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Abstract 

Health problems of the bridge structure are a hot issue in engineering research currently. Load identification 
together with damage identification is an important method to diagnose the health status of the bridge. In order to 
identify different loads on bridges, this paper takes a box arch bridge built with prestressed reinforced concrete 
in Chongqing as an example and establishes it’s finite element model. The general flexibility matrix is obtained 
by calculating the response values of each control section separately caused by each unit characteristic load. The 
maximum bending moment of each control section is acquired by using the time history analysis of Wenchuan 
Seismic wave, and the equivalent loads are derived from the general flexibility matrix. Results indicate that this 
method can identify a wide range of basic load types and accurately identify the actual load of the bridge with 
high precision. Thus the actual operating conditions of bridge can be better reflected and the bridge’s safety 
condition can be evaluated. Besides, the load evaluation and maintenance of the bridge can be based on this.  

Keywords: generalized flexibility matrix, equivalent internal forces, finite element method, seismic wave, load 
identification 

1. Introduction 

With the development of national economy and increase of traffic volume and traffic density, damage 
accumulation of bridge structure will be caused as the bridge is repeatedly affected by traffic and natural causes. 
Thus, fatigue damage, even the fatigue rapture can be caused, threatening the bridge safety in use and reducing 
the service life of the bridge. For example, there is some phenomenon of destruction on the deck of many shortly 
used bridge, such as cracking, material unconsolidation and collapse, which cannot be explained by static theory; 
meanwhile, cracking emerges on many prestressed concrete bridges which have been designed with crack 
resistance, and the cracking may become worse due to the repeated action of traffic loads as well as the increase 
of operation time, consequently, corrosion of steel bar will be caused and the load capacity of the bridge will 
decrease. Therefore, if detailed research on bridge damage and destruction mechanism that are caused by various 
loads can be conducted and loads acting on the bridge can be identified and measured, it will be of great 
theoretical and applicational value in health monitoring, daily maintenance, safety assessment and traffic design 
of bridge. And it is also of important guiding significance in design, construction and maintenance of bridge 
structure. 

Load identification of bridge structure is one of the most important issues in bridge design, and it is also an 
import aspect in inverse problem in structural dynamics. The research of identifying the load on bridge deck by 
means of bridge response has made some progress and the main identifying methods are: Frequency Domain 
Method, Frequency-Time Domain Method and methods based on neural network, etc. At present, the load 
identification methods at home and abroad mainly target at certainty load, which mainly include periodic 
dynamic load and impact load. Many researches show that the bridge response caused by dynamic load is 
stronger than that of static load, besides, dynamic load will cause more damage than static load does, usually 2-4 
times (Cebon, 1987). The research of identification of random load as well as accidental load is still in progress 
and there is little achievement in this area.  

Based on a prestressed reinforced concrete box arch bridge in Chongqing, this paper focuses on the time-history 
analysis of its finite element models under the effect of Wenchuan Earthquake Load and the actual response 
time-history of the bending moment of the key measure points of the bridge structure is achieved. According to 
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From Figure 6, it can be seen that the values of bending moment under equivalent load and actual load are highly 
conformable. The results indicate that the changing rules of bending moment computed out of identified 
equivalent feature load and of bending moment of cross sections under actual earthquake load are identical, and 
the absolute error as well as the relative error is slight, satisfying the accuracy requirement of bridge security 
evaluation in engineering projects, which fully demonstrates that the idea of substituting actual load with 
equivalent load is both feasible and pragmatic. 

5. Conclusion  

This essay, on the background of stress reinforced concrete box arched bridge, set up finite element models, and 
verifies the effectiveness and pragmatism of substituting actual load with equivalent feature load according to the 
equivalence principle of internal forces by identifying the actual load during the Wenchuan earthquake by means 
of generalized flexibility matrix of itself. And this essay draws the following conclusions: 

(1) The errors of the results inducted from the equivalence principle of internal forces for the Wenchuan 
earthquake load are all less than 5%, most of which are less than 1%, which fully demonstrates that it is feasible 
to substitute actual load with equivalent load. The method stated in this essay can be used in various types of 
basic loads, and various types of information can be measured out. The actual load of the bridge can also be 
figured out fairly accurately which can reflect the actual operation condition of the bridge so as to evaluate the 
security condition of the bridge. 

(2) As for the bridges which already have structural health-monitoring systems set up, they can take the actual 
load during the operation as the equivalent feature load which is fast, pragmatic, and accurate in an acceptable 
scope of engineering projects. 

(3) The equivalence principle of internal forces based load identification method of this essay is able to get the 
equivalent feature response under actual load. When the response is highly representative, the accuracy of load 
evaluation can be increased pronouncedly, which provides evidence for the maintenance and management of the 
bridge’s regular operation. 
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