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Abstract   

In this paper, global exponential stability of a class of neural networks with finite distributed delays is investigated by
matrix measure technique and Halanay inequality. Several sufficient conditions are given to guarantee global
exponential stability of the neural networks without assuming the differentiability of delay. At last, two examples are
given to illustrate the applicability of our results.
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1. Introduction 

In recent years, various neural networks models such as Hopfield neural networks, cellular neural networks, and 
bi-directional associative memory networks have been extensively investigated and successfully applied to signal 
processing, pattern recognition, and associative memory and optimization problems. In such applications, due to finite 
switching speed of the amplifiers and communication time, time delays are actually unavoidable in the electronic 
implementation. It is known that the delays are a potential cause of the loss of stability to a system. On the other hand, it 
has also been shown that the process of moving images requires the introduction of delay in the signal transmitted 
through the networks. Therefore, it is of importance to investigate stability of neural networks with delays. In the 
literature, a lot of results have been established on global stability and global exponential stability of the equilibrium 
point for delayed neural networks (see, e.g., and references therein). To the best of our knowledge, few results on the 
global exponential stability of a class of neural networks with finite distributed delays have been reported in literatures. 
In this paper, the global exponential stability of this network were discussed, some sufficient conditions ensuring the 
global exponential stability of neural networks are derived, two examples are given to illustrate the effectiveness of our 
results.

The paper is organized as follows. In Section 2, the new network model is formulated; some preliminaries such as 
Halanay inequality, matrix measure are presented. In Section 3, some sufficient conditions ensuring the global
exponential stability neural networks are given. In Section 4, two illustrative examples are provided to show the 
effectiveness of our results. Some conclusions are drawn in Section 5. 

2. Preliminaries 

In this paper, we consider the neural network model with distributed delays as 

( ) ( ) ( )( ) ( )( )( ) ( ) ( )( )
1 1 1 0

,
n n n

i i i ij j j ij j j j ij j j i
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Here, n  is the number of neurons in the indicated neural network, ( ) ( ) ( )( )Tn txtxtx ,...,1= is the state vector of the 

network at time t , ( )( ) ( )( ) ( )( )( )Tnn txgtxgtxg ,...,11= is the output vector of the network at time t , ( ) 0,...1 >= ndddiagD ,

( )
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×
=  is the feedback matrix, ( )
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, ( )TnuuU ,...1=  is the stimulus from outside of the network at time t , the 
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(2)  Let nnRP ×∈  is nonsingular, for any ∈x nR ,
m

m

P
Pxx = ,

m
⋅  denotes m -norm of nR , then m

P
⋅  is a vector 

norm of nR , the matrix measure ( )Am
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A induced by m
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⋅  satisfies respectively
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(3)  For the 1-norm, 2-norm and ∞ - norm of nR , the induced matrix measure are given by 
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3. Global exponential stability of equilibrium of the system (2.1) 

In this section, we will derive sufficient conditions for the existence of equilibrium of the system (2.1). Furthermore, we 
will use lemma 1 and matrix measure to establish the exponential stability of system (2.1).  

An equilibrium point of the system (2.1) is a constant vector ( )Tnxx **
1 ,..., nR∈  which satisfies the following equation  
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τ      (3.1) Theorem 3.1  Assume that 
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where ( )nlldiagL ,...,1= , { }nill i ,...,1,max == . Then there exists a unique solution of the equation (3.1), i.e., the system (2.1) 

has a unique equilibrium point. 

Proof. It follows from (3.2) that 
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It is obvious that 10 <<α .

Let **
iii vxd = , ni ,...,1=  in (3.1), then we have  

( ) niuds
d

v
gsc

d

v
gb

d

v
gav i

n

j j

j
jij

n

j j

j
jij

j

j
n

j
jiji ,...,1,

1 0

*

1

**

1

* =+++=
===

τ  (3.3)         

To finish the proof, it suffices to show that (3.3) has a unique solution. Consider a mapping Φ: nn RR →  defined by 
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this implies that Φ: nn RR →  is a global contraction on nR  endowed with the 
1
⋅ .Hence by contraction mapping 

principle, there exists a unique fixed point of the map Φ : nn RR →  which is a unique solution of the equation (3.3) from 
which the existence of a unique solution of (3.1) will follow. The proof is completed. 

Consider two solutions ( )tx  and ( )tz  of system (2.1) corresponding to any initial values ( ) ( )ttx φ=  and ( ) ( )ttz ϕ=
for [ ]0,τ−∈t , Let ( ) ( ) ( )tztxty −= , then we have  
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where  λ  is unique positive solution of the following equation 
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This completes the proof. 

By using Theorem 3.2, we can easily derive the following Corollaries. 

Corollary 3.1. Assume that ∗x  is the equilibrium point of system (2.1), if the condition (3.2) is satisfied, then ∗x  is 
globally exponential stable. 

Proof.  Assume that ( )tx  is a solution of the system (2.1) holding the initial condition (2.2), then 
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This implies ∗x  is globally exponential stable. The proof is completed. 

Corollary 3.2. The equilibrium point of system (2.1) ∗x  is globally exponential stable if there exist a positive diagonal 

matrixes ( )npppdiagP ,..., 21=  such that  
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Proof. Using lemma 2, we have 
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Hence, if the condition (3.4) holds, then we can conclude that  
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Similar to the proof theorem 1, we have that if ( )tx  and ( )tz  denote two solutions of system (2.1) corresponding to any

initial values ( ) ( )ttx φ=  and ( ) ( )ttz ϕ=  for [ ]0,τ−∈t , then 
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Using the method of the proof Corollary 3.1, we have  
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where, ( )tx  denotes a solution of the system (2.1) holding the initial condition (2.2)

This implies ∗x  is globally exponential stable. The proof is completed. 

Corollary 3.3. The equilibrium point ∗x  of system (2.1) is globally exponential stable if.
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From (3.5) - (3.6), we get that 
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Applying Corollary 3.1, we can complete the proof. 

4. Illustrative examples  

Example 1. Consider the following system  
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It is obvious that the delay is not differentiable, 
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It then follows from Corollary 3.1 that the equilibrium point of the system (4.1) is globally exponential stable. 

Example 2. Consider the following system 
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we cannot determine that the system (4.2) is globally exponential stable, if we use Corollary 1. However, let 
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So, it follows from Corollary 3.2 that the equilibrium point of the system (4.2) is globally exponential stable. 

5. Conclusions 

In this paper, several sufficient criterions have been derived to guarantee global exponential stability of the neural
networks with distributed delays without assuming the differentiability of delay. Different from the normal method, i.e., 
constructing suitable Lyapunov function, these results are obtained based on matrix measure and Halanay inequality 
approach. Our results are easily checkable and valuable in the design of global exponential stability of neural networks.
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