2013). QTC is able to change its 
resistance dramatically when a mechanical stress is applied. Thus, it is possible to produce high-efficiency 
electromechanical transducers made of QTC. One of the most interesting features of QTC is a non-linear 
current-voltage characteristic with hysteresis. 

One states that unusual properties of this material can be explained involving electronic quantum transport 
through the tunneling connected metal particles chains. When particle spacing increases, the tunneling current is 
going down exponentially and vice-versa (Bloor et al., 2005, 2006; Hands et al., 2012; Graham et al., 2013). 
Thus, it is possible to state that conductive polymer is some kind of multi-electrode electromechanical transducer. 
The detailed theory has not been reported. We suppose that QTC can be simulated using model of the 
two-electrode mesoscopic transducer. 

2. Mesoscopic Electromechanical Transducers 

The schematic draft of a micromachined mesoscopic transducer is shown in Figure 1. The system consists of two 
identical electrodes, which can be moved relatively to each other, changing spatial gap between the electrodes ݀௅ோ. Bias voltage applied between right-hand side and left-hand side electrodes depicted as R and L respectively. 
A metal conductance of the electrodes is assumed. The isolating surface prevents leakage current other than 
direct quantum tunneling from emitter (L) to collector ©. 

 

Figure 1. Two-electrode micromachined tunneling transducer 

 

The external force applied to the right-hand side electrode along the ݔ direction will produce an elastic 
deformation of micromachined console and cause space gap ݀௅ோ between the electrodes to change. It will 
change probability of quantum tunneling from L to R and corresponding current density. When external force is 
applied in the ݔ direction, current density will decrease and vice-versa. 

Figure 2 presents multi-electrode mesoscopic transducer made of QTC. The system consists of several metal 
particles suspended in the polymer matrix. Particles can move relatively to each other, changing spatial gaps ݀௜௝ 
between them. Bias voltage applied between right-hand side and left-hand side electrodes depicted as R and L 
respectively. We assume that direct quantum tunneling occurs between neighboring particles. Figure 2, a presents 
an initial state of the system. Figure 2, b illustrates how external force ܨ applied to the right-hand side electrode 
causes deformation of the elastic polymer matrix and reconfiguration of the particles. Left-hand side electrode is 
assumed to be fixed. Figure 2, c shows an equivalent circuit representation of the multi-electrode 
electromechanical transducer. 
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Figure 2. Multi-electrode QTC-based mesoscopic transducer. (a) Initial state of the multi-electrode transducer. (b) 
Stressed state of the transducer. (c) Equivalent electric scheme with lumped parameters 

 

The proposed equivalent circuit is assumed to be quantitatively appropriate in extreme states of the QTC 
(insulating state and metal-conductivity state) when current-voltage characteristic of the material is linear. If we 
want to explain nonlinearity or hysteresis of the intermediate state, we should take to account additional physics 
associated with charging-discharging processes in dielectric media. 

Applying the transfer-matrix method, we can calculate currents flowing in the circuit branches directly. Lumped 
parameters of the circuit should be recalculated every time when particle configuration is changed. It should be 
noted that topology of the circuit may also be changed due to a polymer matrix deformation. Thus, the 
equivalent circuit qualitatively illustrates how a theoretical model of the two-electrode mesoscopic transducer 
can be applied to the multi-electrode system. 

3. Quantum Transport Simulation 

To describe quantum transport in the two-electrode micromachined tunneling transducer one can use 
one-dimensional, steady-state Schrödinger equation (Konoplev et al., 2012; Pristupchik et al., 2012): 

 − ℏమଶ௠బ డమట(௫)డ௫మ + ܷ൫ݔ, ߮௪௙, ݀௅ோ, Δܷ൯߰(ݔ) =  (1)                  ,(ݔ)߰ߝ

where ߰(ݔ), ݉଴ and ߝ are the particle wavefunction, electron mass and energy, respectively, ℏ is reduced 
Planck’s constant and ܷ൫ݔ, ߮௪௙, ݀௅ோ,Δܷ൯ is the potential energy function shown in Figure 3 (solid line). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Layered representation of the generic scattering potential 
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Spatial gap between the electrodes ݀௅ோ is divided into layers {݀௝} in length, limited by grid points {ݔ௜}. 
Conjugated grid {ܿ௝} is used to calculate stepped scattering potential { ௝ܷ}. Grid points ݔଵ and ݔହ indicate 
emitter and collector surfaces respectively. Electrochemical potentials of the electrodes are ௅ܷ and ܷோ for 
emitter and collector respectively. 

Discretization of the scattering potential allows writing down general solution of the equation (1) in form: 

(ݔ)߰ = ൞ ߰௅(ݔ) = (ݔ௅ߢ݅)݌ݔ௅ା݁ܣ	 ௅ିܣ	+ ,(ݔ௅ߢ݅−)݌ݔ݁ ݔ < (ݔ)ଵ߰௝ݔ = ൯ݔ௝ߢ௝ାexp൫݅ܣ	 ௝ିܣ	+ exp൫−݅ߢ௝ݔ൯, ݔ ∈ [ܿ௜ − ௗ೔ଶ , ܿ௜ + ௗ೔ଶ ]߰ோ(ݔ) = ோାܣ exp(݅ߢோݔ) + ோିܣ exp(−݅ߢோݔ) , ݔ > ହݔ            (2) 

where ߰௅(ݔ), {߰௝(ݔ)} and ߰ோ(ݔ) are wavefunctions related to the corresponding layers shown in Figure 3; ܣା and ିܣ are the amplitudes of the incident and reflected plane waves, respectively; ߢ௝ = ଵℏට2݉଴൫ߝ − ௝ܷ൯ 
is a local momentum; ߢ௅ = 	 ଵℏඥ2݉଴ߝ is a momentum corresponding to the left-hand side electrode; ߢோ 	=	ଵℏඥ2݉଴(ߝ + Δܷ) is a momentum corresponding to the right-hand side electrode. 

Applying appropriate boundary conditions at the layer interfaces, we can define how amplitudes transmit from 
the left side of the interface to the right side (Monsoriu, Villatoro, Marin, Urchueguia & Cordoba, 2005): 

 

௅ାe௜఑ಽ௫భܣ + ௅ିܣ eି௜఑ಽ௫భ = ଵାe௜఑భ௫భܣ + ଵିܣ eି௜఑భ௫భ,ߢ௅ܣ௅ାe௜఑ಽ௫భ − ௅ିܣ௅ߢ eି௜఑ಽ௫భ = ଵାe௜఑భ௫భܣଵߢ − ଵିܣଵߢ eି௜఑భ௫భ,⋮ܣ௝ିଵା e௜఑ೕషభ௫ೕ + ௝ିଵିܣ eି௜఑ೕషభ௫ೕ = ௝ାe௜఑ೕ௫ೕܣ + ௝ିܣ eି௜఑ೕ௫ೕ,ߢ௝ିଵܣସାe௜఑ೕషభ௫ೕ − ସିܣସߢ eି௜఑ೕషభ௫ೕ = ௝ାe௜఑ೕ௫ೕܣ௝ߢ − ௝ିܣ௝ߢ eି௜఑ೕ௫ೕ,⋮ܣସାe௜఑ర௫ఱ + ௅ିܣ eି௜఑ర௫ఱ = ோାe௜఑ೃ௫ఱܣ + ସାe௜఑ర௫ఱܣସߢ,ோିeି௜఑ೃ௫ఱܣ − ସିܣସߢ eି௜఑ర௫ఱ = ோାe௜఑ೃ௫ఱܣோߢ − .ோିeି௜఑ೃ௫ఱܣோߢ
                (3) 

We can write down these equations in matrix notation as: 

 

൬ 1 ௅ߢ1 ௅൰ߢ− × ൬e௜఑ಽ௫భ 00 eି௜఑ಽ௫భ൰ × ൬ܣ௅ାܣ௅ି ൰ = ൬ 1 ଵߢ1 ଵ൰ߢ− × ൬e௜఑భ௫భ 00 eି௜఑భ௫భ൰ × ൬ܣଵାܣଵି ൰ ,⋮൬ 1 ௝ିଵߢ1 ௝ିଵ൰ߢ− × ൬e௜఑ೕషభ௫ೕ 00 eି௜఑ೕషభ௫ೕ൰ × ቆܣ௝ିଵାܣ௝ିଵି ቇ = ൬1 ௝ߢ1 ௝൰ߢ− × ൬e௜఑ೕ௫ೕ 00 eି௜఑ೕ௫ೕ൰ × ቆܣ௝ାܣ௝ି ቇ ,⋮൬ 1 ସߢ1 ସ൰ߢ− × ൬e௜఑ర௫ఱ 00 eି௜఑ర௫ఱ൰ × ൬ܣସାܣସି ൰ = ൬ 1 ோߢ1 ோ൰ߢ− × ൬e௜఑ೃ௫ఱ 00 eି௜఑ೃ௫ఱ൰ × ൬ܣଵାܣଵି ൰ .
      (4) 

For convenience, we can introduce special notation for used matrices and rewrite equation set (4) as: 

 

෡௫భ௟ܭ෡௅ܦ |߯௅ۧ = ෡௫భ௥ܭ෡ଵܦ |߯ଵۧ,⋮ܦ෡௝ିଵܭ෡௫ೕ௟ ห߯௝ିଵൿ = ෡௫ೕ௥ܭ෡௝ܦ ห߯௝ൿ,⋮ܦ෡ସܭ෡௫ఱ௟ |߯ସۧ = ෡௫ఱ௥ܭ෡ோܦ |߯ோۧ,
                                (5) 

where ܦ෡௝ିଵ = ൬ 1 ௝ିଵߢ1 ෡௫ೕ௟ܭ ,௝ିଵ൰ is a discontinuous matrixߢ− = ൬e௜఑ೕషభ௫ೕ 00 eି௜఑ೕషభ௫ೕ൰ is a left-hand side phase 

matrix, ܭ෡௫ೕ௥ = ൬e௜఑ೕ௫ೕ 00 eି௜఑ೕ௫ೕ൰ is a right-hand side phase matrix, ห߯௝ିଵൿ = ቆܣ௝ିଵାܣ௝ିଵି ቇ is a left-hand side state 

vector, ห߯௝ൿ = ቆܣ௝ାܣ௝ି ቇ is a right-hand side state vector. 

One can resolve expressions of the equation set (5) relative to left-hand side state vectors, then these vectors can 
be recursively substituted to the corresponding equations as right-hand side state vectors, it gives: 
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෡௫భ௟ܭ |߯௅ۧ = ෡௅ିܦ ଵ ቎ෑܦ෡௝ ෠ܲ௝ܦ෡௝ି ଵ௝ ቏ܦ෡ோܭ෡௫ఱ௥ |߯ோۧ,																																																															(6) 
where ෠ܲ௝ is a wave propagation matrix defined as: 

 ෠ܲ௝ = ෡௫೔௥ܭ ෡௫೔శభ௟ܭൣ ൧ିଵ = ൬eି௜఑ೕ(௫೔శభି௫೔) 00 e௜఑ೕ(௫೔శభି௫೔)൰ = ൬eି௜఑ೕௗೕ 00 e௜఑ೕௗೕ൰,         (7) 

where ௝݀ = ௜ାଵݔ −  .௜ݔ
We can rewrite matrix equation (6) as: 

 |߰௅ۧ =  ෡|߰ோۧ,                                   (8)ܯ

where |߰௅ۧ = ෡௫భ௟ܭ |߯௅ۧ and |߰ோۧ = ෡௫ఱ௥ܭ |߯ோۧ are redefined state vectors corresponding to wavefunctions of the 
emitter and collector, respectively; ܯ෡ = ෡௅ିܦ ଵൣ∏ ෡௝ܦ ෠ܲ௝ܦ෡௝ି ଵ௝ ൧ܦ෡ோ is a transfer-matrix. 

The initial state vector |߰௅ۧ corresponds to the particle incoming from the emitter. The final state vector |߰ோۧ 
corresponds to the particle falling into the collector. If we take incident wavefunction amplitude as a measure for 
all the reflection and transmission amplitudes, and assume that there are no any scattering centers in the 
right-hand side electrode domain, we can write down: 

 ቀ1ܴቁ = ൬ܯଵଵ ଶଵܯଵଶܯ ଶଶ൰ܯ × ቀ0ܶቁ,                          (9) 

where ܴ is reflection amplitude (left-hand side electrode) and ܶ is transmission amplitude (right-hand side 
electrode). Tunneling particle can be in the reflected state or in the transmitted state, there are no other options, 
so we can write down (Feynman, Leighton & Sands, 2013): 

 ܴ∗ܴ + ܶ∗ܶ = ଶ|ࡾ| + |ܶ|ଶ = 1.                     (10) 
If transfer-matrix elements are known, we can easily find out reflection amplitude from (9) and evaluate 
probability of transmission, which is commonly referred as transmission coefficient ܶ∗ܶ: 

 ܴ = ெమభெభభ , ܶ∗ܶ = 1 − |ெమభ|మ|ெభభ|మ                            (11) 

Tunneling current density can be calculated by the formula (Tsu & Esaki, 1973): 

ܬ  = 	 |௤|௠బ௞బ బ்ଶగమℏయ ׬ ܶ∗ܶ	ln ቀ ଵାୣ୶୮(ି|௤|ఌ/௞బ బ்)ଵାୣ୶୮(ି|௤|(ఌ	ା୼௎)/௞బ బ்)ቁ ஶ଴ߝ݀ ,                     (12) 

where ݇଴ is Boltzmann constant, ଴ܶ is absolute temperature, ߝ is energy measured from the Fermi level of the 
emitter. 

It is possible to integrate equation (12) numerically if transmission function values are tabulated. Performing the 
integration for different bias voltages and distances, one can get a family of current-voltage characteristics. 
Numerical integration procedure involves several steps. 

First, we need to construct a continuous scattering potential parameterized with bias voltage Δܷ, work function 
of the electrodes ߮௪௙ and distance between the electrodes ݀. The detailed description of scattering potential is 
presented in Appendix A. When imaging force is neglected, the potential is: 

(ݔ)ܷ  = ቐ 0, ݔ ≤ 0߮௪௙ − ୼௎ௗ ,ݔ 0	 < ݔ ≤ ݀−Δܷ, ݔ > ݀ .                              (13) 

Second step is generation of the basic coordinate grid ܺ௕ = 	 ௜ݔ} ∣ 	݅ = 1, ݊തതതതത, ଵݔ = 0, ௡ݔ = ݀}. Grid steps in most 
general case can be expressed as Δݔ௜ 	= 	 ௜ାଵݔ −  ௜. Thus, spatial gap between the electrodes is sliced by layersݔ
with lengths Δ௝ 	= Δݔ௜ . We use ݆ for layer indexation. Also we need to generate a conjugated coordinate grid ܺ௖ =൛ ௝ߦ ∣∣ 	݆ = 1, ݊ − 1തതതതതതതതതത ൟ , where ߦଵ = ଵଶ ,ଵݔ߂	  and ߦ௡ିଵ = ݀ − ଵଶ ௡ିଵݔ߂ . Conjugated coordinate grid step is Δߦ௝ = ଵଶ (Δ௝ + Δ௝ିଵ). 
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Next, we have to construct stepped scattering potential using conjugated coordinate grid ܺ௖. In most general 
form, stepped scattering potential could be written down as: 

(ݔ)ܸ  = ∑ ܷ൫ߦ௝൯ ⋅ ௝݂௝ ;                                (14) 

 ௝݂(ݔ) = ቐ0, ݔ ∉ ቀߦ௝ − ୼ೕଶ , ௝ߦ + ୼ೕଶ ቁ1, ݔ ∈ ቂߦ௝ − ୼ೕଶ , ௝ߦ + ୼ೕଶ ቃ .                               (15) 

Stepped scattering potential ܸ(ݔ) is a continuous representation of the ൛ ௝ܷൟ set, which is used to define local 
wavefunctions in (2). 

The tunneling particle energy spectrum is continuous. Transfer matrix have to be constructed for each allowed 
energy value. Thus, direct solution of the described problem is impossible due to infinite number of allowed 
states and infinite number of corresponding transfer matrices. 

We can discretize continuous energy spectrum setting limits and defining energy grid ܧ௕ = {߳௞ ∣ 	݇ = 1,݉തതതതതത}, 
where limits are ߳ଵ = 0, and numerical calculations show that ߳௡ = 2߮௪௙ is a suitable estimation. The grid 

step is Δ߳௞ 	= ߳௞ାଵ − ߳௞. Thus, allowed energy range is divided by intervals ߜ௟ = Δ߳௞ =  Ԧ. We use ݈ forߜ
interval indexation. Also we need to generate conjugated energy grid ܧ௖ = ௟ߝ} ∣ 	݈ = 1,݉ − 1തതതതതതതതതതത} , where ߝଵ 	= ଵଶ Δ߳ଵ, and ߝ௠ିଵ = 2߮௪௙ − ଵଶ Δ߳௞ିଵ. The conjugated energy grid points are used to characterize energy of 

tunneling electrons. 
Next, we can construct transfer matrices as previously described and evaluate transmission coefficients for each 
energy state from ܧ௖ set. We can also represent expression under integral sign in (12) as vector: 

Ԧܨ  	= { ௟ܶ∗ ௟ܶ ⋅ 	ln ଵାୣ୶୮(ି|௤|ఌ೗/௞బ బ்)ଵାୣ୶୮(ି|௤|(ఌ೗	ା୼௎)/௞బ బ்) 	 ∣ 	݈	 = 	 1,݉ − 1തതതതതതതതതതത},                (16) 

where ௟ܶ∗ ௟ܶ is a transmission coefficient for energy ߝ௟. Taking that into account, we can replace formula (12) 
proposed by L. Esaki and R. Tsu (1973) with expression: ܬ = 	 |௤|௠బ௞బ బ்ଶగమℏయ × Ԧߜ) ⋅  Ԧ),                              (17)ܨ

where integral was replaced by inner production of vectors ܨԦ  and ߜԦ. Expression (16) allows computing 
tunneling current density numerically. Parameters of the discretization are basic coordinate grid points number ݊ 
and basic energy grid points number ݉. These parameters affects solution accuracy and time consumption. Thus, 
they should be properly chosen, and that is feasible concern of the future work. 

4. Results and Discussion 

Figure 4 shows that current-voltage characteristics obtained with transfer-matrix method (numerical solution) are 
in good agreement (for low-voltages) with characteristics obtained with generalized formula for tunneling 
current (analytical solution) proposed by Simmons (1963). Simmons has obtained his formula in case of 
quasi-classical approximation proposed by Wentzel–Kramers–Brillouin (WKB). It is necessary to emphasize that 
characteristics are equivalent up to the constant scaling factor. We assume that analytical solution should be 
scaled because of WKB limitations. It is well known that WKB-approximation in quantum transport case is only 
appropriate when a transmission coefficient is much smaller than 1 (Landau & Liphshitz, 1973). In our case, 
there are no any reasons to suspect transmission coefficient to be small (Konoplev et al., 2012; Pristupchik et al., 
2012). The disagreement between the analytical and numerical solutions increases with higher bias voltage 
values. Explanation of this phenomenon requires more studies and does not present in this paper. 

The generalized formula for tunneling current has been recently used in papers (Vopilkin et al., 2012, 2014) as 
suitable approximation for quantum transport simulation in tunneling transducer of a MEMS tunneling sensor, 
because of good agreement with the experiment. The analytical expression is appropriate to describe 
current-voltage characteristics of the tunneling transducers up to the constant scaling factor only (Vopilkin et al., 
2012). 
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 (a) (b) 
Figure 4. Analytical and numerical current-voltage characteristics comparison. (a) Bias voltage varies in range 

from 0 mkV to 100 mkV. (b) Bias voltage varies in range from 100 mkV to 200 mkV 

 

The main advantage of transfer-matrix approach in case of quantum transport is flexibility. The scattering 
potential can vary in broad range without any restrictions. Thus, it is possible to state that presented method is 
good enough for variety of practical calculations. The proposed numerical procedure is simple enough to 
implement a computational algorithm using e.g. MATLAB-system embedded language. 

The main limitation of the presented numerical method is computation expensiveness for realistic scattering 
potentials. The time consumption is comparatively high and it is a result of numerous matrix multiplications (one 
propagation matrix and two discontinuity matrices for each layer of scattering potential). Regardless of time 
expense, memory consumption is low due to small ranks of the matrices. Thus, comparatively simple reliefs can 
be studied on entry-level hardware. 

5. Conclusions and Further Work 

In this paper, we have studied the simulation approach to quantum transport in mesoscopic electromechanical 
transducers such as two-electrode tunneling transducer. We have presented quantum-level theoretical model of 
the transducer using transfer-matrix method. We have provide detailed derivation of the transfer-matrix. In 
addition, by using well-known formula proposed by L. Esaki and R. Tsu (1973) for finite superlattices we apply 
a numerical procedure for current density evaluation, which involves space and energy domain discretization. 

The proposed model of the two-electrode mesoscopic tunneling transducer could be a useful tool for quantum 
transport simulation in high-performance nanoelectromechanical systems and advanced nanomaterials such as 
metal-polymer composites. Thus, one can generalize method described above to perform first-principle 
simulation of the metal-polymer composites similar to QTC. 
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Appendix A 

Scattering Potential with Image Force Included 

When electrochemical potentials of the electrodes without bias are taken to be equivalent (workfunctions are 
equal), potential energy of the two-electrode electromechanical transducer can be expressed in the form: 

 ܷ൫ݔ, ߮௪௙, ݀௅ோ, Δܷ൯ = ܷீ൫ݔ, ߮௪௙, ݀௅ோ൯ + ܷ஼൫ݔ, ߮௪௙, ݀௅ோ൯ + ܷ஻(ݔ, ݀௅ோ, Δܷ).      (A1) 

The first term ܷீ in (A1) is rectangular potential barrier. The spatial gap between L and R referred as ݀௅ோ. The 
second term ܷ஼ is correlation energy associated with the image force applied to the tunneling electron. The 
third term is bias energy function ܷ஻ caused by bias voltage Δܷ applied to the electrodes. Cartesian coordinate 
is ݔ. The work function of the electrodes is ߮௪௙. Thus, the potential energy ܷis a function of the coordinate ݔ 
parameterized with Δܷ, ݀௅ோ and ߮௪௙. 

The ܷீ term can be expressed as: 

 ܷீ൫ݔ, ߮௪௙, ݀௅ோ൯ = ߮௪௙ ⋅ ,ݔ)ܹ ݀௅ோ);                       (A2) 

,ݔ)ܹ  ݀௅ோ) = ቐ0, ݔ ∉ ቀ− ௗಽೃଶ , ௗಽೃଶ ቁ1, ݔ ∈ ቂ− ௗಽೃଶ , ௗಽೃଶ ቃ .                        (A3) 

It is assumed that in a solid unoccupied electronic state corresponds to the presence of a positive charge. One can 
refine the scattering potential, incorporating the potential energy of interaction of the tunneling electron and the 
field of two point positive charges, one of which is on the surface of the emitter, and the other one is on the 
surface of the collector: 

 ܷ஼൫ݔ, ߮௪௙, ݀௅ோ൯ = ܷ஼௅൫ݔ, ߮௪௙, ݀௅ோ൯ + ܷ஼ோ൫ݔ, ߮௪௙, ݀௅ோ൯,             (A4) 

where ܷ஼௅൫ݔ, ߮௪௙, ݀௅ோ൯ is correction function, which expresses the interaction of the electron with the surface 
of the emitter; ܷ஼ோ൫ݔ, ߮௪௙, ݀௅ோ൯ is correction function, which expresses the interaction of the electron with the 
surface of the collector. 

Correction functions ܷ஼௅൫ݔ, ߮௪௙, ݀௅ோ൯ and ܷ஼ோ൫ݔ, ߮௪௙, ݀௅ோ൯ can be expressed as: 

ܷ஼௅൫ݔ, ߮௪௙, ݀௅ோ൯ = ൞− |௤|మସగఌబቀ௫ା೏ಽೃమ ቁା |೜|మകೢ೑ , ݔ ∉ ቀ− ௗಽೃଶ , +∞ቁ
0, ݔ ∈ ቀ−∞,− ௗಽೃଶ ቃ ,              (A5) 

ܷ஼ோ൫ݔ, ߮௪௙, ݀௅ோ൯ = ൞ |௤|మସగఌబቀ௫ି೏ಽೃమ ቁି |೜|మകೢ೑ , ݔ ∉ ቀ−∞,+ ௗಽೃଶ ቁ0, ݔ ∈ ቂௗಽೃଶ , +∞	ቁ ,               (A6) 

where q is electron charge; ε0 is permittivity of free space. It is assumed that there are no charge carriers in the 
gap between the electrodes. 

Expression (A5) is constructed so that the action of the induced positive charge on the surface of the emitter 
applied in the direction of the collector. Function (A6), in contrast, allows for the action of the positively charged 
vacancy on the surface of the collector. 

Assuming the bias electric field is completely confined in the gap, bias energy function ܷ஻(ݔ, ݀௅ோ, Δܷ) is: 



www.ccsenet.org/mas Modern Applied Science Vol. 9, No. 2; 2015 

29 
 

 ܷ஻(ݔ, ݀௅ோ, Δܷ) = ቐ 0, ݔ ≤ 0߮௪௙ − ୼௎ௗ ,ݔ 0	 < ݔ ≤ ݀−Δܷ, ݔ > ݀ .                     (A7) 
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