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Abstract  
Given an application of Vandermonde determinant in Combination mathematics, that is, proved several important

combinatorial identities by using Vander monde determinant. 
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1. Introduction 
There are many methods about the proof of the combinatorial identities , such as direct checking computations , making

use of exponential and generating function , permanent , number theory , differential and integration . In this paper, we

proved several important combinatorial identities with Vandermonde determinant by using algebraic method, which is

simple and clear than any other methods. 

2. Lemmas 
Lemma 1 Assume nD be a Vandermonde determinant with order n  composed by n,,2,1 .

jM  be confactor of nD
deleting row n  and column j  . 

Then  
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Proof when 1j ; equality (1) is right. 

When nj1  ;  
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Equality (1) is right. 

When j n  ; it is easy to see that equality (1) is right . 

Hence:  equality (1) is right . 

Lemma 2 Assume nD  be a Vandermond determinant with order n  composed by n,,2,1  . 
jS  be cofactor of nD

deleting row 1 and column j  . 

Then  
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Proof              1
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3. Theorems

Theorem 1:         
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expand 
nD  along row n  , from Lemma 1 we can derive :  
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Proof Assume nD  be a Vandermond determinant with order n  composed by n,,2,1  .expand nD  along row 1 ,

from Lemma 1 we can derive :  

n
n

j
j

n SSSSD 11

2

21

1 )1()1()1(

1

1

1
1

1

1
1

1

221
1

1

1 !)1(!)1(!)1(!
n

m

n
n

n
n

m

j
n

j
n

m
n

n

m
n CmCmCmCm

1

1

1

11

1 !!)1(
n

m

n

m

j
n

n

j

j mCm  (from equality (4)),

Therefore  

                      
1)1(

1

1 j
n

n

j

j C .

Theorem 3:       
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Proof Assume nD  be a Vandermond determinant with order n  composed by n,,2,1  .The sum of the product of

both the element of row 1 of nD  and the algebra cofactor of the corresponding element of row n  of nD  is zero,

from Lemma 1 we can derive:  
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Let ,knj  from equality (2) we can derive: 
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Substitute (8) into (7) we can derive:  
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