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Abstract 
This paper provides two new models for portfolio selection in which the securities are assumed to be uncertain variables 
that are neither random nor fuzzy. Since there is no efficient method to solve the proposed models, the original 
problems are transformed into their crisp equivalents programming when the returns are chosen some special uncertain 
variables such as rectangular uncertain variable, triangular uncertain variable, trapezoidal uncertain variable and normal 
uncertain variable. Finally, its feasibility and effectiveness of the method is illustrated by numerical example. 
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1. Introduction 
Portfolio selection is concerned with an individual who is trying to allocate one’s wealth among alternative securities 
such that the investment goal can be achieved. The problem was initialized by Markowitz (1952, p.77), and the solution 
of his mean-variance methodology has been serving as a basis of the development of modern financial theory. The 
pioneer work Markowitz combined probability and optimization theory to model the investment behavior under 
uncertainty. Quantifying investment return as the mean of returns of the securities, and investment risk as the variance 
from the mean, Markowitz formulated his models mathematically in two ways: minimizing variance for a given 
expected value or maximizing expected value for a given variance.  
Portfolio theory has been greatly improved since Markowitz. The researches mainly focused on two directions. One 
direction is how to define the investment risk. In 1952, Markowitz stated that variance could be regarded as risk. Since 
then, mathematical analysis on portfolio management has developed greatly, and variance has become the most popular 
mathematical definition of risk for portfolio selection. Scholars developed a variety of models using variance to 
quantify risk in various situations, for example, variance models proposed by Best (2000, p.195), Chopra (1998,p.53), 
Gram (2003, p. 546), Deng (2005, p.278) and Huang (2007, p.396). Since in case when return distributions securities 
are asymmetric, the selected portfolio based on variance may have a potential danger to sacrifice too much expected 
return in eliminating both high return extremes and low return extremes, semi-variance was proposed as an alternative 
definition of risk by Markowitz (1952, p.77) and lots of models were built to minimize semi-variance in different cases, 
for example, Chow (1994, p.231), Grootveld (1999, p.304), Homaifar (1990, p.677), Markowitz (1993, p.307) and Rom 
(1994, p.431). Another alternative definition of risk is the probability of an adverse outcome Roy (1952, p.431). There 
are also many research works that minimize the probability of an adverse outcome such as Mao (1970, p.657) and 
Williams (1997, p.77). However, in reality, some people may only be sensitive to one preset disastrous loss level and 
regard the chance of occurring this bad case as risk, risk curse was proposed as the fourth definition of risk such as 
Huang (2008, p.351 ) and Huang (2008, p.1102 ). Another direction is how to choose return rate. Portfolio selection was 
initially handled in stochastic environments. After then, the problem was dealt with in fuzzy, random fuzzy and 
birandom environment. There are a variety of models in this line. Let us mention some of the representatives in recent 
years. For example, we have fuzzy chance-constrained model by Huang (2006, p. 500), fuzzy mean semi-variance 
model by Huang (2008, p.1) and random fuzzy mean-variance model by Grootveld (1999, p.304).  
These studies solved the problem in different stochastic, fuzzy or random and fuzzy simultaneously environments with 
different risk. In practice, the real life decisions are usually made in the state of uncertainty, when the uncertainty of the 
return rate behaves neither randomness nor fuzziness, we need a new tool to deal with it. In such situations, the use of 
uncertain theory to represent unknown parameters provides an interesting help. In other words, we may employ the 
uncertain theory which was initialized by Liu (2009) to deal with this new type of uncertainty. 
The paper is organized as follows. After recalling some definitions and results about uncertain measure and uncertain 
variable in section 2, the mean-variance models for portfolio selection is introduced in section 3. Then section 4 discusses 
its crisp equivalents when the return rates are chosen as some special uncertain variables such as rectangular uncertain 
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variable, triangular uncertain variable, trapezoidal uncertain variable and normal uncertain variable. In section 5, we 
provide a numerical example to illustrate the potential application and the effectiveness of the new models. Finally, we 
conclude the paper in section 6.  
2. Preliminaries 
Let Γ  be a nonempty set, and let Α  be a σ -algebra over Γ . Each element Α∈Λ  is called an event. In order to 
provide an axiomatic definition of uncertain measure, it is necessary to assign to each event Λ a number }{ΛM which 
indicates the level that Λ  will occur. In order to ensure that the number }{ΛM has certain mathematical properties, Liu 
(2009) proposed the following five axioms: 
Axiom 1 (Normality) 1)( =ΓM ; 

Axiom 2 (Monotonicity) )()( 21 Λ≤Λ MM  whenever 21 Λ⊆Λ ; 

Axiom 3 (Self-duality) 1)()( c =Λ+Λ MM  for every event Λ ; 

Axiom 4 (Countable subadditivity) For every countable sequence of events }{ iΛ , we have  

)()( 11 iiii MM Λ∑≤Λ ∞
=

∞
=U . 

The following is the definition of uncertain measure. 
Definition 1 (Liu (2009)). The set function is called an uncertain measure if it satisfies the normality, monotonicity, 
self-duality and countable subadditivity axioms. 
Example 1 Let },{ 21 γγ=Γ . For this case, there are only 4events. Define 

1)(,0)(,6.0}{,4.0}{ 21 =Γ=== MMMM φγγ , 

then M  is an uncertain measure because it satisfies the four axioms. 
Definition 2 (Liu (2009)). Let Γ  be a nonempty set, Α  a σ -algebra over Γ , and M  an uncertain measure. Then 
the triplet ),,( MΑΓ  is called an uncertain space. 

The product uncertain measure is defined as follows. 
Axiom 5 (Liu (2009)). Product Measure Axiom) Let kΓ  be nonempty sets on which kM are uncertain measures, 

nk ,,2,1 L= , respectively. Then the product uncertain measure on Γ  is  

⎪
⎩

⎪
⎨

⎧

>ΛΛ−

>ΛΛ

=Λ
≤≤Λ⊂Λ××Λ×Λ≤≤Λ⊂Λ××Λ×Λ

≤≤Λ⊂Λ××Λ×Λ≤≤Λ⊂Λ××Λ×Λ

.5.0}{minsupif},{minsup1

,5.0}{minsupif},{minsup
}{

11

11

2121

2121

kknkkknk

kknkkknk

MM

MM
M

c
n

c
n

nn

LL

LL
 

 For each event Α∈Λ , denoted by nMMMM ∧∧∧= L21 . 

Definition 3 (Liu (2009)). An uncertain variable is a measurable function ξ  from an uncertainty space ),,( ΜΑΓ  to 
the set of real numbers, i.e., for any Borel set Β  of real numbers , the set 

})(|{}{ Β∈Γ∈=Β∈ γξγξ  

is an event. 
A random variable can be characterized by a probability density function and a fuzzy variable may be described by a 
membership function, uncertain variable can be characterized by identification function. 
Definition 4  (Liu (2009)). An uncertain variable ξ  is said to have a first identification function λ  if 

(1) )(xλ  is a nonnegative function on R such that  

;1)()(sup =+
≠

yx
yx

λλ  

(2) For any set Β  of real numbers, we have 
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Definition 5 (Liu (2009)). The uncertainty distribution ]1,0[: →Φ R  of an uncertain variable ξ  is defined by 
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}{)( xMx ≤=Φ ξ . 

Definition 6 (Liu (2009)). Let ξ  be an uncertain variable. Then the expected value of ξ  is defined by  

,}{}{][
0

0
drxMdrxME ∫∫ ∞−

∞+
≤−≥= ξξξ  

provided that at least one of the two integrals is finite. 
Definition 7  (Liu (2009)). Let ξ  be an uncertain variable with finite expected value e , then the variance of ξ  is 

defined by ])[(][ 2eEV −= ξξ  . 

The detailed exposition on the uncertain theory have been recorded in the literature, the interested readers may consult it. 
3. Mean-variance Model  
In Markowitz models, security returns were regarded as random variables. As discussed in introduction, there does exist 
situations that security returns may be uncertain variable parameters. In this situation, we can use uncertain variables to 
describe the security returns. 

Let ix  denote the investment proportion in the thi security, iξ  represents uncertain return of the thi security, 
ni ,,2,1 L= , respectively, and a  the maximum risk level that the investor can tolerate. Following Markowitz’s idea, 

we quantify investment return by the expected value of a portfolio, and risk by the variance. Then an optimal portfolio 
should be the one with maximal expected return for the given variance level. To express it in mathematical formula, the 
mean-variance model is as follows: 
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where E denotes the expected value operator , and V the variance operator of the uncertain total return rate, a the 
maximum risk level the investor can tolerate. 
When the investors preset an expected return level that they feel satisfactory, and want to minimize the risk for this 
given level of return, the optimization model becomes 
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where b denotes the minimum expected investment return that the investors can accept. 
4. Deterministic Equivalents 
The traditional solution methods require conversion of the objective function and the constraints to their respective 
deterministic equivalents. As we know, this process is usually hard to perform and only successful for some special 
cases. Let us consider the following forms of the uncertain return rates. 
Case 1.  Suppose that the return rate iξ of the thi security is rectangular uncertain variable niba iii ,,2,1),,( L==ξ , 
then  

ii
n
i x ξ1=∑  is rectangular uncertain variable ),( 11 ii

n
iii

n
i bxax == ∑∑ . According to the properties of rectangular uncertain 

variable, we have 
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Since the term 2
1 )]([ iii

n
i abx −∑ = is nonnegative, axV ii

n
i ≤∑ = ][ 1 ξ  is equivalent to aabx iii

n
i 22)(1 ≤−∑ = . In this 

case, models (1) and (2) can be converted into its deterministic equivalents as follows. 
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and  
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Case 2. If the return rates are all trapezoidal uncertain variables, Let iξ  be ),,,,( iiii dcba  where 
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the properties of trapezoidal uncertain variable, we have  
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i bxcx 11 == ∑−∑=γ , so the model (1) and (2) can be changed into the following formulas: 
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and  
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In models (5) and (6), the variance ][ 2211 nnxxxV ξξξ +++ L  is formulated as 
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Case 3.  An uncertain variable ξ  is called normal if it has a normal uncertainty distribution 

Rxxex ∈
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denoted by ),( σeN where e and σ are real number with 0>σ . Suppose that the return rate of thi security is 
normally distributed with parameters ie  and nii ,,2,1,0 L=>σ . Then we have 
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So the model (1) and (2) can be converted into the following linear equivalents: 
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and 
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Thus we can solve the models (3)-(8) by traditional method. 
5. Numerical Example 
Example 2 Assume that there are 5 securities. Among them, returns of five are all normal uncertain variables 

5,4,3,2,1),( == ieN iii ，σξ . Let the return rates be  
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Suppose that the risk is not allowed to exceed 1.5, and the minimum excepted return the investor can accept is 2, then 
the models (7) and (8) are as follows: 
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By use of Matlab 7.0 on PC we obtain the optimal solutions of model (9) and (10). The optimal solution of model (9) is  
)0029.0,0344.0,1186.0,1478.0,6962.0( , 

and the value of objective function is 0.5000. This means that in order to gain maximum expected return with the risk 
not greater than 1.5, the investor should assign his money according to the optimal. The corresponding maximum 
expected return is 0.5.  
The optimal solution of model (10) is  

)1985.0,2663.0,2035.0,0002.0,3316.0( , 

and the value of objective function is 3.0000. This means that in order to minimize the risk with the expected value not 
less than 2, the investor should assign his money according to the optimal. The corresponding minimum risk is 3.   
6. Conclusions 
In this paper, uncertain variable is applied to portfolio selection problems, and two types of uncertain programming 
models for portfolio selection with uncertain returns are provided. In order to solve the proposed models by traditional 
methods we discuss the crisp equivalents when the uncertain returns are chosen to be some special uncertain variables 
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and give one example to explain the efficiency of the method. The paper does not include the conditions when the 
return rates are general uncertain variables, this can be interesting areas for future researches.  
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