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Abstract 

This paper is devoted to the use of an electrodynamical model for lithosphere – atmosphere – ionosphere (LAI) 
coupling to explain plasma and electromagnetic earthquake (EQ) precursors. Our consideration is based on the 
calculation results of electromagnetic perturbations and ionospheric irregularities accompanying the electric field 
and electric current occurring in the global atmosphere – ionosphere electric circuit. Our theoretical results are 
confirmed by satellite- and ground-based experimental data of plasma and electromagnetic perturbations 
obtained for several days before an EQ. It is shown that the growth of current in the global circuit might result in 
the AGW (acoustic gravity wave) instability in the ionosphere, the formation of field-aligned current and plasma 
irregularities, magnetic field ULF oscillations and electromagnetic ELF radiation, spectral broadening of VLF 
transmitter signals registered by satellites, depressions of ULF magnetic pulsations, VHF radio emissions 
generated in the troposphere and propagation of the signals of a VHF transmitter behind the horizon. Moreover, 
the generation of electric current in the global circuit is accompanied with the modification of D, E and F 
ionospheric layers. All of these phenomena are shown to be attributed just to a single cause; namely, the 
variation of conducting electric current in the global circuit by the injection of charged aerosols into the 
atmosphere during seismic activity. 

Keywords: earthquakes, ionospheric irregularities, lower ionosphere modification, over-the-horizon VHF 
propagation, random discharges radiation, TEC perturbation, ULF/ELF electromagnetic emissions 

1. Introduction 

Satellite- and ground-based data suggest the relationship of lithospheric processes with electromagnetic and 
plasma disturbances within the ionosphere. Observational results of preseismic phenomena were discussed in 
many reviews (Gokhberg et al., 1988; Liperovsky et al., 1992; Molchanov, 1993; Buchachenko et al., 1996; 
Varotsos, 2001; Hayakawa & Molchanov, 2002; Pulinets & Boyarchuk, 2004; Molchanov & Hayakawa, 2008; 
Parrot, 2013). In order to understand the numerous ionospheric and electromagnetic earthquake (EQ) precursors, 
it is necessary to investigate their physical processes and to construct some models of seismicity effect on the 
ionospheric plasma. It is considered currently that this effect is mainly implemented either by acoustic gravity 
waves (AGWs) or electric field. The former possible influence of AGWs to the ionosphere during EQ 
preparation has been discussed in Mareev et al. (2002), Molchanov et al. (2004), Korepanov et al. (2009), and 
Hayakawa et al. (2011a). They considered both the sources of AGW generation and the processes accompanying 
the propagation of these waves into the ionosphere. Essentially another physical idea of the latter is used in the 
electrodynamical model of plasma and electromagnetic disturbances accompanying the EQ preparation, which 
has been discussed in the reviews by Sorokin (2007), Sorokin and Chmyrev (2010), and Sorokin and Hayakawa 
(2013). First this model allows us to account for the results of observation of quasi-static electric field both in the 
ionosphere and on the Earth’s surface that cannot be explained by other models. In this electrodynamical model 
we find a mechanism in which there increases with altitude of the conducting electric current flowing in the 
Earth – ionosphere layer and a limitation of electric field on the Earth’s surface. Calculations show that the value 
of electric field can attain the order of 10 ｍV/m in the ionosphere, but, at the same time, it does not exceed the 
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irregularities are confirmed by numerous satellite- and ground-based observations in seismic regions. Further 
analyses of satellite data revealed the electric field disturbances up to 15 mV/m in the ionosphere over a typhoon 
region (Isaev et al., 2002; Sorokin et al., 2005). Generation of such fields is accompanied by the local growth of 
plasma density and formation of magnetic field-aligned plasma layers with transverse scales 10-20 km and 20-40 
km. In the records observed onboard the satellite crossing these layers they are seen as plasma density 
fluctuations, and similar results are repeated for dozens of events. The argument for the formation of 
field-aligned currents in the ionosphere resulting in the formation of plasma irregularity can be found in the 
satellite data presented by Chmyrev et al. (1989). Figure 2 shows such an example of the variations of two 
horizontal magnetic field components in the frequency range of 0.1-8 Hz along with the vertical component of 
quasi-static electric field which were observed onboard the IB-1300 satellite within a 15-min interval before the 
EQ occurred on January 12, 1982 at 17.50.26 UT. The quasi-static electric field 3-7 mV/m was observed in two 
specific zones: above the EQ focus and in its magnetically conjugate region, and the corresponding size was 
(1°-1.5°) in latitude. The amplitude of geomagnetic pulsations at the frequency about 1 Hz observed in these 
regions was ~ 3 nT. The physical model presented above predicts a growth of the electric field in the ionosphere 
above the zone of a developing EQ and then the AGW dissipative instability. As a result the horizontal 
irregularities of ionospheric conductivity are formed and there arise field-aligned currents. The small-scale 
(4-10km) fluctuations of plasma density dNe/Ne  3-8 % correlated with the increase in seismic-related ELF 
(extremely low frequency) emission intensity were registered (Chmyrev et al., 1997), and the sizes of disturbed 
zones of plasma density dNe and ELF waves occupy a latitude range (3°-4.5°). An analysis of COSMOS-1809 
satellite data on ELF emissions shows that electromagnetic waves at the frequencies 140-450 Hz were regularly 
observed in the ionosphere over the region of enhanced aftershock activity independently of geophysical 
conditions. This result was primarily obtained by Serebryakova et al. (1992) on the basis of analyses of the first 
three events from COSMOS - 1809 and of the data of AUREOL -3 satellites. Chmyrev et al. (1997) confirmed 
this result by two other events. The new result of this study is that the small-scale plasma irregularities dNe/Ne ~ 
3-8 % with characteristic scales 4-10 km along the orbit have been revealed in geomagnetic field tubes 
connected with the EQ epicenter region, in which seismic-related ELF (extremely low frequency) emissions 
were detected simultaneously. These results are confirmed by recent satellite DEMETER data (Akhoondzadeh, 
2013), which revealed ULF oscillations of magnetic field (1-3) days before an EQ on 29.09.2009 in the vicinity 
of Samoa. Electromagnetic perturbations in magnetic tubes connected with the EQ epicenter are observed during 
several days before the event. Similar ULF/ELF electromagnetic field and plasma perturbation were registered 
by satellite DEMETER during an EQ with magnitude М>6.0 in Chili (Zhang et al., 2011). 

2.2 VLF/ELF Electromagnetic Effects 

These irregularities can play a role of whistler ducts (Sorokin et al., 2000). The estimated transverse size of ducts 
and their separation are ~10 km, and the relative plasma density enhancement within the duct is of the order of a 
few percent. So we studied the principal possibility of duct formation and modification of whistler propagation 
characteristics under the influence of seismic-related disturbances of DC electric field in the lower ionosphere. 
The model predicts the following effects which could be identified in the experimental data:  

1) The movement of plasma irregularities (ducts) in the horizontal direction with the velocity less than or of the 
order of the velocity of sound in the E layer;  

2) The multi-ray (fine) structure of whistlers associated with the structure of the distribution of plasma 
irregularities excited by AGW;  

3) The correlation of anomalous whistlers with the enhancement of DC electric field and plasma density 
oscillations as well as with the formation of field-aligned electric currents and associated transverse magnetic 
field disturbances (ULF magnetic pulsations).  

Hayakawa et al. (1993) studied the possible influence of seismic activity on the propagation of magnetospheric 
whistlers at low latitudes. Using the whistler data observed at Sugadaira in Japan, they have found that a drastic 
change in the characteristics of low-latitude whistlers is observed prior to an EQ, in such a way that the 
anomalous whistlers with dispersions greater than twice the typical value, exhibit a substantial increase in 
occurrence during seismic activity. This suggests the generation of well-defined whistler ducts before and after 
the seismic activity. 

The effects of small-scale plasma density irregularities in the ionosphere over the seismic zone on the 
characteristics of VLF (very low frequency) transmitter signals propagated through these disturbances and then 
registered onboard a satellite, have been investigated by Chmyrev et al. (2008), and their main effect consists in 
observable spectral broadening of VLF signals. The calculations have given spatial scales of plasma density 
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ionospheric state by each of these methods reveal the occurrence of different anomalies in the observed signals 
to be interpreted in terms of the mechanism of the interaction of the current in global circuit with the ionospheric 
plasma. The data manifesting modification of the ionospheric D region over epicenters of future EQs were 
presented by Hayakawa et al. (2005), Nickolaenko et al. (2006), and Ohta et al. (2006). In these papers 
anomalous effects were detected at observatories of the SRs near seismically active regions. The anomalies are 
mainly characterized by a sharp increase in the amplitude of the fourth SR and substantial shift of its frequency 
(~1 Hz). As far as the parameters of the SRs are governed by the properties of the Earth–ionosphere waveguide, 
this effect was interpreted as a result of changes in the ionization degree in the D layer and changes in the height 
of reflection and absorption of VLF waves. The available models of disturbance of the D layer are based on the 
use of the equation of photochemical balance of densities of charged and neutral particles forming the plasma at 
these heights. For example, Martynenko et al. (1996), Grimalsky et al. (2003), and Rapoport et al. (2004) 
considered a disturbance in the ionospheric D region electron density under the action of electric field based on 
the process of electron heating and changes in the rate constants of recombination and attachment depending on 
the electron temperature. The shift in the photochemical balance related to this leads to changes in the electron 
collision frequency, which influences radio wave propagation. It was shown that the electric field at a height of 
about 60 km should reach 1 V/m in order to explain the observed effect. Laptukhov et al. (2009) consider a 
model of generation of disturbances in the ionospheric D region as a result of charge transportation with flowing 
of an electric current. The electric field of the flowing currents leads to the transport of electrons and positively 
and negatively charged ions in the ionospheric D region. In the upper part of the layer there exist free electrons, 
whereas in its lower part there are present negatively charged ions which appear as a result of rapid attachment 
of electrons to neutral molecules. At the flowing of the electric current, a layer of enhanced electron density is 
formed due to the transportation and change in the type of charge carriers. 

3.2 E Layer of the Ionosphere 

The perturbation of electric current in the global circuit is caused by modification of the ionospheric E layer. 
Sorokin et al. (2006) have shown that the electric current flowing into the ionosphere from the atmosphere leads 
to an increase in the E layer plasma density, who presents the method for calculating the spatial distribution of 
electron number density perturbations in the bottom ionosphere due to the appearance of external electric current 
in the near-earth atmosphere. The origin of plasma density enhancement is that atmospheric electric currents 
carry positive charged ions upward and magnetospheric field-aligned electric currents carry electrons downward 
to the ionosphere. Furthermore, the horizontal electric field of conductive current carries negatively charged ions 
by drift in the ionosphere. Positive ions of the atmospheric conductive electric current flowing into the 
ionosphere are compensated by electrons of the field-aligned current and negative charged ions by the current 
flowing along the conducting layer of the ionosphere. As a result, we expect an increase in plasma density in the 
lower ionosphere. We have derived a system of nonlinear equations for plasma density and electric field in the 
lower ionosphere at a given electric current in the global circuit. These equations are used for computing the 
spatial distribution of electron density. Figure 7 illustrates an example of calculation results. Large gradient of 
electron number density in the bottom boundary of this layer can stimulate the turbulence, which forms the 
anomalous sporadic-E layer over the disaster region. Drift of the long-lived metallic ions by the electric field of 
conductive current results in the occurrence of a rather thin layer of electron number density in the lower 
ionosphere, and this layer can be registered as anomalous sporadic-E layer. Thus, appearance of the external 
electric current in the lower atmosphere over the region of disasters can lead to the formation of lower 
ionospheric disturbances including the anomalous sporadic-E layers. The mechanism presented above can be 
applied to the interpretation of observation data of ionospheric disturbances over the disasters such as EQs, 
typhoons, nuclear station catastrophes, dust storms and other ones which lead to the formation of an external 
electric current in the lower atmosphere. 
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For the study of long-term ionosphere dynamics, we use special well-tested radio-physical methods. In some 
studies (e.g., Biagi et al., 2004; Rozhnoi et al., 2005, 2007; Hayakawa, 2007) the specific variations of the 
amplitude and phase of VLF signals were observed, the traces of which were close to the epicentres of the 
forthcoming EQs. The transmitters and receivers of these waves (20-50 kHz) propagating in the 
Earth-ionosphere waveguide were located on the ground. Such anomalies arise before an EQ with magnitudes M 
> 3 3-10 days before the event. The characteristics of propagation of VLF/LF (VLF, 3-30 kHz, LF, 30-300 kHz) 
signals in the Earth-ionosphere waveguide are defined on one hand by the electric conductivity of the Earth’s 
surface and on the other hand by the conductivity of the lower ionosphere. The conductivity of the Earth’s 
surface is of a minor effect to the variation. The observed perturbations in the signal are mainly dependent on the 
condition of reflection height; the value of electron density and its gradient near the boundary of the lower 
ionosphere. The extensive review of the action of seismic processes on the lower ionosphere was given by 
Hayakawa (2007), who presented the proofs of existence of the ionosphere perturbations related to the EQs using 
a statistical analysis and separate case studies. The change in the position of characteristic minima in the diurnal 
course of phase and amplitude during sunrise and sunset a few days prior strong EQs in Japan was presented in 
the papers by Hayakawa et al. (1996) and Molchanov and Hayakawa (1998). Biagi et al. (2004) give the data of 
the signal level in the VLF/LF range propagating along the five traces. The explicit decreases in the signal 
intensity before the EQ epicenters which were close to the traces of the signals were found. Rozhnoi et al. (2005) 
analyzed the signals of a transmitter (40 kHz) located in Japan from 01.07.2004 to 24.01.2005, and the receiver 
was located in Kamchatka. A series of EQs appeared during this time near the signal propagation trace. They 
have shown that during a few days prior to the EQs in each series there were anomalies in the form of decreases 
in the amplitude and phase of the signals. The spectra of perturbations were also analyzed, which have shown 
that in the spectra on quiet as well as disturbed days the main maxima correspond to the period of 30-35 min. 
Moreover, during seismic activity there is evidence of appearance of maxima with 20-25 min and 10-12 min. It 
should be noted further that the analysis of spectra of amplitude and phase variations during magnetospheric 
substorms does not reveal such an effect. Rozhnoi et al. (2007) presented further observations of VLF/LF 
amplitude and phase perturbations propagating along three wave traces together with DEMETER satellite data 
during two periods of seismic activity in Kamchatka-Japan region. They found explicit anomalies in the 
characteristics of signals on the ground and on board the satellite during a period of seismic activity. Perturbation 
of the conductive current in the global circuit above the seismic region is considered to trigger such modification 
of the altitude profile of electron concentration, which is the cause of the appearance of anomalies of the signals 
in the VLF/LF range. As the confirmation of such a possibility the data obtained by Fux and Shubova (1995) 
during Chernobyl accident may help. They have shown that strong discharges of radioactive substances and 
aerosols into the atmosphere was accompanied by the variation of the phase and amplitude of the VLF signal 
along the propagation trace that passes the region of the accident. An analysis carried by Martynenko et al. 
(1996) showed that such perturbations of the characteristics of VLF propagation may arise due to the increase in 
the electric field in the lower ionosphere boundary up to the value ~1 V/m. Along with the rearrangement of the 
altitude profile of plasma density in the upper ionosphere above a seismically active region, the formation of 
sporadic layers in the lower ionosphere has been really observed (Ondoh & Hayakawa, 2002; Ondoh, 2003). The 
critical frequency of the sporadic E layer, f0Es, reached 89 MHz in daytime, which corresponds to a number 
density of electrons ~106 cm-3. High-altitude rocket measurements in the medium-latitude ionosphere showed 
that the electron number density in the sporadic layer was 2 × 105 cm-3, and the electric field in this layer reached 
10 mV/m (Yokoyama et al., 2002). It was an attempt to explain the sporadic E layer occurrence by radon 
injection in the atmosphere, in which they assumed that radon is transferred to the top of a cloud with low 
temperature and it produces the positive charged ice crystals. While the bottom part of the cloud is charged 
negative. Such a sporadic layer is generated as a result of electrostatic ionization of lower ionosphere by electric 
discharges in the cloud. Liperovsky et al. (1997) and Meister et al. (2002) considered the mechanism for 
sporadic layer formation by acoustic and internal gravity waves. However, the above-mentioned model for the 
formation of ionospheric irregularities by electric current disturbances on the global circuit is coordinated with 
other numerous plasma and electromagnetic data. 

3.3 F Layer of the Ionosphere 

Perturbation of electric current in the global circuit over a seismic region leads to significant modification of the 
ionospheric F layer registered as the variation of TEC (Sorokin et al., 2012c; Ruzhin et al., 2014). The TEC 
variation is defined by the plasma concentration change in the ionospheric F layer in the altitude interval (200 – 
1000) km. For the TEC calculation we take into account just the sufficient vertical transport of charged particles 
only due to the smallness of horizontal derivatives of macroscopic parameters. As follows from observational 
results the horizontal scale of ionospheric perturbation is of the order of 1,000 km which is significantly 
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5. Conclusion 

Both regions of atmosphere and ionosphere are a united environment, in which the physical phenomena are 
related with each other. Intensive processes in the lithosphere and lower atmosphere give rise to 
electrodynamical influence onto the ionospheric plasma. Among them are impending EQs, volcanic eruption, 
typhoons, thunderstorms, anthropogenic disasters. According to the LAI (lithosphere-atmosphere-ionosphere) 
coupling model, the growth of electric field in the ionosphere is caused by the formation of an EMF and the 
variation of electro-physical characteristics of the lower atmosphere connected with the injection of aerosols and 
radioactive substances with soil gases in a seismic region. In the frame of this model, the theoretical 
investigations of plasma and electromagnetic effects caused by the current generation in the global circuit have 
been derived, and the corresponding calculation results show that the EMF occurrence in the global circuit 
results in a set of plasma and electromagnetic phenomena. An increase in the electric field amplitude leads to 
AGW instability in the ionosphere. Exponential growth of AGW amplitude in the ionosphere is limited by the 
formation of vortexes, and as a result the horizontal irregularities of conductivity are generated in the ionospheric 
E layer. The interaction of ambient electric field and irregularities may result in the generation of field-aligned 
currents and plasma irregularities elongated along the magnetic field. Such plasma irregularities and 
field-aligned currents are caused by magnetic field ULF oscillations, electron density fluctuations, spectral 
broadening of VLF transmitter signals registered on board a satellite. Elongated plasma irregularities are likely 
to work as ducts and change the whistler characteristics. Scattering of the thunderstorm electromagnetic pulses 
by the horizontal irregularities of conductivity in the lower ionosphere is caused by an increase in ELF radiation 
registered by satellites and generation of GWs propagated along the ionospheric E layer. Their propagation is 
known to form the discrete line spectrum of ULF electromagnetic oscillations and changes the maximum 
frequency of SR. Moreover, the occurrence of irregularities in the night ionosphere results in the depression of 
ULF pulsations (magnetospheric downgoing Alfvén waves). The growth of electric field up to the breakdown 
value in the troposphere is likely to be caused by random electric discharges, VHF radio emissions generated in 
the troposphere over the seismic region and propagation of the signals of a VHF transmitter by scattering by the 
discharges behind the horizon. Generation of the electric current in the global circuit is accompanied by the 
ionospheric modification. First perturbation in the ionospheric D layer is generated by the electron and ion 
transfer and electron heating caused by the variation of current in the global circuit. The growth of electric 
current then leads to an increase in plasma density in the ionosphere E layer and the formation of sporadic E 
layer. The plasma drifts in the electric field and the increase in heat released by the electric current might lead to 
the modification of TEC in the F region. The theoretical investigation of above-mentioned phenomena allows us 
to interpret the observational data of significant amount of electromagnetic and plasma EQ precursors in terms of 
effects of an electric current perturbation in the global circuit. 

An electrodynamical model of LAI coupling can be used as a basis of investigation devoted to the search of EQ 
and typhoon precursors (Sorokin & Cherny, 1999; Chmyrev et al., 2013). The model links associated 
electromagnetic and plasma satellite data with electro-physical and meteorological characteristics of the lower 
ionosphere during impending disasters. The model enables us to attribute numerous phenomena in the space 
plasma to a single cause; namely the variation of conducting electric current in the global circuit. 
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