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Abstract

In this paper, we consider a new algorithm for a generalized system for relaxed cocoercive nonlinear inequalities in
Hilbert spaces by the convergence of projection methods. Our results extend and improve the recent ones announced by
many others.
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1. Introduction and preliminaries

Variational inequalities introduced by Stampacchia in the early sixties have had a great impact and influence in the
development of amost al branches of pure and applied sciences and have witnessed an explosive growth in
theoretical advances, algorithmic development, see [1-6] and references therein.

Let H be areal Hilbert space, whose inner product and norm are denoted by (-,) and || respectively. Let C bea
closed convex subset of H and let A:C —H be anonlinear mapping. Let P. be the projection of H onto the
convex subset C . Theclassical variational inequality which denoted by VI(C,A) istofind ue C suchthat

(Au,v—u)>0,Vve C. ()}
Recall that A issaidto berelaxed (u,v)-cocoerciveif there exist two constants u,v >0 such that
(Ax— Ay, x—y) > (-u)|Ax— AY" +v|Ax— A", xyeC. 12

Consider asystem (SNVID) of nonlinear variational inequality problems as follows:

Find x,y",Z e C suchthat

(sT,(X',¥,Z)+X -y ,x=x)>0, VxeC,s>0, (1.3
AT,(X,y,Z)+y —Z,x-y)>0, VxeC,it>0, (L4)
(XY, 2)+Z =X ,x=2)20, VxeC,r>0, (15)

One can easily see the SNVID problems (1.3), (1.4) and (1.5) are equivalent to the following projection formulas:
X =Py -sT,(y,z,x)], s>0,
y =RI[Z ~tT,(Z,x,y)], t>0,
Z =R[X —IT,(xX,y,Z), r>0

respectively, where P. istheprojectionof H onto C.
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2. Algorithms

In this section, we consider an introduction of the general three-step models for the projection methods and its special
form can be applied to the convergence analysis for the projection

methods in the context of the approximation solvability of the SNVID problems (1.3)-(1.5).
Algorithm 2.1. For any x,,y, < C,, compute the sequences{x.}, {y,} and {z,} by theiterative processes:

Zy1 = RelXa =1%o Yoin )1
Yo = PelZn = tTo(Znas Xpian Vo)l (23
X1 = (L= )%, + R [X%00 =TT (X1 Yieas 201
where {a,} isa sequence in[0,1] foral n>n,.
In order to prove our main results, we need the following lemmas and definitions.
Lemma2.1l. Assumethat {a,} isasequence of nonnegative real numbers such that
a.,<@-4)a,+b,+c,, Vnxn,,
where n, is some nonnegative integer, {4,} isasequencein (0,1) with Y=, 4 =oo,b, =0(4,) and ¥;,c, <o, then
lima, =0.

n—eo

Definition 2.1. A mapping T:CxCxC — H is said to be relaxed (u,v) -cocoercive if there exist constants u,v>0
such that, for all x,xe C,

Ty, 2)-T(X,¥,2),x=X) 2 (-u)[T (%, ¥, 2 -T(X, Y z')||2 +Vx- x'||2, vy, y',z,2€ C.

Definition 2.2. A mapping T:CxCxC—H issaidto be g -Lipschitz continuous in the first variable if there exists a
constant x>0 suchthat, for al x,xeC,

[T(xy.2-T(x.y.2)|<y|x-x|. Vy.y.zzeC

3. Main results

Theorem3.1. Let C be a closed convex subset of a real Hilbert spaceH . Let T,:CxCxC—H be a relaxed
(u,,v,) -cocoerceive and y, -Lipschitz continuous mapping in the first variable, T,:CxCxC—H be a relaxed
(u,,v,) -cocoerceive and u, -Lipschitz continuous mapping in the first variable, T,:CxCxC—H be a relaxed
(us,v,) -cocoerceive and u, -Lipschitz continuous mapping in the first variable. Suppose that x,y,z e C are
solutions of the SNVID problems (1.3)-(1.5) and {x,}.{y,}.{z,} arethe sequences generated by Algorithm 2.1. If {e,}
isasequencein [0,1] satisfying the following conditions:
()Xo ==}
(i)0< St r < min{2ey) 2o ey,
(“I)V1 - Uyulz'vz - uzluzz’va - UBIUBZ} ;
then the sequences{x } {y.} and {z} convergesstronglyto x',y and z', respectively.
Proof. Since (X,y’,z) isthesolutiontothe SNVID problems (1.3)-(1.5), we have

X =Ry -sT,(y,Z,xX)], s>0,

y =R.[Z —-tT,(Z,X,y)], t>0,

Z =R[X -ITy(xX,y,2)], r>0,
Observing (2.1), we obtain
%~ X = |@- @)%, + @, RLy, - ST, 2.%) - X]| <@-a,) Yo=Y = 9T 20%) Ty, 2 X)]| (XY
By the assumption that T, isrelaxed (u,v,)-cocoerciveand g, -Lipschitz continuousin thefirst variable, we obtain
Yom ¥V =102, %) =Ty .2 )]
Yo=Y |- 25(Y, = ¥ (¥ 2 %) =Ty . Z X D + STy, 2, %) - Ty . 2 X))
<y, ¥+ 250y, - ¥ | oy |+ sy, -y =6y, -y (32
Where 67 =1+2suu’ - 2sv, +s*u” .From the conditions (i) and (iii), we know ¢, <1.
Subgtitute (3.2) into (3.1) yields that

xn—x||+atn

2
—2sv,

%0 = X < @= @)%, - x|+ ]y, - V| (33
Now, we estimate
Yo = Y| =Pl 20 =T, (2o X0 Y = ¥ | € |20 = Z ~UT, (200 X, 1)~ To(Z XY ]| (34)
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By the assumptionthat T, isrelaxed (u,,v,)-cocoerciveand g, -Lipschitz continuousin the first variable, we obtain
2= 7 ~UT,(Z0 X0 ¥o) - T X Y
2~ 7| ~ 22, ~ 7 (20 X Y2~ T2 XY N T2 %000 ¥~ T2 XY )

<20~ Zt||2+2tuz:uz2 Z,— Zt"2 - 2tV2 2~ Z*"2 + tztuzz 2~ z ||2 = 622 2, Z*"2 (35)
whereg,’ =1+ 2tu,u,” - 2tv, +t°4,> . From the conditions (ii) and (iii), we know 6, <1. Substituting (3.5) into (3.4) yields
tht |y, -y <6z, - Z||, which impliesthat ||y, - y| <6,z - Z| (3.6)

Similarly, Substituting (3.6) into (3.3), we have

Xy — x|| <@1-a,)|x, - x|| + ozn6'1¢92||zn - z|| (3.7)

Next, we show that

Zn— Zﬁ" = ||Pc[xn+1 - rTz(Xmu Yo Zn)] - Zﬁ" < ||Xn+1 -X - r[Ts(Xn+11 Yo 4) _T3(X‘ ’ y ’ Z*]" (38)

By the assumptionthat T, isrelaxed (u,,v,)-cocoerciveand g, -Lipschitz continuousin the first variable, we obtain
X1 — X - r[T3(Xn+1v Yo Zn) —T3(X*, y ' Z)]"2

= "er - X*"2 - 2r<)§1+1 - X*’T?,(thl’ Yoo Zn) _Tz(X* ’ y*1Z*)> + r2"T3(Xn+1v Yo Zn) _Ta(X’ ’ yx ’ Z*)"Z

<Ix.,- x'||2 +2rug’x.,, - x'||2 —2rv|x,, - x’||2 +riux, - x'||2 =07x.,-x ||2 (3.9)
where 6, =1+ 2ruu,’ - 2rv, + r’u,” .From the conditions (ii) and (iii), we know 6, <1. Substituting (3.9) into (3.8), we
obtain ||zh+1 -z || < 6?3||)q1+1 - x|| , which implies ||zh -z || < 493||>g1 -X || (3.10)

Similarly, substituting (3.10) into (3.7) yields that

X0 =X < @=a)|x, — X[+ 2,66, - x| <[1- 21— 66,6)]x, ~ X | (3.12)

Noticing that >;,c,(1-66,6,) =+ andApplying Lemma2.1into (3.11), we can get
the desired conclusion easily. This completes the proof.
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