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Abstract 
This paper shows the interlayer fatigue performance evaluated by the Sapienza shear testing machine. The tests 
can be performed by placing double layer specimens in several inclinations, in order to reproduce a variety of 
expected ratios between the normal and the shear stress. The machine manages loads with any kind of waveform 
and is particularly able to simulate the stress trends expected in field in points located just outside the wheel path. 
In this experimentation, the machine applies a triangular waveform load computed by a linear elastic multilayer 
program at the depth of the first pavement interface. A fatigue law is estimated considering the number of 
repetitions that causes the interface failure. A linear regression in the log-log graph suitably fits the experimental 
results for the analyzed conditions of temperature and interface type. 
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1. Introduction 
The performance of the road structure is directly influenced by the bond conditions between pavement layers. 
The impacts of bond failures are more evident where the vehicles turn, brake, go uphill or downhill, accelerate or 
decelerate. Slippage cracking and permanent deformations are the most typical effects. The subsequent 
modification of the stress distribution affects the service life with a significant reduction (Khweir & Fordyce, 
2003). 

Furthermore, the common assumptions of a completely full bond or full slip between the layers are both 
incorrect. In fact, the interaction between the layers is not that strong to prevent a relative displacement. Even 
when the failure occurs, a fully sliding is not possible because friction has to be taken in consideration. 

The damage caused by bond failures is so important that the design methods of bituminous pavements should be 
improved considering an interface fatigue performance criterion, besides the bottom-up and top-down tensile 
fatigue, rutting and low temperature cracking. That will improve the accuracy of the predictions about pavement 
lifetime. 

The settlement process of this new criterion is at its first step. One of the biggest difficulties is the large variety 
of stress conditions that the vehicles’ wheels generate in the different points of the interface in the real pavements. 
Concerning this subject, a parametric study of the stress conditions at different depths was presented by 
Xiaoyang et al. (2013). The test machines proposed so far are able to reproduce just few of those stress 
conditions. 

The most common type of testing modality is the direct shear test, where a shear load is applied at the interface 
with the possibility to add also a normal force. The output of the test is a parameter named shear strength. It is 
computed as the peak level of the unit shear resistance, opposed by the interface when one layer is pushed across 
the other, until the failure. Several testing devices have been developed worldwide with different working 
schemes. They are able to test cylindrical or prismatic specimens with different sizes (Sangiorgi et al., 2002; 
Raab & Partl, 2004; Ferrotti et al., 2012) and have been used to evaluate and compare the influence on the 
interface shear strength of several factors such as the tack coat efficiency (Mohammad et al., 2002), the surface 
conditions (Mohammad, 2012) or the surface profile (D’Andrea et al., 2013; Loprencipe & Cantisani, 2013). 

Generally, these testing machines work in monotonic modalities thanks to the application of an established 
displacement rate. Such a scheme has become the most popular within the researchers because of their installing 
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and setting simplicity. However, the prolonged application of high stress is not close to the interface loading 
condition in the field. In fact, the vehicles apply on the pavement repetitive short loadings. Furthermore, just in 
certain points those loadings are oriented in the same direction for all the time of the wheel passage; in other 
points they assume opposite orientations during the loading cycle. Finally, very various loading conditions can 
be experienced in different positions at the interface. That can happen also in the same point in different 
moments, depending on the lateral wander of traffic, which should be studied by statistical analysis methods 
(Cantisani & Loprencipe, 2013; Mauro & Brando, 2013). 

The aim of the present research is to reproduce some of the stress trends which actually happen at the interface 
during the wheel passage. Therefore the device used in this research is able to repetitively apply dynamic loading 
cycles, in order to obtain information about the interface shear fatigue performance. 

2. Bibliography 
In the recent years, the interface shear behavior has been one of the most investigated research fields because of 
the growing understanding of the interlayer bond importance in the pavement performance decay. Due to the 
absence of a standard in the testing mode, several shear devices have been developed, but only few have been 
designed to work in dynamic mode, because the installation and set are characterized by great complexity with 
respect to the monotonic devices. Furthermore, the dynamic tests need long time to perform when the loading 
levels are low, as happens in several locations into the pavement structure. 

A comparison between the results of monotonic and dynamic tests was conducted by Crispino et al. (1997); they 
developed a dynamic shear test and assessed that the dynamic shear reaction modulus is three times higher than 
the monotonic one. 

Carr et al. (2001) developed a direct shear box able to test slabs (320 by 200 mm) under repeated shear loads 
combined with the application of a normal load. Kruntcheva et al. (2001) showed that the disadvantage of this 
equipment is the non-uniform interface stress distribution that needs proper assumptions to interpret the results. 

Romanoschi and Metcalf (2001) designed a shear fatigue device where the longitudinal axis of the specimen 
forms an angle of 25.5° with the vertical in order to have the shear stress proportional to the normal one and 
equal to half of its value. The loading conditions used to test the specimens consider a haversine load, applied 
vertically by the loading machine, and assumes as comparative parameter of the interface fatigue properties the 
number of cycles that leads to an increase of 1 mm in the permanent deformation. 

Also, in the “Mechanics and modeling of materials and structures in civil engineering” Laboratory of the 
University of Limoges, France, a modified compact shear test device was developed to study the shear fatigue 
behavior of different asphalt mixtures and tack coat materials. The machine was used on prismatic specimens 
(70x30x100 mm), formed by three parts, obtained by gluing back to back two samples of the same couple of 
layers. With such a working scheme the shear load can be applied on the unrestricted middle layer of the double 
specimen in monotonic or repeated mode until failure. Because of the low rigidity of the test frame, a new device 
named new double-shear testing frame was developed by Diakhaté et al. (2011) in order to test specimens at high 
frequency and low temperature. In this case, the gluing of the specimen on the steel plates that apply the shear 
load ensures the best alignment of the steel plates in relation to the double loading configuration and a perfect fit 
of the specimen in the device. The experimental program was intended to carry out both fatigue and 
“oligocyclic” tests under alternate sinusoidal force control, in order to span a number of loading cycles between 
10 and several millions. 

Among the shear tests devices are also included the two machines designed and developed by D’Andrea and 
Tozzo (2012, 2013) at the Sapienza University of Rome, both able to work in monotonic conditions under a 
loading machine that applies a set displacement rate. In the devices, named SHST and SIST Machine, the shear 
and the normal load act together on the specimen during the test, so to have a composite state of stress. In the 
SHSTM the normal load is constant during the test while in the SISTM the two components proportionally vary. 
These two machines were recently transformed to perform dynamic tests under the loading appliance used for 
fatigue tests (D’Andrea & Fiore, 2003). 

3. Objective 
The aim of this paper is to present the results of shear fatigue tests carried out with the dynamic shear test device 
called SIST Machine. The device can be located under a dynamic loading machine. In this way, the shear fatigue 
behavior of the interface can be analyzed considering loading conditions similar to some of the real ones as 
occurs for the vehicles transit. For the particular working scheme of the device, the load is divided in dynamic 
normal stress and shear stress at the interface.  
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The study will start with the analysis of the stress levels expected for the pavement structure when a moving 
wheel load transits on the surface; these will be calculated with CIRCLY, a software for the mechanistic analysis 
and design of road pavements. The trend through time of the stress at the first interface between binder and 
wearing course will be inferred from a simply static analysis, by considering its output as an influence curve for 
a fixed point. That curve will be imposed as waveform for the force applied by the loading machine on the 
device.  

Tests will be performed by reproducing the amplitude of the two stress components as evaluated by CIRCLY for 
heavy axles. These test conditions are to try to simulate realistically the fatigue damage rise at the interface. 
Moreover, tests with higher stresses combinations will be performed (oligocyclic fatigue test), in order to 
contribute to a better definition of the fatigue line on the plane Stress vs. Number of Repetitions. A fatigue law 
will be proposed, according to the experimental results. 

4. Experimental Program 
4.1 Specimens Preparation 

The double layer specimens have been constructed to reproduce the first interface of a pavement, with binder 
and wearing course. The two layers were manufactured with different contents of the same 60/70 bitumen and 
different granulometric size distributions. For the binder course a mix of calcareous aggregates (20 mm 
maximum size) and a bitumen content of 4,5% have been selected, while for the wearing course the mixture has 
been composed of basalt and calcareous aggregates (10 mm maximum size) with a bitumen content of 5,5%. 
Cylindrical moulds 130 mm high, with an interior diameter of 100 mm, have been used for the specimen 
manufacturing under the Marshall Compactor. The blows have been applied only on the upper surface of each 
layer as many times as the bulk density complied the most common acceptance requirements for the Italian 
public work contracts: minimum 98% of the bulk density of the same mixture compacted in standard Marshall 
mode (EN 12697). That purpose demanded 125 blows for the binder and 150 blows for the wearing course.  

The lower layer, about 60 mm high, was left to cool at room temperature after the compaction. The interface was 
treated to improve the adhesion with the application of a tack coat. The application rate selected for this study 
has been 0.4 kg/m2 of residual bitumen, according to the Italian common prescription. Prior to perform the shear 
test, all specimens were left to cool for more than 24 hours. 

4.2 Apparatus 

The Sapienza Inclined Shear Test Machine (SISTM), a prototype designed and developed at the Sapienza 
University in the recent years, has been judged useful as test device for the evaluation of fatigue performance. 

This is a direct shear machine similar to the device used by Romanoschi (Romanoschi & Metcalf, 2001); two 
half moulds (100 mm interior diameter) hold the cylindrical double-sample and ensure the location of the 
specimen under the loading machine in several inclinations. The SISTM brings the innovation of a joint, which 
engages the top half of the equipment at the loading machine and avoids that this upper part of the device could 
weight the specimen. 

The gap between the two half moulds is fixed at 1 cm with the interface 5 mm apart. The device is equipped with 
LVDT for the displacements measurements. A ball bearing plate allows the sliding of one part against the other. 
For the cyclic working modality, a special attachment for the dynamic loading machine has been manufactured 
as shown in Figure 1. 

The relationships between the vertical load (F) applied by the loading machine and the load components 
transmitted on the interface are the following: 

 T=F·sinα   and   N=F·cosα (1) 

where N is the normal load, T is the shear load and α is the angle between the longitudinal axis of the specimen 
and the vertical. 

Once set the specimen angle, the ratio between the shear and normal stress is established and cannot be changed 
during the test. In this study, the angle has been fixed at 60°; then the shear stress is √3 times the normal one. 
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layer cylindrical specimens. Several inclinations can be easily set, in order to reproduce a large variety of 
combinations between the normal and the shear stress. 

The device is able to reproduce some of the stress combinations which occur during the wheel passage. In 
particular it reproduces the conditions of points situated at the interface, next to the edge of the wheel path. In 
those positions the shear stress is headed always in the same direction for the whole duration of the vehicle 
passage. Also in the lab load cycle the shear stress is always applied in the same direction.  

Setting the longitudinal axis of the specimen at 60° with the vertical corresponds to choose a position at about 30 
mm from the edge of the wheel. Under this condition, the fatigue behavior has been analyzed and a fatigue law 
has been achieved. 

Even if the SIST Machine is able to reproduce some significant states of stress, they are just a few of those 
experienced by the pavements, because that type of device obliges to set and maintain a fixed proportionality 
between the normal and shear applied load. A more complete analysis of the interface stress conditions requires 
the combination of different tests’ results performed with several machines, which are able to reproduce other 
normal and shear stress ratios, as the pavement structure simulation indicates. 
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