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Abstract 
Theories and models usually adopted in designing roads, especially for safety verifications, are based on the 
hypothesis of a single vehicle that follows a trajectory matching with the road axle. This condition can be 
expressed as “road following” model and it determines many important design parameters, like curvature, design 
speed, superelevation, lane placement, sight distances, characteristics of transition curves, etc.. In real conditions, 
vehicles on a road section travel along trajectories always different from the road axle, so, in order to ensure that 
theoretical models can be effective, it is important to evaluate how a reference trajectory, on particular road 
elements, can statistically represent the population of users. In this way, it will be possible to design the road axle 
on the basis of this reference trajectory and consequently develop road design processes. To deal with these 
problems, it is useful to perform some surveys on trajectories of vehicles on real road elements, but the statistical 
analysis of the data needs specific procedures to extract trajectories that have a formal geometric expression and 
correctly represent the scattering of vehicles’ position. The article presents a statistics based method, proposed 
with the aim to obtain the reference trajectories on road sections starting from surveys over real exercise 
conditions; the method was tested on case studies regarding two ramp terminals, that are particularly interesting 
because when the infrastructure present special geometrical or physical features the vehicle trajectories are 
influenced by them. 
Keywords: road geometric design, trajectories, vehicles’ path, lateral displacement, statistics, users’ behavior 

1. Introduction 
1.1 Geometric Design Principles and Research Trends 

The geometric design of roads and highways is traditionally based on theories and models that establish some 
deterministic relations between the features of infrastructure and both expected safety conditions and users’ 
performances. The most part of design standards, adopted by road Authorities and Administrations around the 
world (AASHTO, 2001; VSS, 1991; IT D.M., 2001; TAC, 1999), are based on the hypothesis that a vehicle 
moves along a road section following a path defined by road geometry. At the same time, the design features 
determine the maximum safe speed that can be maintained over the section of highway and along each alignment 
element. The road can be conveniently represented by its longitudinal axle (roadway line) and cross sections: if 
the road alignment is properly defined, it almost matches with the line described by vehicle through space, that is 
its trajectory. The described hypothesis can be designated as the “road following” condition. In effect, according 
to the Green Book (AASHTO, 2001), the “Driving Task” encompasses the road-following and safe-path 
maintenance, in response to road and traffic conditions: these activities are in the care of road user, who perform 
them at a mid-level of cognitive processes that he or she carries out.  

Many research works on road geometric design have focused on topics directly or indirectly related to the 
road-user interactions corresponding to the above reminded basic principles; the studies can be grouped in three 
main areas (Gibreel et al., 1999): (1) Design Speed and Operating Speed; (2) Driver Performance and Design 
Consistency; and (3) Safety Conditions.  

Regarding to speed, the most part of studies deal with the prediction of Operating Speed: the traditional model 
for Design Speed on curves, that expresses the relationship between vehicle speed V and side friction demand fRd 
(on a curve of specified radius R and superelevation e): 
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has to be complemented by new concepts referred to speed profiles (Leisch & Leisch, 1977); since the proposed 
models, the Operating Speed can be identified as the 85-th percentile of vehicles speed distribution and predicted 
using some criteria (Lamm et al., 1988; Hassan, 2004), based on the characteristics of geometric elements 
(Cantisani & Di Vito, 2012). However, other studies (Perco, 2008; Dell’Acqua, 2012) affirm that the 
characteristics of single alignment elements cannot to completely explain the speed choice on curves and 
tangents, because it also depends on the general character of the road alignment. 

In the field of Driver Performance and Design Consistency, the research works in literature often assume these 
topics are strictly related to the major goal of highway design, that consists in achieving comfortable, efficient 
and safe traffic operation (Gibreel et al., 1999; De Luca & Dell’Acqua, 2012). The Green Book, in effect, 
declares that the proper highway design should be founded on driver performances, because when a design is 
incompatible with the attributes of drivers, accidents and inefficient operations can increase. In particular, the 
performances of drivers are dependent on receiving and using information from road and on comparison with 
those already possessed by drivers. Since the 1980s, many authors have discussed basic concepts (Messer, 1980; 
Nicholson, 1998) and methods for calculating and evaluating the speed profiles (Fitzpatrick et al., 2000; Hassan, 
2004; Cafiso, Di Graziano, & La Cava, 2005), in order to ensure consistency and homogeneity of road 
alignments. 

Safety Conditions may represent the fundamental theme for preventing accidents due to infrastructure failures; 
they derive from many geometric characteristics: cross section composition and width, horizontal and vertical 
alignment design, sight distances and so on. In particular, vehicle stability was focused as an essential problem, 
because the conventional model of (1) has some assumptions that are judged too rough and, furthermore, the 
effect of a vertical curve or grade has not been considered (Furtado, Easa, & Abd El Halim, 2002). Other 
considerations are referred to interactions between geometric design features and safety on roads; for example, 
the analysis of horizontal curves (Reinfurt et al., 1991) pointed out that when curves become sharper there is a 
proportionally greater increase in speed reduction and edgeline encroachments on the inside lane; safety is 
involved because especially the centerline encroachments can favor run-off-road crashes on the inside of the 
curve as well as head-on and opposite direction-sideswipe crashes with oncoming vehicles. 

The width of lanes, on the other hand, influences both speed and vehicle lateral placement (Neuhardt, Herrin, & 
Rockwell, 1971; McLean, 1974). In effect, field studies on rural two-lane highways in free-flow conditions have 
shown that the interactions between roadway factors and individual (or average) driver speed selection as well as 
corner-cutting strategies on curves are clearly present. Also the comparison between real road conditions and 
simulator environment confirms these outcomes (Blana & Golias, 2002). Moreover, the effects on road safety of 
lane width are not so easy to recognize: in the past, wider lanes have been assumed to be beneficial to safety 
because of the increase of the average separation between vehicles in adjacent lanes and for providing more 
room for driver correction in near-accident circumstances. Actually (Hauer, 2009), it is more correct to affirm 
that lane width plays a different role in single and multi-lane roads, because for single-lane roads it has a bigger 
influence on driver behaviour, in terms of trajectory and selected lateral position. 

1.2 Real-Road Operating Conditions 

In real conditions, vehicles on road sections travel along trajectories always different from the road axle and also, 
generally, from the median line of their allowed lane. In addition to the intrinsic variability of paths, due to the 
characteristics of road vehicles steering system, it needs to consider that the control of vehicle trajectory and the 
adjustment of travel speed are in the care of the driver. These actions derive by solving a complex 
spatio-temporal problem, that involves human skills and judgments and is mainly based on visual information 
acquired by the user. Misleading of the road environment and/or failures in information processing can result as 
human errors in driving task and can cause operating problems or road accidents. According to recent studies 
(Rosey & Auberlet, 2012), the variability of trajectories and, consequently, of the lateral position in the lane 
indicates an inadequate guidance and incorrect paths that may increase the likelihood of accident. 

More general, considering the previously discussed outcomes of the literature review, the difference between the 
real trajectory of a generic vehicle and the theoretical one can emphasize the safety problems related to 
geometric characteristics of roads. In particular, vehicle stability along curve alignments, expressed by (1), can 
result not certain because the formula assumes drivers have a theoretical path but that may be not true (Glennon 
& Weaver, 1972). In addition, the trajectories continuously vary along each alignment element: as reported in 
(Bonneson et al., 2007), previous researchers found that the radius of the vehicle’s tracked path is, at its sharpest 
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point, equal to 0.7 to 0.9 times the highway curve radius.  

So, it is important to consider: what happens if a shorter or larger radius, respect to that allowed by design Policy 
(for given superelevation and friction values) is chosen? Are they some criteria for evaluating, for example, how 
many crashes will be saved if the most part of drivers select a larger radius? An author (Hauer, 2005) affirms that 
«the safety of horizontal curves designed by following the Policy is simply unpremeditated. The Policy is the 
embodiment of tradition, judgment, intuition, and experience, not empirical evidence». So, the problem can be 
also seen in opposite way: considering the scattering of vehicles’ trajectories and lateral positions, in a given 
road section, what are the safety conditions that each vehicle can rely on? 

1.3 Study Objectives 

To acquire more elements for answering to the above proposed questions, it appears necessary that a 
probabilistic approach has to be incorporated in the road design process. According to (Hirsh, Prashker, & 
Ben-Akiva, 1986), new studies has to consider that «current practice is based on a deterministic approach 
whereas the factors involved in the geometric design process (e.g, speed, friction, reaction time) are stochastic in 
nature and vary among road users». In particular, it is important to take in account that (Hirsh, 1987) the values 
considered for characterizing Design or Operating Speed can be referred to the n-th percentile (generally the 
85-th) of road users, but there are many users that travel faster: for these users the Safety Conditions (or Design 
Consistency) criteria can result unverified. In the same way, in (1) the radius of curve and side friction factors 
have some distribution around their average values, due to different speed and trajectories of vehicles, that can 
modify the equilibrium conditions. 

In other terms (Hauer, 2005), it is necessary to explore a more “rational style”, in place of the “pragmatic” one, 
for road safety management, starting from the criteria for correct design and assessment of road geometric 
characteristics. Following these orientations, this paper proposes a study on vehicle dispersion in road sections 
aimed to recognize, on the basis of a statistical approach, the “reference trajectory” along a generic alignment 
element. More practical, the study deals with the problem how a reference trajectory can represent the whole 
population of road users; starting from the distribution of vehicles lateral displacement, in various sections along 
a road element, the proposed methodology assumes that the reference trajectory can be obtained as a continuous 
line that interpolates the points where the probability distribution reach the maximum. It is also possible to take 
in account the statistical distribution of displacement, in the considered sections, that gives the opportunity to 
observe the real exercise conditions for a proper percentile of users, in terms of distance from lateral obstacles, 
sight conditions, room availability (in near-accident circumstances), and so on. The proposed method was tested 
on case studies regarding road sections along ramp terminals, that were selected because it appears especially 
interesting to observe cases where the infrastructure present special geometric or physical features that influence 
vehicles’ trajectories. 

2. Surveys on Real Road Elements 
2.1 Surveys Method  

The knowledge of users’ behavior appears essential aiming to consider the influence of human factor in the road 
system. The fact that speed and position of vehicles are controlled by drivers, necessarily involves the need to 
investigate what are the significant factors that influence users choices, decisions and actions. For these purposes, 
many researches have been carried out with the objective to collect experimental data about operating conditions 
in traffic flows and single vehicles motion (for example: Yu et al., 2011; Harlow & Peng, 2001; Coifman et al., 
1998).  

Various techniques have been proposed for surveys and, in this sense, important contributions come from 
technology. The extraordinary advances in electronics, information and communication systems make available, 
today, various kinds of equipment for surveys and monitoring over vehicular traffic. According to the aims and 
conditions of research, various parameters can be settled with reference to the duration of surveys, the number 
and type of variables to collect and the availability of some monitoring technology.  

A rough classification of existing techniques for data acquiring may be related to the automatism and 
consequently, on the basis of the need of an operator during the monitoring phase; manual measurements are 
really unsuitable because they require a continuous intervention of operators, while automatic systems are more 
efficient. These systems are generally based on the principle that the information starts from detection sensors 
and reaches the processing and storage unit through the transmission and the address of data. The most 
appropriate equipment for researches focused on vehicle trajectories and lateral displacement are, probably, the 
proximity sensors (like microwave radar and infrared detectors) (Cantisani, Di Vito, & Luteri, 2012), and the 
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Figure 3. Examples of possible problems occurring when a discrete series of points is linked by some continuous 

trajectory lines 

 

The choice of the linking curve should be made according to the following conditions: 

1) The curve should interpolate the points; so, all the fitting curves should be rejected because they introduce 
variations in the position of maximum probability points, changing the statistical significance of the reference 
lines. 

2) The curve should be derivable and maintain a continuity of order at least equal to 2, in order to satisfy the 
real variation of the kinematic properties related to the motion of the vehicle (acceleration, jerk, etc.); 

3) For a generic point i, its previous i-1 and its subsequent i+1 there should be no sign changes in the value of 
the curvature ρ = 1/R. 

For these reasons it is necessary to establish and develop a method, useful to obtain a continuous curve that joins 
the discrete series of maximum probability points, so maintaining the statistical meaning of reference trajectory. 
In the present study, an early approach was that to use some Cubic Splines. Splines are cubic polynomial 
functions, that adapt by pieces to the interpolation points, of such way, that between pairs of contiguous points 
there are different polynomials. The Figure 3 shows the Cubic Spline Interpolation calculated with reference to 
traditional method; this method consists in the use of a “nonparametric” form of cubic polynomial functions 
(y=f(x)). In this case, for the interpolation, the independent variable is assumed as final value of y with the 
breakpoints defined by x. 

Given in the range [a, b] a set of data nodes a = x0 < x1 < x2 < · · · < xn = b, a cubic spline interpolation (Figure 
4), S, satisfies the following conditions: 

 S is a cubic polynomial, Sj on [xj,xj+1] for j = 0,1, . . . ,n-1. 

 S(xj) = f(xj) for j = 0, 1, . . . , n. 

 Sj+1(xj+1) = Sj(xj+1) for j = 0, 1, . . . , n-2. 

 S’j+1(xj+1) = S’j(xj+1) for j = 0, 1, . . . , n-2. 

 S”j+1(xj+1) = Sj(xj+1) for j = 0, 1, . . . , n-2. 
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For n+1 control points given in the plane (x,y), interpolated by n cubic polynomial pieces, 4·2=8 coefficients are 
requested to define each piece, therefore 8·n coefficients should be determined (4·n coefficients for each x(u) and 
y(u) parametric function). 

The available equations (for each x and y variable) are the following: 

 2·n equations for each piece passing through each pair of adjacent control points; 

 (n-1) equations for first derivative continuity in contact points (C1 continuity); 

 (n-1) equations for second derivative continuity in contact points (C2 continuity). 

The total equation count is 4·n-2 (8·n-4 in total) while the needed equations is 4·n (8·n in total). 

To obtain the other 2 equations (4 in total) it is necessary to set tangent and/or curvature values at the first and at 
the last control points, through first and/or second parametric derivative value. The system of equations can be 
expressed through control points coordinates, first and second derivative of the n-1 internal and the 2 external 
control points. 

In this way, for the ith polynomial piece of the curve in any one of the parametric plane (u,x or u,y), the equations 
are, for example considering the variable y (the same for x): 

iiyiyiyiyi

iiyi

ydcbaY

yaY



 

,,,,

1,

)1(

)0(
                              (3) 

and the equations expressing the first derivative at the beginning (Dy,i-1) and at the end (Dy,i) of ith polynomial 
segments are: 

iyiyiyiyi

iyiyi

DcbaY

DcY

,,,,

1,,

23)1(

)0(


                              (4) 

In the Equations (3) and (4), yi-1, yi, Dy,i-1 and Dy,i are respectively the control points coordinates and the first 
derivative value (at the beginning and at the end of ith piece). From Equations (3) and (4) it is possible to obtain 
algebraic expressions of coefficients:  

iyiyiiiy

iyiyiiiy

iyiy

iiy

DDyya

DDyyb

Dc

yd

,1,1,

,1,1,
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)(2
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















                          (5) 

C2 continuity is obtained with the following second derivative conditions in the n-1 internal control points: 

Y”i(1) = Y”i+1(0), with i =1, 2,…,n;                         (6) 

substituting in (6) the expressions of second derivative of curve: 

6·ay,i + 2·by,i = 2·by,i+1                                  (7) 

for the (5): 

2·[3·(yi - yi-1) - 2·Di-1 - Di] + 6· [2·(yi-1 - yi) + Di-1 + Di] = 2·[3·(yi+1 - yi) - 2·Di - Di+1]     (8) 

and, simplifying: 

Di-1 + 4·Di + Di+1 = 3·(yi+1 - yi-1)                             (9) 

If the second derivative at the endpoints is equal to zero, the “natural” cubic spline is obtained. For the 
beginning piece of curve (i=0): 

2·by,1 = 0                                      (10) 

and for the (5): 

2·[3·( y1 – y0) - 2·Dy,0 – Dy,1] = 0                          (11) 

Simplifying: 

2·Dy,0 + Dy,1 = 3·(y1 - y0)                              (12) 

Similarly, for the final piece of curve (i=n-1): 
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