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Abstract  

This paper presents a novel nonparametric efficiency analysis technique based on the Genetic Programming 
(GP) in order to measure efficiency of Iran electric power plants. GP model was used to predict the output of 
power plants with respect to input data. The method, we presented here, is capable of finding a best performance 
among power plant based on the set of input data, GP predicted results and real outputs. The advantage of using 
GP over traditional statistical methods is that in prediction with GP, the researcher doesn’t need to assume the 
data characteristic of the dependent variable or output and the independent variable or input. In this proposed 
methodology to calculate the efficiency scores, a novel algorithm was introduced which worked on the basis of 
predicted and real output values. To validate our model, the results of proposed algorithm for calculating 
efficiency rank of power plants were compared to traditional method. Real data was presented for illustrative our 
proposed methodology. Results showed that by utilizing the capability of input-output pattern recognition of GP, 
this method provides more realistic results and outperform in identification of efficient units than the 
conventional methods.  

Keywords: electric power plants, performance evaluation, genetic programming 

1. Introduction and Background 

The most significant issues developing countries are facing with, is finding the appropriate way of operating and 
managing their power industries (Yunos & Hawdon, 1997). Electricity is extremely important in the economic 
development of every society (Liu et al., 2010). In 2007, Iran generated about 190 billion kilowatt-hours (Bkwh) 
electricity and consumed 153 Bkwh. Iran heavily relies on conventional fossil fuel power plants (especially 
natural gas generator). Iran’s nominal electrical production capacity is about 49,000 Megawatts (MW). Nominal 
capacity of some power plants is under 10%. Most power plants in Iran are old, and can’t work under nominal 
capacity. On the other hand, Iran needs to increase its power plants generate capacity around 10% annually, to 
fulfill the 7-9 percent annual demand growth (http://www.eia.doe.gov).  

The expenses of constructing electricity power plants and producing electricity are relatively high. In addition, 
the environmental damage and its consequent costs of burning fossil fuels for electricity generation is 
remarkable. Hence, performance assessment and efficiency evaluation of a group of selected homogenous 
thermal electricity power plants or in performance evaluation literature, decision-making units (DMUs) to reduce 
such costs seem necessary. In 2007, 25.6 percent of the whole amount of electricity produced came from gas 
turbines; 2.2 from hydroelectric plants; 45.4 from steam power plants; and 26.6 from combined cycle power 
plants. The rest of it was produced by diesel generators. Figure 1 shows the electricity generated by each of 
different types of power plants in Iran (http://www.tavanir.org.ir). 
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ANNs is not capable of extracting interpolation equations. The ANN implementation is needed to be done by a 
computer program. The new hybrid approach combining DEA and ANNs (Athanassopoulos & Curram, 1996) 
has been applied in many fields (Mostafa, 2009; Pendharka, 2010; Çelebi & Bayraktar, 2008; Wu, 2009; Wu et 
al., 2006; Wang et al., 2009). Wu et al. (2006) integrated DEA and ANNs to calculate the relative efficiency of a 
big Canadian bank branches. In this study in first stage a CCR model of DEA and in the next stage NN model 
was used to measure the relative efficiencies. By better estimation of performance pattern this approach can 
identify efficient units robustly. In the field of vendor evaluation and selection, Wu (2009) presented a DEA, 
decision trees and NNs hybrid model to evaluate performance of suppliers. The mentioned hybrid model can 
perform as a classification and a regression model simultaneously. The model consists of two modules: Module 
1 calculate DEA efficiencies and Module 2 utilizes efficiencies data to train Decision Tree, NNs model and 
applies the DT-NN model to new suppliers. In this paper Genetic programming (GP) is applied as a novel 
approach for evaluating performance of power generation industry. GP is a machine learning method that can be 
used to find the best fitness function. The results of GP are represented as hierarchy structures and show the 
steps to obtain the fitness function. The main advantage of GP over ANN and traditional statistical methods is its 
ability to generate simplified estimation equations without considering any assumption about data relationship 
and structure of data. GP is applied in several fields (Kaboudan, 2003) such as forecasting electricity demand 
(Lee et al., 1997); forecasting long term energy consumption (Karabulut et al., 2008) in real-time runoff (Khu et 
al., 2001); predicting financial data (Iba & Sasaki, 2002); predicting stock prices (Kaboudan, 2000) in fault 
analysis of the diesel engine fuel (Sun et al., 2004); prediction of ski-jump bucket spillway scour (Azamathulla et 
al., 2008); river pipeline scour (Azamathulla & Ghani, 2010) and longitudinal dispersion coefficients in streams 
(Azamathulla & Ghani, 2011) and etc. This study presents a genetic programming procedure for performance 
evaluating of a set of homogeneous steam power plants and benchmarking. By considering a set of power plants 
of same types to apply the presented model, more accurate and reliable results are guaranteed.  

2. Genetic Programming  

Genetic programming (GP) as an extension of the genetic algorithms was firstly presented by Koza (1992). GP is 
an area of evolutionary computation methods that creates computer programs.  

The computer programs generated by GP are presented as tree structures and expressed in the functional 
programming language (LISP) (Koza, 1992). The classical GP technique is also called “tree-based GP” (Koza, 
1992). The main differences between GP and GA are (Willis et al., 1997): 

• GP creates solutions or chromosomes as a tree structured in the variable length; while GA’s generally 
make use of chromosomes of fixed length and structure. 

• GP typically integrate syntax with a specific domain that regulates meaningful arrangements of 
information on the chromosome. For GAs, the chromosomes are typically syntax-free. 

• GP maintain the syntax of its tree-structured chromosomes in ‘reproduction’ step, by using the genetic 
operators. 

• GP solutions are often coded in the way that let the chromosomes to be executed directly. GA’s are 
rarely coded in this form. 

GP is able to automatically predict the generation of mathematical expressions or programs (Tsakonas, 2006). 
Like many other areas of computer sciences, GP has been widely utilized in the real world condition. GP creates 
numerous random populations in the large space of possible solutions (computer programs) to avoid the 
likelihood of stopping in a “local optimum” (Muttil & Lee, 2005). The functions or programs are called 
organisms or chromosomes. During the evolution process to find best solution, the size and form of the 
populations dynamically change (Brezocnik & Balic, 2001). From a set of function and terminal genes, possible 
solutions in GP can be formed in a recursive manner.  

In GP, function set (F) is consisting of all mathematical functions (the basic mathematics operations (+, -, ×, /, 
etc.), Boolean logic functions (AND, OR, NOT, etc.) or …).  

The terminal set T contains the arguments for the functions and can consist of numerical constants, logical 
constants, variables, etc. In Figure 2 a simple tree structure of a GP model is shown. GP Tree structure has a root 
node with links went out from each function and end to a terminal.  
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conventional regression methods is that conventional regression need to specify the model structure in advance, 
which is mostly suboptimal. ANNS require the identification of the network structure and then the coefficients 
(weights) are calculated during the learning process. In GP, the terminal and function sets are defined initially, 
and then both the optimal form of the model and the coefficients are calculated by GP algorithm (Muttil & Lee, 
2005). The GP models can provide additional information about the problem by finding the best fit analytic 
function. In contrast, ANNs can’t provide any analytical function besides the interpretation of the network 
weights is not generally possible. Opposing to ANNS, GP have a good ability to distinguish among the effective 
input data and inputs that have no effect on a solution. Therefore, GP can reduce the dimension of the model, and 
better model interpretation will be achieved (Muttil & Lee, 2005). 

3. Methodology 

In the present study, a GP-based algorithm is introduced to measure Iran’s main electricity power plants 
efficiency during a specific period. The presented model is input oriented because of the selected power plants 
have particular demand to fulfill. Thus, the input quantities are the main decision parameters. By finding cost 
function instead of production function the GP method can be extend as an output oriented model. In this study 
one output is considered for simplicity. The proposed algorithm is as follows: 

(1) Divide the data to input (S) and output (P) sets. Assume that “n” power plants have to be assessed. 

(2) Form S as inputs contain all data from input variables of the previous periods. 

(3) Divide S to two sub sets: learning (SLearning) and validation (Svalidation) sets.  

The learning data are used for learning process. A validation data are also used to test the capability of the model 
on new data. During the learning process the performance of the evolved models on the validation set is 
monitored.  

The learning and validation data sets used to select the best evolved models and included in the training process. 
Since better extrapolate of GP is preferred the validation data are chosen from closer data periods STesting. 

(4) Use GP method to find best program function.  

(A) Choose training variables. 

(B) Train GP using the learning data (SLearning). 

(C) Evaluate the model using the validation data SValidation. 

Calculate the GP best fit function with the desired precision on the validation data. 

(5) Calculate fitness value for STesting using the GP best fit function. 

(6) Calculate the absolute error between the real output (  and GP best fit function ( 	 ) in the 
current period: 

 | |, 1,2, … ,  (1) 

(7) Calculate the error weight for each predicted value of power plants ( : 

 ∑ , 1,2, … ,  (2) 

(8) Calculate Raw Efficiency Scores: For obtaining Raw Efficiency Scores real value is divided to the 
summation of effects of the each absolute error ratio ) and predicted value. 

 , 1,2, … ,  (3) 

(9) Final efficiency scores calculation. The efficiency scores are between 0 and 1. The power pant with 
maximum score takes the highest rank. 

 	 100, 1,2, … ,  (4) 

The steps of proposed algorithm are illustrated in Figure 6. 
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Figure 6. Steps of proposed methodology 

 
4. Case Study 

The conventional thermal steam-electric production plan is defined by engineering framework. In such 
framework, appropriate input parameters are the consumed fuel quantity and installed power. The installed 
power is the maximum nominal power for that the plants are originally designed. Labor input variables are for 
controlling and maintenance services, which also require funds (Azadeh et al., 2007). Electrical energy 
production is the output. According to some researches on the performance evaluation of Iran’s thermal power 
plants (e.g., Emami Meibodi, 1998), labor is not a major factor. Consequently, GP-based formulation of the 
electric power (MWh) generated from thermal power plants in each power plants (P) is considered to be as 
follows: 

 	 , ,  (5) 

Where, 

IC (MW): Capital (install capacity) 

IP (MWh): Internal power (Internal consumption) 

FC (TJ): Fuel consumption 

IC is measured in terms of installed thermal generating capacity (Hawdon, 1997; Fare et al., 1983). IP is the 
energy consumption of plant (e.g. powered equipments, etc.). Various fossil fuels such as natural gas, gasoline 
and mazut have been used as fuel in the production procedure. The type of fuel is depended on availability; cost 
and environmental issues (Azadeh et al., 2010). FC measurement scale is Tera Joule (TJ). One hundred 
forty-eight data sets collected from 1997 to 2004 by Azadeh et al. (2010) were used for applying the proposed 

1- Divide the data to input (S) and output (P) sets 

2- Form S as inputs contain all data from input variables of the previous 

3- Divide S to two sub sets: learning (SLearning) and validation (Svalidation) sets 

4- Use GP method to find best program function 

6- Calculate the absolute error, | |, for each power plant 

5- Calculate fitness value for STesting using the GP best fit function 

7- Calculate error weight,  for each power plant 

8- Calculate raw efficiency scores,  for each power plant 

9- Calculate efficiency scores,  and rank each power plant 



www.ccsenet.org/mas Modern Applied Science Vol. 8, No. 3; 2014 

50 
 

performance evaluation and estimation model. The basic descriptive statistics of model parameters is calculated 
in Table 1. For more detailed information about Iran’s thermal power plants, such as total output, generation 
capacity and fuel consumption can be found in TAVANIR management organization (1997–2004). To start 
analysis, the main data sets in several periods were separated to training and testing subsets. The training data 
were used for the learning process and the testing data were employed to evaluate the capability of the model on 
data sets that were not included in the analysis.  

For analysis data sets from 1997 to 2002, 117 sets were used as the training data (100 sets for learning and 17 
sets for validation). Also, 31 data sets from 2003 to 2004 were taken for the testing of the models. 

 
Table 1. The basic descriptive statistics of model parameters 

Parameter IC (MW) IP (MWh) FC (TJ) P (MWh) 

Mean 731.4 273767.8142 1084398.382 4148901.203 

Standard Deviation 557.4 200881.381 832885.7401 3282302.083 

Sample Variance 310687.2 4.0E+10 6.9E+11 1.1E+13 

Minimum 50 3215 22023 56254 

Maximum 1890 823033 3298201 11640505 

Confidence Level (95.0%) 90.5 32632.3 135298.4 533194.8 

 

In the computerized GP predictive algorithm several parameters should be considered. These parameters should 
be set properly in order to get the best GP prediction model for the Electricity production in steam power plants. 
Table 2 shows the GP model parameters. Four basic mathematics operators were sets in the procedure in order to 
maintain the simplicity of the model. Population size sets the number of programs in the population that GP will 
evolve. The generation number sets the number of levels the algorithm will use before the run terminates. Based 
on the complexity of model the appropriate values of these parameters should be selected. Herein, a reasonably 
large value of initial population and generations were tested to find production function with minimum 
inaccuracy. The rates of the mutation and crossover operations for the optimal models were 50%. The maximum 
tree depth was also set to an optimal value of 12.  

The other values of effective parameters are selected based on trial and error experiments (Gandomi et al., 2010). 
In this study tree-based GP software, GPLAB (Silva, 2007) in addition with subroutines coded in MATLAB was 
used. 

 
Table 2. The GP parameter settings  

Parameter Settings 

Function set +, -, ×, / 

Population size 100-1000 

Maximum tree depth  12 

Total generations 4000 

Initial population  Ramped half-and-half 

Sampling  Tournament 

Expected no. of offspring method  Rank 89 

Fitness function error type linear error function 

Termination  Generation 40 

Minimum probability of crossover  0.1 

Minimum probability of mutation 0.1 

Real max level  30 

Survival mechanism  Keep best 
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Figure 8. Sensitivity analysis of the predictor variables in the GP model 

 

  

 

 
Figure 9. Parametric analysis of the electricity production in the GP model 
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5. Validity Verification  

Based on the estimated results for outputs of power plants calculated by the GP model, the plant efficiencies are 
quantified. The results are shown in Table 3 through Table 5. In Table 3 the rankings of the power plants based 
on Athanassopoulos and Curram (1996) study which is called ‘‘standardized efficiency’’ is shown (Costa & 
Markellos, 1997; Delgado, 2005; Azadeh et al., 2007). Also Table 4 shows the calculation results according to 
Azadeh et al. (2007) approach. Finally Table 5 summarized the main results of efficiency scores based on the 
proposed GP estimation model, which can be seen in Figure 6.  

 

Table 3. Efficiency scores estimation by the standardized efficiency algorithm 

Power Plants Re ( )al iP  ( )GP iP  Re ( ) ( )al i GP iEi P P  Re ( ) ( )100 ( / ( max | 0))al i ANN i i iFi P P E E    Rank

Montazerghaem 3297100 3335966.289 -38866.289 89.21 10

Besat 1500253 1682872.54 -182619.536 73.45 15

Firoozi 212403 310681.88 -98278.884 31.68 19

Salimi 11310817 11000250.67 310566.328 99.57 2 

Shazand 7438002 7128665.43 309336.573 99.33 3 

Rajaei 6342203 5982403.61 359799.388 100 1 

Beheshti 1435991 1366089.86 69901.139 83.2 13

Tabriz 4341330 4594212.58 -252882.575 87.63 11

Mofatteh 5134547 5314179.90 -179632.900 90.49 9 

Bistoon 4210280 4095904.47 114375.526 94.49 6 

Ramin 10861867 10764449.95 97417.052 97.64 4 

Madhaj 922587 944762.00 -22175.003 70.72 16

Bandarabbas 7196540 8144942.68 -948402.683 84.62 12

Zarand 341402 407945.86 -66543.857 44.47 18

Esfahan 5621431 5600168.68 21262.323 94.32 7 

Montazeri 11137177 11283224.42 -146047.415 95.66 5 

Toos 3831065 3851999.95 -20934.945 90.96 8 

Mashhad 665887 770047.05 -104160.047 58.94 17

Iranshahr 1492847 1591231.36 -98384.360 76.52 14

 

Table 4. Estimation of efficiency scores by the Azadeh et al. (2007) algorithm 

Power Plants Re ( )al iP  ( )GP iP  iE  iE   iSh  Fi  Rank 

Montazerghaem 3297100 3628549.66 -331449.66 -0.0913 1390450.97 65.69 12 

Besat 1500253 2053443.7 -553190.7 -0.2694 786,874.38 52.82 14 

Firoozi 212403 782995.79 -570592.79 -0.7287 300,041.99 19.61 19 

Salimi 1.1*107 8177297.48 3133519.52 0.3832 3133519.52 100 1 

Shazand 7438002 7164642.93 273359.07 0.0382 2745472.89 75.05 6 

Rajaei 6342203 5701384.48 640818.52 0.1124 2184755.98 80.42 4 

Beheshti 1435991 1757228.32 -321237.32 -0.1828 673365.41 59.08 13 

Tabriz 4341330 4617026.03 -275696.03 -0.0597 1769232.59 67.98 11 

Mofatteh 5134547 5378608.18 -244061.18 -0.0454 2061068.93 69.02 10 

Bistoon 4210280 4249969.03 -39689.03 -0.0093 1628577.29 71.62 8 

Ramin 1.1*107 9195861.73 1666005.27 0.1812 3523830.75 85.39 3 

Madhaj 922587 1685681.91 -763094.91 -0.4527 645949.01 39.57 16 
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Bandarabbas 7196540 7340823.66 -144283.66 -0.0197 2812984.89 70.88 9 

Zarand 341402 891289.53 -549887.53 -0.617 341539.87 27.69 18 

Esfahan 5621431 5310960.15 310470.85 0.0585 2035146.38 76.52 5 

Montazeri 1.1*107 9370519.03 1766657.97 0.1885 3590758.98 85.93 2 

Toos 3831065 3858784.97 -27719.97 -0.0072 1478676.55 71.78 7 

Mashhad 665887 1245295.4 -579408.4 -0.4653 477194.02 38.66 17 

Iranshahr 1492847 2043592.09 -550745.09 -0.2695 783099.28 52.81 15 

 

Table 5. Efficiency scores estimation based on the proposed approach 

Power Plants RealP  GPP  iD  ( )Weight iE ( )Score iRE  ( )score iE  Rank

Montazerghaem 3297100 3335966.289 38866.28949 0.0113 0.98835 93.23 9 

Besat 1500253 1682872.54 182619.5355 0.0531 0.89148 84.09 15 

Firoozi 212403 310681.88 98278.88412 0.0286 0.68367 64.49 19 

Salimi 11310817 11000250.67 310566.3283 0.0902 1.02823 96.99 4 

Shazand 7438002 7128665.43 309336.573 0.0899 1.04339 98.42 3 

Rajaei 6342203 5982403.61 359799.3877 0.1045 1.06014 100 1 

Beheshti 1435991 1366089.86 69901.13884 0.0203 1.05117 99.15 2 

Tabriz 4341330 4594212.58 252882.5752 0.0735 0.94496 89.14 13 

Mofatteh 5134547 5314179.90 179632.9004 0.0522 0.9662 91.14 12 

Bistoon 4210280 4095904.47 114375.5264 0.0332 1.02792 96.96 5 

Ramin 10861867 10764449.95 97417.05159 0.0283 1.00905 95.18 6 

Madhaj 922587 944762.00 22175.00268 0.0064 0.97653 92.11 11 

Bandarabbas 7196540 8144942.68 948402.6831 0.2756 0.88356 83.34 16 

Zarand 341402 407945.86 66543.85697 0.0193 0.83688 78.94 18 

Esfahan 5621431 5600168.68 21262.32276 0.0062 1.0038 94.69 7 

Montazeri 11137177 11283224.42 146047.4151 0.0424 0.98706 93.11 10 

Toos 3831065 3851999.95 20934.94534 0.0061 0.99457 93.81 8 

Mashhad 665887 770047.05 104160.0469 0.0303 0.86474 81.57 17 

Iranshahr 1492847 1591231.36 98384.36003 0.0286 0.93817 88.49 14 

 

To compare results and check the accuracy of the proposed method, a non-parametric inference method- 
Spearman rank correlation test- is used. To be more specific for each Power Plant, the statistical significances of 
the difference between the ranking obtained by proposed methodology, conventional and Azadeh et al. (2007) 
algorithm are determined using Spearman’s rank correlation test. Spearman test evaluates the similarity of the 
rankings of the different DMUs. In the Spearman test, to examine the null hypothesis a test statistic, Z, is 
calculated using Equations (9) and (10) and compared with a pre-determined level of significance,   value. 
The null hypothesis is “The rankings of two methods are not similar”. By considering level of significance 
equal to 0.05, critical Z value will be 1.645. If the test statistic computed by Equation (10) exceeds 1.645, the 
null hypothesis is rejected and we can conclude that alternate hypothesis which is “The two rankings are similar” 
is true (IC &Yurdakul, 2010). 

 1 ∑
 (9) 

 1  (10) 
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In Equation (9),  is the ranking difference of Power Plants j in different methods and K is the number of 
Power Plants.  represents the Spearman rank correlation coefficient. Table 6 shows the calculated values of , 

 and Z.  

 

Table 6. Determination of the significance of the difference between the proposed method and conventional 
methods 

Power Plants 
Efficiency ranking 

of proposed method 

Efficiency ranking 
of conventional 

method 

Efficiency 
ranking of 

Azadeh et al. 
(2007) method 

dj (proposed vs. 

conventional method) 

dj (proposed vs. 

Azadeh et al. 

(2007) method)

Montazerghaem 9 10 12 -1 1 

Besat 15 15 14 0 0 

Firoozi 19 19 19 0 3 

Salimi 4 2 1 2 -3 

Shazand 3 3 6 0 -3 

Rajaei 1 1 4 0 -11 

Beheshti 2 13 13 -11 2 

Tabriz 13 11 11 2 2 

Mofatteh 12 9 10 3 -3 

Bistoon 5 6 8 -1 3 

Ramin 6 4 3 2 -5 

Madhaj 11 16 16 -5 7 

Bandarabbas 16 12 9 4 0 

Zarand 18 18 18 0 2 

Esfahan 7 7 5 0 8 

Montazeri 10 5 2 5 1 

Toos 8 8 7 0 0 

Mashhad 17 17 17 0 -1 

Iranshahr 14 14 15 0 1 

 proposed vs. conventional 
method 

rs = 0.8158 proposed vs. 
Azadeh et al. 

(2007) method 

rs = 0.7123

Z = 3.4611 Z = 3.022 

 

The calculated Z-values, 3.4611 and 3.022, are higher than 1.645, which indicates that the difference in ranking 
results of the proposed vs. conventional method and the proposed vs. Azadeh et al. (2007) method, by 
considering level of significance   equal to 0.05 is statistically insignificant. Based on the test results, it can be 
concluded that the ranking of Power Plants, obtained by proposed method is reliable. 

Table 7 shows the summarized main results in presenting the efficiency scores of the conventional and proposed 
algorithm and PCA (ZPCA). Based on the results in Table 7, it can be seen that the mean efficiency scores of the 
conventional algorithm is smaller than mean technical efficiency for the Power Plants based on the proposed 
algorithm. Statistical t-test has been conducted In order to test significantly difference of the two technical 
efficiencies obtained from the two algorithms.  
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Table 7. Efficiency scores results 

Power Plants 
Efficiency scores by the proposed 

algorithm 
Efficiency scores by Azadeh et al. (2007) 

algorithm 

Bandarabbas 93.23 65.69 

Beheshti 84.09 52.82 

Besat 64.49 19.61 

Bistoon 96.99 100 

Esfahan 98.42 75.05 

Firoozi 100 80.42 

Iranshahr 99.15 59.08 

Madhaj 89.14 67.98 

Mashhad 91.14 69.02 

Mofatteh 96.96 71.62 

Montazerghaem 95.18 85.39 

Montazeri 92.11 39.57 

Rajaei 83.34 70.88 

Ramin 78.94 27.69 

Salimi 94.69 76.52 

Shazand 93.11 85.93 

Tabriz 93.81 71.78 

Toos 81.57 38.66 

Zarand 88.49 52.81 

Mean 90.255 63.711 

 

The results of t-test are illustrated in Table 8.  

 

Table 8. Hypothesis testing of the mean efficiencies ( E) of the proposed and Azadeh et al. (2007) algorithms 

Hypothesis 

H0 (proposed algorithm) -  (Azadeh et al. (2007) > 25 

H1  (proposed algorithm) -  (Azadeh et al. (2007) algorithm) <25 

Calculated t-statistic 0.30 

P-Value 0.616 

Decision 
Since the p-value is greater than -level (0.01), there is no evidence to  

Reject H0. 

 

Base on Table 8 The null hypothesis cannot be rejected, that means technical efficiencies of the proposed 
algorithm is 25 percent larger than mean technical efficiencies of the Azadeh et al (2007) algorithm at the 1% 
level of significance. 

6. Conclusion 

In this paper a nine-step algorithm was proposed to measure and rank the efficiency of electricity production 
units (Power Plants) in Iran. The unique feature of proposed algorithm is using the result of GP model to 
calculate efficiency. Using GP can help to better estimate the performance patterns of Power Plants. GP doesn’t 
require explicit assumption about the function structure of the dependent (output) and independent (input) 
variables and this can lead to better estimation and results than conventional method such as regression or neural 
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network. The proposed algorithm was applied to a set of steam power plants in 2004. The efficiency results and 
rankings were compared with the two other methods, conventional and Azadeh et al. (2007) approach. To 
validate our proposed algorithm and ensure that the proposed algorithm calculates the efficiency scores 
statistically similar to conventional method the Spearman rank correlation test is used. The results indicate that 
the efficiency scores are closer to the ideal efficiency with considering the fact that the rankings of Power Plants 
statistically remain the same. Because of better performance patterns recognition of GP method, the proposed 
algorithm calculates more precise and realistic results than the conventional approach. When the production 
function is unknown, The GP based algorithm for measuring technical efficiency can lead to better results than 
other techniques.  

Because of lack of both theoretical and empirical works in efficiency analysis more research in this field is 
needed. For the future studies, utilization of other prediction techniques such as neural network in combination 
of GP method to better pattern recognition of production function is advised. Also to obtain more realistic results 
and to reduce the estimation error of results considering more output and input indicators is useful. 
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