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Abstract

Guided TEM waves have been extensively investigated between 2 conductors. The multiconductor case, in spite of
some important publications in this direction, did not get into the mainstream of the electromagnetic education, and
therefore deserves some more attention. The simple case of lossless multiconductor TEM waves in homogeneous
media is a good approximation for many practical cases and is easily derivable by usage of potentials only. In this
work we derive the formalism for lossless multiconductor TEM waves in homogeneous media, and show several
examples for the usage of this formalism.
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1. Introduction

The purpose of this work is to show a simple derivation for TEM waves guided between many perfect conductors,
in a homogeneous media and to develop multiconductor models and applications for several geometries.

Multiconductor transmission lines have been first analyzed in the orientation of power systems. Matrix methods
for power systems trace back to the seminal works of Park (1929, 1933), and known as Park transformations.
Methods similar to the above, known as DQO transformations and αβγ transformations have been developed to
ease manipulations of 3 phase networks.

Traveling waves phenomena in polyphase systems have been analyzed by Wedepohl (1963) and Galloway (1964).
Those works generalized the telegraph equations for more than one dimension, and introduced the term of charac-
teristic self impedance and characteristic mutual impedance between phases. The orientation of those works was
for polyphase power systems.

In 1988 Clayton R. Paul issued a book (Paul, 1994) on multiconductor transmission lines. This book treats from
a very high theoretical level this subject, analyzing both homogeneous and non homogeneous media, the lossy
and lossless case. In 1999, F. Olyslager issued a book (Olyslager, 1999) on transmission lines representation of
waveguides. The waveguide modes are represented by N dimensional transmission lines techniques - see also
Olyslager et al. (1994).

However, this subject did not get yet into the main stream of electromagnetic education, and simple derivations for
lossless multiconductor TEM are not available. Most practical cases of multiconductor transmission line may be
approximated as TEM in the homogeneous model, the inhomogeneity being expressed by an average equivalent
dielectric constant. The waves propagate in quasi TEM, which may be well approximated by TEM (Pozar, 2009).
Also losses, if they are small, may be introduced a posteriori.

It appears that the homogeneous lossless case can be very easily derived and formulated using only the scalar and
vector potentials, and we present this formulation in the current work. Some preliminary work has been presented
at Ianconescu (2012).

In section 2 we define the general configuration which consists of any number of parallel perfect conductors
in a homogeneous lossless medium, and show a summary of the basic formulation of guided TEM waves and
their propagation characteristics. In section 3 we formulate the interface connections between source, termina-
tion and the multiconductor TEM transmission line, with some examples. In section 4 we formulate an alterna-
tive representation for the multiconductor guided TEM, with an example and in section 5 we perform a flat cable
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analysis for which we discuss the cross talk issue. In section 6 we generalize the results of section 2 for the time
harmonic case, discuss the VSWR issue, and present a short example. The work is ended with some concluding
remarks.

2. Basics of Guided TEM

We consider an arbitrary number N + 1 of parallel perfect conductors in the z direction. The cross section of each
conductor is fixed, hence z independent. The medium between the conductors is homogeneous having constant
electric permittivity ϵ and magnetic permeability µ. The general configuration is shown in Figure 1. The conductors
are numbered 1, 2, .. N, N + 1, where the “last” (N + 1) conductor is defined as common.

Figure 1. General configuration: several parallel perfect conductors (here shown 4 conductors), having a fixed
cross section in the x − y plane in a homogeneous lossless medium

A full electromagnetic derivation of the solution for such configuration can be found in the literature (Paul, 1994;
Olyslager, 1999), although simpler derivations can be worked out for lossless TEM. Because the main results are
known we present in the current section a summary of the most important results for perfect conductors in lossless
homogeneous medium and the guidelines to derive them.

The scalar potential V , each component of the vector potential A and of the electric and magnetic fields, satisfy
the homogeneous wave equation (Staelin, Morgenthaler, & Kong, 1994; Pozar, 2009; Orfanidis, 2002; Chen & Lu,
2011). (

∇2 − 1
v2 ∂

2
t

)
U = 0, (1)

where U denotes any of the above entities, and v ≡ 1√
ϵµ

is the light velocity in the medium. The Lorentz gauge

∇ · A + 1
v2 ∂tV = 0, (2)

must also be satisfied. Now separating ∇2 ≡ ∇2
tr+∂

2
z in Equation (1), where ∇2

tr is the transversal Laplacian operator,
we obtain (

∇2
tr + ∂

2
z −

1
v2 ∂

2
t

)
U = 0, (3)

By separating variables U = Utr(x, y)Ul(z, t) in Equation (3) one obtains

∇2
trUtr

Utr
+
∂2

z Ul − 1
v2 ∂

2
t Ul

Ul
= 0, (4)

and the TEM are special solutions for which each part of Equation (4) is separately 0, namely

∇2
trUtr = 0 (5)

and
∂2

z Ul −
1
v2 ∂

2
t Ul = 0. (6)
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Those special solutions exist only when the number of conductors is bigger than 1 (see Figure 1), because for a
single conductor the Laplace Equation (5) solved for the scalar potential V , yields a constant solution, hence 0
electric field.

For our general configuration in Figure 1, the surface currents cannot be circular, because this implies non zero
B field inside the conductors, which is impossible for perfect conductors. Hence the surface currents must be
only in the ẑ direction, implying the vector potential to be A = Aẑz. So setting V(x, y, z, t) = Vtr(x, y)Vl(z, t) and
Az(x, y, z, t) = Az tr(x, y)Azl(z, t) and solving the one dimensional wave equation Equation (6) for Vl(z, t) and Azl(z, t)
yields any functions of a single variable, say p which equals to p = t ∓ z/v:

Vl(z, t) = f (p) = f (t ∓ z/v) (7)

and
Azl(z, t) = g(p) = g(t ∓ z/v) (8)

where f and g are any functions of a single argument, the upper and lower signs describing forward and backward
moving waves, respectively.

To simplify, we shall go on for now only with the forward moving wave, because the backward moving wave
describes the same physics in the opposite direction and one easily derives the backward solution from the forward
solution. So we drop for now the lower sign.

Requiring now the Lorentz condition in Equation (2), we obtain

vAz tr

Vtr
=

f ′(t − z/v)
g′(t − z/v)

≡ κ, (9)

where f ′ and g′ are the derivatives of the functions f and g with respect to their argument. Now because the left
side is only a function of x, y and the right side is only a function of z, t, each must equal a constant which we name
κ. So the right side yields f ′(q) = κg′(q), where q = t − z/v is the argument. We look for the dynamic solution for
transients so by integrating from q = −∞ to q = p, and assuming that f (−∞) = g(−∞) = 0, i.e. no constant values
before the transient started, we may express the solution for transients as f (p) = κg(p), namely:

f (t − z/v) = κg(t − z/v). (10)

Now combining the left side of Equation (9) with Equation (10) we find the connection between the general
solution of Az and V

Az = Az trg(t − z/v) =
κVtr

v
f (t − z/v)
κ

=
V
v
, (11)

because V = Vtr f (t − z/v). So we see that κ cancels out and we obtain that at any coordinate x, y, z and at any time
t the scalar potential V equals to vAz. So without loss of generality we may omit κ by setting it to 1, and use

Az tr =
Vtr

v
. (12)

By using the normal derivative boundary condition on Vtr and Az tr one derives from Equation (12) a connection
between the surface charges and surface currents on the conductors, from which one derives the following connec-
tion:

I = vλ, (13)

where I and λ are column vectors of size N, their components being the currents and and the charges per unit of
length in the conductors, respectively.

The N × N elastance per unit of length matrix P is defined by the connection

V = Pλ. (14)

where V is a column vector of size N, its components the voltages Vtr on the conductors.

Now combining Equations (14) and (13), we obtain

V = Z0I, (15)
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defining the characteristic impedance matrix
Z0 ≡ P/v. (16)

This is in analogy with the one dimensional case, i.e. N+1 = 2, for which the characteristic impedance is Z0 =
1

vC′ ,
where C′ is the capacity per unit of length.

We may as well define the vector Az, its components being the magnetic potential vector Az tr on the conductors,
and according to Equation (12), we have

Az =
V
v
. (17)

We now define the inductance matrix per length unit L by the connection

Az = LI, (18)

and using Equations (17), (13) and (14), we obtain the connection L = P/v2 or by defining the capacitance per
unit length matrix C = P−1 and inserting the unit matrix I, we may express

CL = I/v2 = Iµϵ (19)

which is the analogue of the formula C′L′ = µϵ for the one dimensional case. We may also express Z0 from
Equation (16) as

Z2
0 = P2/v2 = LP = LC−1, (20)

analogue to the formula Z2
0 = L′/C′ for the one dimensional case.

We shall calculate now the power carried by a forward moving wave, using Poynting theorem.

We first define U′E as the electric energy per unit of length, which is calculated as half the sum on all conductors
of the charge per length unit multiplied by the voltage, which may be put in matrix form as follows

U′E =
1
2

VTCV, (21)

Similarly, we define U′H as the magnetic energy per unit of length. It may be expressed as half the sum on N
conductors of the current multiplied by the magnetic vector potential and by using Equation (18), we express it as

U′H =
1
2

ITLI. (22)

For a forward moving wave, Equation (15) is satisfied, so by using it and the Equations (19) and (20), one easily
shows that the electric and magnetic energies per length unit are equal, so that the total energy per length unit U′

is given by

U′ = U′E + U′H = 2U′E = VTCV =
1
v

VTZ−1
0 V. (23)

We now apply the Poynting theorem at time t, on a volume enclosed between the surfaces z = z1 and z = z2

P(t, z1) − P(t, z2) =
∂

∂t
U |inside volume =

∂

∂t

∫ z2

z1

U′(t, z)dz (24)

where P is the forward power. We remember that any forward wave solution is not a function of the 2 separate
variables t and z, but rather a function of one variable p = t − z/v (see Equations (7) and (8)), so that we may call

U′(t, z) ≡ h(p) = h(t − v/z), (25)

h being the adequate function, according to the excitation of the system. So we obtain

P(t, z1) − P(t, z2) =
∫ z2

z1

∂

∂t
h(t − z/v)dz =

∫ z2

z1

h′(t − z/v)dz, (26)

h′ being the derivative of h with respect to its argument p. We are left with a total derivative of a function having
the argument linear in z, so integrating we obtain

P(t, z1) − P(t, z2) =
h(t − z/v)
−1/v

∣∣∣∣∣z2

z1

= v[h(t − z1/v) − h(t − z2/v)]. (27)
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Now we may take z2 → ∞, so that the power and the function h (which represents the energy per length unit) are 0
at z = z2. So using Equations (23) and (25), we rewrite Equation (27) for z1 being any z, knowing that everything
is a function of t − z/v:

P(t − z/v) = VT (t − z/v)Z−1
0 V(t − z/v), (28)

which looks like a natural generalization of the forward power P(t − z/v) = V2(t − z/v)/Z0 for the one dimensional
case.

So TEM waves guided by many conductors, may be specified in terms of voltages and currents, like in the two
conductor case, but instead of the characteristic impedance we deal here with a characteristic impedance matrix,
the voltages and currents being vectors.

3. Termination and Source

In this section we deal with the interface of the multiconductor transmission line with the load and with the feeding
source.

In principle, one may treat the multiconductor transmission line as a 2N port network, N ports at feed, and N ports
at termination, see Paul (1994) Chapter 7.5, however this is usually an overcomplication.

The calculations are done for general excitation, and we consider for now only resistive loads and resistive source
internal impedances.

A. The Matching Network

The matching network, i.e. the termination network of resistors that ensures zero reflected wave must satisfy the
connection between voltages and currents dictated by the Z0 matrix. In other words, the matching network must
have an impedance matrixZ that is identical toZ0.

The most general resistors network consists of one resistor between each pair of conductors. So starting to connect
the resistors between conductor 1 and the other N conductors, we have to connect N resistors. Now, between
conductor 2 and the others we have to connect only N−1 resistors, because between 1 and 2 we already connected,
and so on, the total number of resistors is N + (N − 1) + .. + 1 = N(N + 1)/2.

Let us call the resistor between conductor i and conductor N + 1 (which is the common), Ri, and let us call Ri j the
resistor between conductor i and conductor j, where i and j have values between 1 and N. The resistors network
has N ports, port i being defined between conductor i and the common. We need to define a generic connection
between those resistors and the impedance matrix of the networkZ.

From the definition of the impedance matrixZ, the ji component is

Z ji =
V j

Ii

∣∣∣∣∣Ik=0
k,i

. (29)

The admittance matrix Y is the inverse of the impedance matrix, hence

YZ = I (30)

where I is the unit matrix. Equation (30) may be written in form of a sum, as follows:

N∑
k=1

YmkZki = δmi, (31)

where δ is the Kronecker delta.

Now let us feed the network from port i with a current Ii, leaving the other ports open (i.e. Ik = 0 for k , i). The
voltages at the ports are called V j, for j between 1 and N.

The KCL for port i yields:

Ii =
Vi

Ri
+

N∑
k=1
k,i

Vi − Vk

Rik
, (32)
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and the KCL for any other port m, where m , i, yields:

0 =
Vm

Rm
+

N∑
k=1
k,m

Vm − Vk

Rmk
. (33)

We may unify Equations (32) and (33):

Iiδim =
Vm

Rm
+

N∑
k=1
k,m

Vm − Vk

Rmk
= Vm

 1
Rm
+

N∑
k=1
k,m

1
Rmk

 −
N∑

k=1
k,m

Vk

Rmk
. (34)

so that m is any number between 1 and N. In the right side we rearranged the equation, so that the Vm terms are
put together.

Now dividing by Ii and using Equation (29), we have

δim = Zmi

 1
Rm
+

N∑
k=1
k,m

1
Rmk

 −
N∑

k=1
k,m

Zki

Rmk
, (35)

and we remark that the condition Ik = 0 for k , i is satisfied here because we fed only port i. One observes that
Equations (31) and (35) are the same if we identify:

Ymk = −
1

Rmk
for (m , k) (36)

and

Ymm =
1

Rm
+

N∑
k=1
k,m

1
Rmk
=

1
Rm
−

N∑
k=1
k,m

Ymk (37)

where the last equality used Equation (36). So the diagonal element of Y at position m is the sum of all the
conductances connected to port m, and the off diagonal element of Y at position mk is minus the conductance
between ports m and k.

Figure 2 shows the physical interpretation of Equations (36) and (37).

It is worth to remark, that the characteristic admittance matrixY0 is proportional to the capacitance per length unit
matrixC, the wayZ0 is proportional toP, see Equation (16). Therefore, the relations above between the admittance
matrix and the conductances constituting the network, are the same as the relations between the capacitance matrix
C and the capacitances constituting a capacitance network - see (Paul, 1994), Chapter 3.1. Also Figure 2 may
be modified to show the calculation of the capacitance matrix, by replacing the resistors by capacitors, and the
currents by static charges.

To conclude, if the resistors of a network are known, one may calculate the elements of the Y matrix using
Equations (36) and (37), and invert it to obtain theZ matrix.

If one needs to implement a network to satisfy a given Z matrix, say the needed Z0, one inverts Z to obtain Y,
and calculates the resistors between 2 ports (say m and k), using

Rmk = −
1

Ymk
(38)

and the resistor between port m and common may be extracted from the right side of Equation (37):

Rm =
1

N∑
k=1

Ymk

(39)

Two examples of geometries have been calculated in (Ianconescu, 2012) and we show the results of those examples
in Figure 3.
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Figure 2. Configuration for calculating Ymk: network fed at conductor k by Vk, and all other conductors are
grounded. The conductors are shown by big points, and the common is by definition at 0 potential. The value of

Ymk is given by Im/Vk. All the resistors not having the index k are at 0 potential on both sides, so the only resistors
entering the calculations are Rk and R jk, for j , k, and they are all in parallel. The current Im (for m , k) is the
current entering from ground into resistor Rmk, hence equals −Vk/Rmk, and Ik is Vk divided by the resistors in

parallel

The characteristic impedance for the 3 phase geometry in panel (a) of Figure 3 is given by

Z0 =

(
2R/3 R/3
R/3 R/3

)
, (40)

where R = 3
2
η0
π

ln d
a , d being the side of the triangle and a the radius of the wire in the 3 phase geometry.

The characteristic impedance for the 4 phase geometry in panel (b) of Figure 3 is given by

Z0 =



R2
4

R2+3R1
R2+R1

1
2

R2R1
R2+R1

R2
4

1
2

R2R1
R2+R1

R2R1
R2+R1

1
2

R2R1
R2+R1

R2
4

1
2

R2R1
R2+R1

R2
4

R2+3R1
R2+R1


(41)

where R2 =
η0
π

ln d2

2a2 and R1 =
η0
π

ln
√

2d
a ln d2

2a2 / ln d√
8a

, d being the side of the rectangle and a the radius of the wire
in the 4 phase geometry.

B. The Reflection Matrix

In case the line is terminated by a loading network having an impedance matrix ZL , Z0, the forward moving
wave does not satisfy the termination condition, so there must be a backward wave. Dealing here with the 2 waves
we shall denote the forward and backward waves by ± superscripts, respectively. The most general solution for the
voltages vector is a forward wave voltages vector plus a backward wave voltages vector:

V = V+ + V− (42)

and keeping the backward current agreed direction toward the positive z axis, same as the forward current has been
defined, we have

I = I+ + I−, (43)

and at the load size we require the termination condition:

V = ZLI . (44)

We showed that the connection between forward voltage and current is

V+ = Z0I+, (45)
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Figure 3. Multiconductor transversal cross sections and their matching networks. Panel (a) shows a 3 phase
geometry with wires of radii a, at the corners of an equilateral triangle of sides d, so that a ≪ d. The matching

network consists of resistors in triangle, where each resistor has the value R = 3
2
η0
π

ln d
a . Panel (b) shows a 4 phase

geometry with wires of radii a, at the corners of a square of sides d, so that a ≪ d. The matching network consists
of 6 resistors: 4 of value R2 =

η0
π

ln d2

2a2 and 2 of value R1 =
η0
π

ln
√

2d
a ln d2

2a2 / ln d√
8a

(see Equation (15)), hence the connection for the backward wave is

V− = −Z0I−, (46)

because I− is defined the direction opposite to its propagation and this may be proved directly by continuing the
formalism started in Equation (7) for the backward wave.

By combining Equation (43) with Equations (45) and (46) we obtain

Z0I = V+ − V−, (47)

and by adding and subtracting Equations (42) and (47) we obtain:

2V+ = V +Z0I (48)

and
2V− = V −Z0I . (49)

We set now the termination condition in Equation (44) into Equations (48) and (49), and by isolating I from
Equation (48) and setting it into Equation (49), we obtain the connection between V− and V+:

V− = (ZL −Z0)(ZL +Z0)−1V+, (50)

which defines the reflection matrix Γ
Γ = (ZL −Z0)(ZL +Z0)−1, (51)

in an analogue way to the one dimensional reflection coefficient Γ = (ZL − Z0)/(ZL + Z0), compare with Wedepohl
(1963) and Paul (1994).

One remarks that the reflection matrix is a different concept from the scattering matrix used for a multiport net-
work, although the formula is identical. When calculating the scattering matrix from a passive network, ZL still
represents the network impedance matrix, but Z0 is a diagonal matrix representing the characteristic impedances
of the ports.

Here we deal with a single port termination for a multiconductor TEM transmission line and Z0 must not be
diagonal.

Because the load impedance matrix may not exist, it would be useful to derive an alternative expression for Γ based
on the load admittance matrix, yielding

Γ = (Y0 +YL)−1(Y0 − YL). (52)
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Unlike in the one dimensional case, Γ does not need to be the 0 matrix to satisfy ΓV+ = 0. From Equation (52) it
is clear that in the case the determinant of Y0 − YL is 0, there exist incident voltage vectors yielding 0 reflection.

C. Interfacing to the Source Network

The most general source network has N(N + 1)/2 Thevenin branches of source voltage Vg is series with a source
impedance Rg between each pair of conductors. We shall call the resistor and source between conductor i and N+1
(the common) Rg i and Vg i and the resistor and source between conductor i and j, Rg i j and Vg i j, where the + of the
source is at the lower index. The naming of the resistors is like in the matching network section.

Calling the current exiting from conductor i of the source network Ii, and the voltage at conductor i of the source
network Vi we write the KCL for the intersection i

Vg i − Vi

Rg i
+

N∑
j=1
j,i

V j + Vg i j − Vi

Rg,i j
= Ii. (53)

where Vg i j is understood to be taken with positive sign if i < j and vice versa if i > j. Equation (53) may be
rearranged:

Vg i

Rg i
+

N∑
j=1
j,i

Vg i j

Rg,i j
+

N∑
j=1
j,i

V j

Rg,i j
− Vi

 1
Rg i
+

N∑
j=1
j,i

1
Rg,i j

 = Ii. (54)

The first 2 expressions represents the sum off all Norton currents connected to conductor i, and we shall call it Ig i.

The second 2 expressions may be written as
(
−

N∑
j=1

Yg i jV j

)
, where Yg i j are the elements of the source admittance

matrix Yg - see Equations (36) and (37) defining the admittance matrix elements of a passive network.

Hence we may rewrite Equation (54)

Ig i −
N∑

j=1

Yg i jV j = Ii, (55)

or in vectorial form
Ig − YgV = I . (56)

The source network excites a forward wave in the transmission line for which we know the connection between
voltage and current V = Z0I. So we may isolate the voltage for the forward moving wave

V = (Z−1
0 +Yg)−1Ig = (Z−1

0 +Z−1
g )−1Ig , (57)

which is a natural extension for the one dimensional case for which we have Ig = Vg/Zg, hence Equation (57)
becomes a voltage divider V = (Z−1

0 + Z−1
g )−1 Vg

Zg
= Vg

Z0
Z0+Zg

.

4. The Differential Representation

We used so far as dynamical variables the voltages between each conductor and an agreed common conductor, and
the currents in each conductor (the common carrying minus the sum of the currents in all other conductors).

The convenience of this representation is the easy way of calculating the magnitudes described in the previous
section, but of course this representation is not unique.

Given the voltages vector V, it is sometimes convenient to define the differential voltages vector V′, as V ′1 = V1−V2,
V ′2 = V2 − V3, ... V ′N = VN − 0, which may be written in matrix form

V′ = T1V (58)

where the matrix T1 has all components 0, except of the diagonal components which are 1 and the first super-
diagonal components which are -1, and may be expressed as:

T1 i, j = δi, j − δi, j−1, (59)

where δ is the Kronecker delta, and we assume in this notation that terms with indices smaller than 1 or larger than
N are 0.
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The differential currents I′ are loop currents so that we may think of the current I j as the difference between the
loop current I′j and I′j−1, so that I1 = I′1 − 0, I2 = I′2 − I′1, ... IN = I′N − I′N−1. This may be written in matrix form

I = T2I′ (60)

where the matrixT2 has all components 0, except of the diagonal components which are 1 and the first sub-diagonal
components which are -1, and may be expressed as:

T2 i, j = δi, j − δi, j+1. (61)

Starting with the conductor to ground representation for which the relation between the forward moving voltage
and current vectors is V = Z0I, and using Equations (58) and (60), we obtain the differential representation

V′ = Z′0I′ (62)

where
Z′0 = T1Z0T2, (63)

and the components ofZ′0 may be written explicitly in terms of the components ofZ0

Z′0 i, j = Z0 i, j + Z0 i+1, j+1 − Z0 i+1, j − Z0 i, j+1. (64)

again, considering terms with outside range indices as 0. The usefulness of this transformation is show in the
following example.

A. Example: Multiple Parallel Plates

We will calculate the characteristic impedance matrix for N + 1 parallel plates at distance d one from the other all
having the width w, so that w ≫ d, see Figure 4.

Figure 4. Multiconductor waveguide consisting of parallel plates of width w, at distance d between them. We
assume large plates, i.e. w ≫ d. The z axis is perpendicular to the paper

To solve Laplace Equation (5) for the transverse potential Vtr, we consider plate j to have a surface charge η j, for

j , N + 1, and the charge surface on conductor N + 1 is ηN+1 = −
N∑

i=1
ηi. We shall use the expression for the

potential due to an infinite plate −η2ϵ |x|, where η is the charge surface and |x| is the distance from the plate. Also we
may express the charge per unit length in the z direction as λ = wη. So we may write the potential on conductor j
(for j , N + 1)

Vtr| cond j =
η jd
2wϵ

(N + 1 − j) +
j−1∑
i=1

ηid
2wϵ

(N + 1 + i − 2 j) +
N∑

i= j+1

ηid
2wϵ

(N + 1 − i) (65)

and the potential on conductor N + 1

Vtr| cond N+1 =

N∑
i=1

−ηid
2wϵ

(N + 1 − i) (66)
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and express V j = Vtr| cond j − Vtr| cond N+1 obtaining

V j =

j−1∑
i=1

ηid
wϵ

(N + 1 − j) +
N∑

i= j

ηid
wϵ

(N + 1 − i). (67)

The coefficients are identified as the elastance matrix elements

Pi j =


d

wϵ (N + 1 − j) i < j
d

wϵ (N + 1 − i) i ≥ j
, (68)

and the characteristic impedance matrix elements are obtained from Equation (16)

Z0 i j =


ηd
w (N + 1 − j) i < j
ηd
w (N + 1 − i) i ≥ j

. (69)

which may also be written as Z0 i j = ui− j( j − i) + N + 1 − j, where u is the discreet step function, i.e. equals 1 for
non negative index and zero otherwise.

This form does not emphasize the separability of this configuration, so we would like to transform to the differential
representation with Equation (64). After some algebra, noting that ui− j − ui− j−1 = δi, j, one obtains

Z′0 i j = δi, j
ηd
w

(70)

or in matrix formZ′0 = I
ηd
w , I being the unit matrix. So the differential representation results in N separate TEM

waveguides, each having the characteristic impedance ηdw .

This was a special example of separable configuration, but the differential representation may be useful also for
non separable configurations, because it emphasizes better the “local impedance”, i.e. the connection between the
voltage difference between 2 adjacent conductors, and the loop current between them, as we shall see in the next
section.

5. Flat Cable Analysis

The flat cable is the most common multiconductor transmission line, hence we dedicate this section to flat cables
and we shall calculate here the characteristic impedance matrix for a flat cable.

The distance between the wires (called pitch) is d and the conductor radius is a, and we consider the common case
of a ≪ d - see Figure 5.

Figure 5. The geometry of a flat cable: equidistant conductors of radii a. The distance between the conductors d
is called pitch and is typically much bigger than the conductors radius. We consider the surrounding media to be

homogeneous

The wires are numbered 1, 2, .. N, N + 1. We assign the charges per length unit λ1, λ2, .. λN , and the N + 1 wire
(considered the common) has the charges per length unit

λN+1 = −
N∑

i=1

λi. (71)
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The solution of the Laplace equation, i.e. the potential at any location may be expressed using the thin wire
approximation

Vtr = −
N+1∑
i=1

λi

2πϵ
ln ri, (72)

where ϵ is some equivalent dielectric constant, i.e. ϵ = ϵ0ϵr, ϵr is usually between 1.5 and 3, and r j is the distance
from conductor j.

By putting Equation (71) into Equation (72), we get

Vtr =

N∑
i=1

λi

2πϵ
ln

rN+1

ri
, (73)

and to express the potential on the conductor j (for j , N + 1) we set rN+1 = d(N + 1− j). Also, we set ri = d| j− i|
if i , j and ri = a if i = j, according to the thin wire approximation, obtaining

Vtr|conductor j =
λ j

2πϵ
ln

d(N + 1 − j)
a

+

N∑
i=1
i, j

λi

2πϵ
ln

N + 1 − j
| j − i| , (74)

and on conductor N + 1, we set rN+1 = a and ri = d(N + 1 − i)

Vtr|conductor N+1 =

N∑
i=1

λi

2πϵ
ln

a
d(N + 1 − i)

. (75)

The potential difference V j is given by Vtr|conductor j − Vtr|conductor N+1 and comes out:

V j =
λ j

πϵ
ln

d(N + 1 − j)
a

+

N∑
i=1
i, j

λi

2πϵ
ln

d(N + 1 − j)(N + 1 − i)
a| j − i| , (76)

and this defines the elements of the elastance matrix

Pi j =


1
πϵ

ln d(N+1− j)
a i = j

1
2πϵ ln d(N+1− j)(N+1−i)

a| j−i| i , j
, (77)

and the characteristic impedance matrix elements are obtained from Equation (16)

Z0 i j =


η
π

ln d(N+1− j)
a i = j

η
2π ln d(N+1− j)(N+1−i)

a| j−i| i , j
, (78)

where η =
√
ϵ/µ0.

It will be convenient to see also the differential representation of the characteristic impedance matrix. Using
Equation (64) we obtain:

Z′0 i j =


η
π

ln d
a i = j

−η
2π ln d

2a |i − j| = 1
η

2π ln
(
1 − 1

| j−i|2
)
|i − j| > 1

, (79)

which is much simpler than regular representation.

We will calculate the balanced crosstalk on a 9L280XX Belden flat cable. The datasheet of the cable can be found
at (Belden flat cables datasheet, n.d.)). The cables have a pitch of d = 0.05” = 1.27 mm and wires of type 28 AWG,
having a radius of a = 0.1605 mm. The measurement configuration is shown in Figure 6.

We shall first suppose the far end is matched and than show how to match it. So given the far end is matched, we
have one single forward voltages vector wave V which satisfies the equation V = Z0I, I being the forward currents
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Figure 6. A balanced cross talk measurement on a flat cable. The conductors k and k + 1 are differentially fed, and
are called the drive pair, and one measures the voltage between two other conductors j and j + 1, called the
sample pair. The biggest crosstalk effect is on neighboring conductors, so we take j = k + 2. The far end is

matched

vector. But all the components of the currents vector are 0 except of the k and k + 1 components. Also we know
that Ik+1 = −Ik, so we may write the n component of the forward voltage vector:

Vn = (Z0 n,k − Z0 n,k+1)Ik (80)

It looks quite natural that having a non zero current only on conductors k and k+1, one would need at the far end to
connect a resistance only between those conductors, so let us call this resistance R0. According to Equations (36)
and (37), connecting only this resistor defines the components of the load admittance matrix

YL m,n =
1

R0
(δm,kδn,k + δm,k+1δn,k+1 − δm,kδn,k+1 − δm,k+1δn,k), (81)

so YL has only 4 non zero components, 2 diagonal components of value 1/R0 and 2 off diagonal components of
value −1/R0.

For having a 0 reflected voltage one needs (Y0 − YL)V = 0 (see Equation (52) and comments after it). Hence we
calculate first the m component of Y0V, so using Vn from Equation (80) we obtain

[Y0V]m =
∑

n

Y0 m,nVn = Ik(δm,k − δm,k+1), (82)

because Y0 is the inverse matrix ofZ0. Now the m component of YLV yields

[YLV]m =
∑

n

YL m,nVn =
Ik

R0
(δm,k − δm,k+1)(Z0 k,k − 2Z0 k+1,k + Z0 k+1,k+1), (83)

and we see that the value of R0 needed to make the results of Equations (82) and (83) identical is

R0 = Z0 k,k − 2Z0 k+1,k + Z0 k+1,k+1 = Z′0 k,k =
η

π
ln(d/a), (84)

where for the last expression we used the relation (64) and Equation (79), obtaining the diagonal element of the
characteristic impedance matrix in the differential representation.

Also, one remarks that the value of R0 should be the equivalent of what Belden (Belden flat cables datasheet, n.d.)
call in their datasheet the “impedance”.

The value they give is 105Ω and for comparing we need to know the value of η = 377Ω/
√
ϵr, where ϵr is some

equivalent relative dielectric coefficient which is influenced by the isolation material and the surrounding air.
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The value of ϵr may be calculated using the propagation delay from the datasheet, given as 4.6 nsec/m, so that
√
ϵr

is the light velocity in vacuum, multiplied by the propagation delay, resulting in 1.38. Using the above, R0 comes
out 180Ω, which is about 1.7 times higher than the 105Ω in the datasheet. I suppose the reason for this discrepancy
are very big losses given in the datasheet, which imply dispersion and do no allow a simple time domain analysis
like this one.

In spite of the discrepancy in the characteristic impedance value, the calculated cross talk compares well with the
datasheet, because this value depends on a relation between the characteristic impedance matrix elements, as we
shall see below.

So the feeding voltage is expressed as Vfeed = Vk − Vk+1 and using Equation (80) we obtain

Vfeed = (Z0 k,k − 2Z0 k+1,k + Z0 k+1,k+1)Ik = IkR0 (85)

Similarly, the sample voltage is Vsample = Vk+2 − Vk+3 and using Equation (80) we obtain Vsample = (Z0 k+2,k −
Z0 k+2,k+1 + Z0 k+3,k+1 − Z0 k+3,k)Ik. By comparing this with Equation (64), we see that Vsample = Z′0 k+2,kIk and from
Equation (79) we obtain

Vsample = Ik
η

2π
ln(3/4), (86)

The crosstalk is defined as the absolute value of the relation between Vsample and Vfeed:

Crosstalk =
∣∣∣∣∣Vsample

Vfeed

∣∣∣∣∣ = ln(4/3)
2 ln(d/a)

= 0.06954 = −23.1 dB (87)

This value is also called crosstalk isolation and is given in the Belden datasheet (Belden flat cables datasheet, n.d.)
as −20 dB, showing that the above calculation fits well the measurement.

6. Multiconductor TEM in Steady State Harmonic Excitation

In this section we generalize the multiconductor TEM for the case of steady state harmonic excitation. One may
rewrite the one dimensional wave Equation (6) by replacing ∂t by jω, or alternatively replace the solution function
(say in Equation (7)) f (p) = exp( jωp), to obtain the phasor solutions of the form exp(∓ jβz) for the forward and
backward moving waves, respectively, where

β ≡ ω/v (88)

is the wave number. For harmonic steady state we need to develop formulas to move along transmission line and
express quantities at some location z, given that they are known at other location say z1.

The basic solutions for the voltage, i.e. the forward an backward moving voltages behave according to

V±(z) = V±(z1)e∓ jβ(z−z1), (89)

and the forward an backward moving currents behave the same

I±(z) = I±(z1)e∓ jβ(z−z1), (90)

and the connection between forward/backward voltages and currents is the same like for any excitation

V±(z) = ±Z0I±(z). (91)

we define the reflection matrix at any location z by the connection between the backward and forward voltages

V−(z) = Γ(z)V+(z). (92)

where Γ is now a complex phasor matrix. By setting Equation (89) into Equation (92) and by replacing V−(z1) =
Γ(z1)V+(z1) we obtain:

Γ(z)V+(z1) = e2 jβ(z−z1)Γ(z1)V+(z1), (93)

which must hold for any set of voltages V+(z1), hence we are left with

Γ(z) = e2 jβ(z−z1)Γ(z1), (94)

which is the generalization of the one dimensional case Γ(z) = e2 jβ(z−z1)Γ(z1).
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The Equations (42) and (47) hold for harmonic steady state at any z, so we write them at location z and use
Equation (89):

V(z) = V+(z) + V−(z) = V+(z1)e− jβ(z−z1) + V−(z1)e jβ(z−z1) (95)

Z0I(z) = V+(z) − V−(z) = V+(z1)e− jβ(z−z1) − V−(z1)e jβ(z−z1), (96)

Now we use Equations (48) and (49) at location z1 to extract V+(z1) and V−(z1) and set into Equations (95) and
(96):

V(z) =
1
2

[V(z1) +Z0I(z1)]e− jβ(z−z1) +
1
2

[V(z1) −Z0I(z1)]e jβ(z−z1) (97)

and after rearranging
V(z) = V(z1) cos β(z − z1) − jZ0I(z1) sin β(z − z1) (98)

and similarly for the current

I(z) = I(z1) cos β(z − z1) − jY0V(z1) sin β(z − z1). (99)

We define here the local impedance matrix as:

V(z) = Z(z)I(z), (100)

so by replacing V(z1) = Z(z1)I(z1) in Equations (98) and (99), one obtains

V(z) = [Z(z1) cos β(z − z1) − jZ0 sin β(z − z1)]I(z1) (101)

and
I(z) = [I cos β(z − z1) − jY0Z(z1) sin β(z − z1)]I(z1), (102)

where I is the unit matrix. Now isolating I(z1) from Equation (102), setting it in Equation (101) and taking
cos β(z − z1) outside parenthesis yields

V(z) = [Z(z1) −Z0 tan β(z − z1)][I − jY0Z(z1) tan β(z − z1)]−1I(z), (103)

from which we get
Z(z) = [Z(z1) − jZ0 tan β(z − z1)][I − jY0Z(z1) tan β(z − z1)]−1, (104)

which may be rearranged to

Z(z) = [Z(z1) − jZ0 tan β(z − z1)][Z0 − jZ(z1) tan β(z − z1)]−1Z0, (105)

which is the analogue of the one dimensional formula Z(z) = Z0
Z(z1)− jZ0 tan β(z−z1)
Z0− jZ(z1) tan β(z−z1) .

For the case the matrix Z(z1) does not exist it is useful to express the above connection via admittances. Some
matrix algebra yields

Y(z) = [Y(z1) − jY0 tan β(z − z1)][Y0 − jY(z1) tan β(z − z1)]−1Y0, (106)

and the connection between Γ(z),Z(z) and Y(z) is given by

Γ(z) = (Z(z) −Z0)(Z(z) +Z0)−1 = (Y0 +Y(z))−1(Y0 − Y(z)) (107)

The solution for an harmonic steady state multiconductor transmission line of length l, given the sources and the
load impedance matrix is similar to the one dimensional case. First we set

Z(l) = ZL (108)

where ZL is the load impedance matrix. Then we use Equation (105) to calculate the impedance matrix at the
source location (z = 0 and z1 = l)

Zin = Z(0) = [Z(l) + jZ0 tan βl][Z0 + jZ(l) tan βl]−1Z0, (109)
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and this is the input impedance matrix of the multiconductor transmission line. Next we use the interface to source
formula Equation (57), developed for transients, only Z0 has to be replaced by Zin, to calculate the voltage near
the source

V(0) = (Z−1
in +Z−1

g )−1Ig , (110)

and the current near the source is

I(0) = Z−1
in V(0) = (I +Z−1

g Zin)−1Ig . (111)

Knowing V(0) and I(0), one may calculate V(z) and I(z) for any location z using Equations (98) and (99) (by setting
z1 = 0).

The power of a forward moving wave (see Equation (28)) is also easily generalized for the time harmonic case

P+ = V+TZ−1
0 V+ ∗, (112)

where the ∗ denotes the complex conjugate, and according to Equation (89), the result is z independent and real.
Also, defining the magnitudes of the phasors we use as RMS values, we do not need a 1/2 factor in Equation (112).

It would be interesting to check what is the multidimensional analog to the standing wave ratio (SWR). As ex-
plained in Section 5.B, the reflection at the termination may depend on the incident voltages vector itself, therefore
it is impossible in the general case to generalize the SWR (in (Paul, 1994) the SWR is considered only for the one
dimensional case). Another way of understanding this is to look at a separable configuration - see Figure 4. For
this case one finds thatZ0 is diagonal in the differential representation (see Equation (70)), and we have N separate
waveguides, each one of them may have its own SWR.

But there is a special case of interest: if the load impedance matrix ZL, the characteristic impedance matrix Z0
and the source impedance matrix Zg are all scalar multiples of the same matrix Q, one may generalize the SWR
and work with scalar waves.

In this case we have ZL = QZL, Z0 = QZ0 and Zg = QZg where ZL, Z0 and Zg are impedances. For this case
Equation (105) may be written as

Z(z) = QZ0
Z(z1) − jZ0 tan β(z − z1)
Z0 − jZ(z1) tan β(z − z1)

≡ QZ(z) (113)

and Equation (107) as

Γ(z) = IZ(z) − Z0

Z(z) + Z0
(114)

also the input impedance matrix entering Equation (110) may be written as Zin = QZin, so that Equation (110)
becomes

V(0) =
ZinZg

Zin + Zg
QIg , (115)

and the power of a forward moving wave becomes

P+ =
1
Z0

V+ TQ−1V+ ∗, (116)

A. Example: Three Phase Network

We shall use here the cross section geometry of 3 thin wires of radii a on the edges of an equilateral triangle of
side d, so that d ≫ a, see Figure 3, panel (a).

The characteristic impedance matrix for this geometry is given in Equation (40), and may be rewritten as

Z0 = Z0Q (117)

where Q is the following matrix

Q =
(

2/3 1/3
1/3 2/3

)
, (118)

and
Z0 =

3η0

2π
ln(d/a) (119)
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Figure 7. Three phase generator with internal impedance Zg feeding the 3 phase symmetric geometry transmission
line with characteristic impedance matrix given in Equation (117). The magnitude of the voltage is V0 RMS

has the value of the matching resistors in Figure 3 panel (a).

The network is fed by a 3 phase generator, each phase having the generator impedance Zg, see Figure 7.

The purpose of this example is to show the power transfer, so to simplify it, we shall consider the 3 phase trans-
mission line matched, hence Zin = Z0. We first obtain the Norton currents vector Ig (see Equation (54))

Ig =
V0

Zg

(
exp( j4π/3) − 1
1 − exp( j2π/3)

)
=

√
3V0

Zg

(
exp( j5π/6)
exp( jπ/6)

)
, (120)

and using Equation (115) we obtain the voltage vector at the beginning of the line

V(0) =

√
3V0Z0

Z0 + Zg
Q

(
exp( j5π/6)
exp( jπ/6)

)
, (121)

Being matched, this voltage vector is the forward moving voltage vector which only changes its phase in propaga-
tion. Using Equation (116), we obtain the power

P =
3
Z0

∣∣∣∣∣∣ V0Z0

Z0 + Zg

∣∣∣∣∣∣2 (
exp( j5π/6) exp( jπ/6)

)Q (
exp( j5π/6)
exp( jπ/6)

)∗
, (122)

The last matrices multiplication results in 1, and we identify V0Z0/(Z0 + Zg) as the voltage on each phase Vph of
the matched load Zph = Z0, resulting in the usual 3 phase power 3|Vph|2/Zph.

Of course, this result is valid for the same load we considered above, on any geometry of 3 phase transmission line,
provided the length is short compared to the wavelength, so that the characteristic impedance does not count when
reflecting the load toward the generator.

7. Conclusions

We developed here a different derivation for TEM waves guided by many perfect conductors in a homogeneous
media, the connection between the multiconductor transmission line, source and load, and formulated the power
transfer.

Using this formalism, we calculated the cross talk for a flat cable, and our result compares well with the datasheet.
It is to be mentioned that any multiconductor transmission line which does not have a diagonal representation
suffers from cross talk.
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The crosstalk is a major problem, due to which one has to reduce the information rate, therefore it deserves a
special attention. An additional work on avoiding crosstalk is in preparation.

We generalized the formulation for time harmonic, and showed that in the general case the SWR is not defined,
unless special symmetry conditions are satisfied, and for such case, one may express the propagation problem in a
scalar form. Using this scalar form, we calculated the power transmitted into a 3 phase transmission line, obtaining
the known expression for the power in 3 phase transmission lines.
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