

Study on the System of Technical

Innovation in Our Country's Textile Industry

Tao Ma & Qi Qi

College of Economics, Tianjin Polytechnical University, Tianjin 300160, China Tel: 86-22-8395 6411 E-mail: tjpumt@tom.com

Abstract

After our entering WTO, the insufficient ability of new technical creating and the lags of the facilities and craftwork have become the main problems that restrict the confineable progress of our country's textile industry. In the base of having collected a great deal of data, this essay analyses the main facts that can influence technical innovation of our country's textile industry, and creating the estimating system of technical innovation of our country's textile companies which is fit for our country's textile industry.

Keywords: Textile industry, Technical innovation, The estimating system

The textile industry is traditional and indispensable industry of our country. It is the third biggest export industry which is only inferior to electronically machine and tourism. With the quota of some restricted goods from many main export markets, such as America, UN, being cancelled, the free trade in textile globally will help the textile industry of our country make best of the foreign and domestic resources and expand not only domestic market, but also domestic one.

But now, the insufficient ability of new technical creating and the lags of the facilities and craftwork have become the main problems that restrict the continual progress of our country's textile industry. If we want to exert more competitive advantages of our country's textile industry, and confirm correctly the position that our country's textile industry stands in the Asian and even the international textile industry, and collocate all kinds of resources reasonably to generate main competitive power, then promote the continual progress of our country's textile industry, we should change the actuality of concerning on quantity, and focus on the technical innovation of our textile industry, especially the technical innovation system's creating and efficient running.

In the course of running the system of technical innovation in textile industry, all the innovational resources get together in the company, and get the new combination which is based on the textile company, and then achieve the purpose of improving company's main competitive capabilities and economical benefits. Whether the technical of innovation in textile industry are high or not is the gist that could judge the running status of the whole technical innovation system of textile industry. In this condition, creating the judging system of technical innovation capability in textile industry externally and scientifically makes significant effort in a textile company's realizing its advantages and disadvantages, and making suitable innovation strategies, then improve the running efficiency of the whole industry system.

1. Picking up the index that can judge the technic innovation capability of textile industry

The technical innovation capability of a textile company is an integer which is formed by many facts. According to the process of technical innovation and the features of textile industry, and in the base of the comprehensive principle, the systemic principle and the feasible principle, we can divide the technical innovation capability of a textile company into many facts, such as policies, innovation resources, market surroundings, information surroundings, people resources, and technical serves agency. After surveying more than one hundred companies, we had created the judging system of technical innovation capability in textile industry.

Table 1. the index that can judge the technical innovation capability of a textile company

The System of Technical Innovation	index
	Industrial Policy (P1)
Policy (C1)	Technical Policy (P2)
	Financial Policy (P3)

	Resource & Surroundings (P4)		
	Social Development (P5)		
	Employment (P6)		
	Other Policy (P7)		
	R&D Devotion (P8)		
Imposetion Passauras (C2)	R&D Personnel Devotion (P9)		
Innovation Resource (C2)	None R&D (P10)		
	Innovation Risks (P11)		
	Market Concept (P12)		
	Organization Structure (P13)		
Market(C3)	Industry Structure (P14)		
	Innovation Efficiency (P15)		
	Technical Import(P16)		
	Technical Information (P17)		
Information(C4)	Flat Of Industrial Technique (P18)		
	Information Management (P19)		
Human Resource(C5)	Capability Of Enterpriser (P20)		
Human Resource(C3)	Ability Of Innovation Personnel (P21)		
•	Broker Serves System (P22)		
Broker Serves System (C6)	Broker Serves Manager System (P23)		
Blokel Serves System (CO)	Broker Serves Organization (P24)		
	Brokers (P25)		

2. Confirming the model of the judging system of technic innovation capability in textile industry

First, according to the certain subject function relationship, calculate the results of every index. In the process of constructing certain subject, we use the method of model comparing, as to the positive index, its function is

$$A_{it} = \frac{X_{it} - X_{i\min}}{X_{i\max} - X_{i\min}}$$

In the function, X_{it} is the real value of X_i , which is the no_{it} company's no_{it} index; X_{imin} is the min value of X_i , which the no_{it} index of the sample textile company. A_{it} is the value of X_i , which is the no_{it} index of the sample textile company. A_{it} is the value of X_i , which is the no_{it} index of no_{it} Textile Company.

Second, confirm index's average.

Third, calculate the sample textile company's average score.

To be convenient, we can use the method of linearity average to calculate the scores of every sample textile companies. When index judging system are $X_1, X_2, -X_{p-1}, X_p$, and there are P textile companies judging, in this condition, the formula is

$$Z_i = \sum_{i=1}^t w_i A_{it}$$

In this formula, W, is the average of the no, index; Z, is the average scores that no., Textile Company gets.

Forth, compare in accordance to scores that every company gets, and judge

3. Assessing the relative average of system of technic innovation capability in textile industry

We use the analytic hierarchy process, AHP for short, to confirm the average. Our country's textile industry should optimize the effect of technical innovation to the largest extent. To achieve this goal, we should consider policy, system surroundings, market surroundings, resource supporting surroundings, people resource surroundings and information supporting surroundings. However, those facts are related to some subsidiary facts. So, the judging levels are divided into two parts in

Modern Applied Science

this essay, the first is c_i and the second is p_i .

Based on a large number of researches towards all kinds of textile companies, we collect the survey results. According to the analytic hierarchy process, we form matrix to the facts of all levels to confirm the average fact in the system. Then, we compare every fact's relative importance degree with each other, and we can get the matrixes, A—Ci,C1—Pi,C2—Pi,C3—Pi,C4—Pi,C5—Pi,C6—Pi

Table 2. Matrixes A—Ci

A	c1	c2	c3	C4	c5	с6	wi				
c1	1	1/2	2	4	3	5	0.266171				
c2	2	1	3	5	4	6	0.360618				
c3	1/2	1/3	1	3	2	3	0.168871	λmax=6.25146			
c4	1/4	1/5	1/3	1	1/2	3	0.056386	7011421 0.20110			
c5	1/3	1/4	1/2	2	1	2	0.104471				
с6	1/5	1/6	1/3	1/3	1/2	1	0.043506				

Table 3. Matrixes C1—Pi

c1	p1	p2	р3	p4	p5	р6	p7	wi	
p1	1	4	2	3	5	5	6	0.295959	
p2	1/4	1	1/3	1/2	2	3	4	0.126162	λmax=7.3373
p3	1/2	3	1	2	4	5	6	0.244735	
p4	1/3	2	1/2	1	3	4	4	0.168848	Milax=7.3373
p5	1/5	1/2	1/4	1/3	1	2	3	0.082906	
p6	1/5	1/3	1/5	1/4	1/2	1	2	0.051034	
p7	1/6	1/4	1/6	1/4	1/3	1/2	1	0.030355	

Table 4. Matrixes C2—Pi

c2	p8	р9	p10	p11	wi				
p8	1	3	6	3	0.4756678				
p9	1/3	1	4	1	0.2317356	3 -4.001408			
p10	1/6	1/4	1	1/4	0.060983	$\lambda_{\text{max}} = 4.091498$			
p11	1/3	1	4	1	0.2317356				

Table 5. Matrixes C3—Pi

C3	p12	p13	p14	p15	p16	wi	
p12	1	1	1/3	1/4	1/4	0.067412	
p13	1	1	1/2	1/4	1/5	0.070188	λmax =5.028566
p14	3	2	1	1/2	1/2	0.166548	λιπαx =3.026300
p15	4	4	2	1	1	0.28551	
p16	4	5	2	1	1	0.309303	

Table 6. Matrixes C4—Pi

C4	p17	p18	p19	wi			
p17	1	1/4	3	0.270701) may 2 040611		
p18	4	1	5	0.636943	\lambda max=3.049611		
p19	1/4	1/5	1	0.092357			

Table 7. Matrixes C5—Pi

c5	p20	p21	wi	
p20	1	2	0.666667	λmax=2
p21	1/2	1	0.333333	

Table 8. Matrixes C6—Pi

с6	p22	p23	p24	p25	wi	
p22	1	3	1	4	0.3731343	
p23	1/3	1	1/5	1	0.1050304	λmax=4.04518
p24	1	5	1	3	0.4145937	
p25	1/4	1	1/3	1	0.1071034	

 λ_{max} _____ the Max Character value CR _____ the index of accordance

$$\lambda_{\max} = \sum_{i=1}^{n} \frac{(AW)_i}{nW_i} \qquad CR = \frac{\lambda_{\max} - n}{n - 1}$$

	CR_A	CR _{C1}	CR_{C2}	CR _{C3}	CR _{C4}	CR _{C5}	CR _{C6}
	0.00091	0.041338255	0.034269	0.006376	0.047703	0	0.016922

CR<0.1,it means all the consequence is satisfied.

ind	c1	c2	с3	c4	c5	сб	the average	com
ex	0.266171	0.360618	0.168871	0.056386	0.104471	0.043505	of the index	posi
- CA	0.200171	0.300010	0.100071	0.030300	0.104471	0.043303	or the mack	tor
p1	0.295959						0.078776	4
p2	0.126162						0.033581	12
p3	0.244735						0.065141	6
p4	0.168848						0.044943	9
p5	0.082906						0.022067	14
p6	0.051034						0.013584	19
p7	0.030355						0.00808	22
p8		0.475667					0.171534	1
p9		0.231735					0.083568	2
p10		0.060983					0.021992	15
p11		0.231735					0.083568	3
p12			0.067412				0.011384	21
p13			0.070188				0.011853	20
p14			0.166548				0.028125	13
p15			0.28551				0.048214	8
p16			0.309303				0.052232	7
p17				0.270701			0.015264	18
p18				0.636943			0.035914	10
p19			_	0.092357		_	0.005208	23
p20					0.666667		0.069647	5
p21					0.333333		0.034824	11

Modern Applied Science

p22			0.373134	0.016233	17
p23			0.105030	0.004569	25
p24			0.414593	0.018037	16
p25			0.107103	0.00466	24

We can find from the total compositor, those facts can be made in order from high influence made to the technical innovation of textile industry to low influence: R&D devotion, R&D personnel devotion, innovation risks, industrial policy, capability of enterpriser, financial policy, technical import, innovation efficiency, resource surroundings, flat of industrial technical, ability of innovation personnel, technical information, people obtaining employment, system structure, market concept, other policies, information management, brokers, and broker serves manager system. All these facts react and are related with each other, and influence the technical innovation abilities of our country's textile industry. Through the judge of textile companies, we can judge of a certain company's ability of technical innovation better, and give the gist to the companies for them further development.

References

Chang, Yuanchieh & Chen, Minghuei. (2004). Comparing approaches to systems of innovation: the knowledge perspective. *Technology in Society*. Vol.26:17-37.

S. Chung. (2002). Building a national innovation system through regional innovation systems. *Technovation*. Vol.22:485-491.