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Abstract

Given an application of Vandermonde determinant in Combination mathematics, that is, proved several important
combinatorial identities by using Vander monde determinant.
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1. Introduction

There are many methods about the proof of the combinatorial identities , such as direct checking computations , making
use of exponential and generating function , permanent , number theory , differential and integration . In this paper, we
proved several important combinatorial identities with Vandermonde determinant by using algebraic method, which is
simple and clear than any other methods.

2. Lemmas

Lemma 1 Assume D, be a Vandermonde determinant with order # composed by 12.....». »s be confactor of D,
. . J
deleting row 7 and column j .
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Proof when j =1; equality (1) is right.
When 1< j<n ;
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Equality (1) is right.

When j=n ;itis easy to see that equality (1) is right .
Hence: equality (1) is right .

Lemma 2 Assume Dn be a Vandermond determinant with order # composed by 12,...., . S, be cofactor of Dn
deleting row 1 and column j .

Then
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3. Theorems
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Proof assume that
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expand p alongrow # ,from Lemma 1 we can derive :
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Proof Assume D, be a Vandermond determinant with order 7 composed by 12,... , .expand D, along row I,
from Lemma 1 we can derive :
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Proof Assume D, be a Vandermond determinant with order # composed by 1,2,-..,n .The sum of the product of
both the element of row 1 of D, and the algebra cofactor of the corresponding element of row #n of D, is zero,
from Lemma 1 we can derive:
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Let j=n—k, fromequality (2) we can derive:
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Substitute (8) into (7) we can derive:
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