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Abstract 

The calculation model of the shrinkage stress of semi-rigid base course was established. By analyzing the stressing 
status of the tiny element in the model, the correlative formulae were founded, and the expression of the shrinkage stress
was deduced. The maximum value of the shrinkage stress of semi-rigid base course was calculated and the position of 
the maximum value was presented. Besides, the influencing factors of the maximum value of the shrinkage stress were 
analyzed. 
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1. Introduction 

With the advantages of higher strength, larger rigidity, more excellent integrity and water stability, the 
semi-rigid base course has become the major structure type of base courses in high-grade highways. However, 
the major maintenance problem of cracking is becoming more and more severer with more and more applications of 
this base course and this problem has affected the performance of roads badly. A large amount of study 
shows that the cracking of semi-rigid base courses is induced by thermal shrinkage and dry shrinkage of 
semi-rigid materials (Zhang, 1991, pp.16-21). Thermal shrinkage and dry shrinkage of semi-rigid base courses will 
cause shrinkage stress, and once the shrinkage stress exceeds the tensile strength of the semi-rigid materials, cracks will 
come into being (Zheng and Yang, 2003). To effectively prevent cracks of semi-rigid base courses, it is necessary to 
calculate the shrinkage stress of semi-rigid base course. 

2. Basic assumptions in the calculation 

(1) While subbase courses and base courses bring relative displacement in horizontal direction, the friction stress 
of a certain point on the interface is directly proportional to the horizontal displacement of the point (Wang, 
1997), as is shown in Eq. (1): 

x x x
C uτ = − ⋅                                                 (1) 

where 
x

C = Friction coefficient (to subbase courses, 30.6 /
x

C N mm= ), 
x

u =The horizontal displacement of point 

x  in base courses ( the minus of the formula shows that the direction of friction stress is always inverse to the 

displacement ). 

(2) It is assumed that the temperature and humidity of semi-rigid base courses is dropping equably from top to the 
bottom, in addition, the corresponding thermal shrinkage, thermal shrinkage stress, dry shrinkage and dry shrinkage 
stress are all epuable. 

(3) By investigating the cracks observed in practical projects, it can be seen that shrinkage cracks of semi-rigid base 
courses are transverse and parallel each other mostly. So it is assumed that semi-rigid base courses are only restricted 
longitudinal but not transverse.  

3. Formula deduction of the shrinkage stress 

The cross section of the semi-rigid base course is rectangular. On a random point x  of the semi-rigid base course, a 
length of tiny element is chosen as the study object, and its length, width and thickness are dx , B , and H

respectively. A stressing model is established (see Figure 1), and the length of the base course for study is L . In the 

model, the average shrinkage stress in the section is expressed as ( )xσ , and the shearing stress is expressed as xτ , via. 

The friction stress between the base course and subbase course. 
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The equilibrium equation of the tiny element in horizontal direction is as follow: 

[ ]( ) ( ) ( ) 0
x

x d x BH x BH Bdxσ σ σ τ+ − + =                                                           (2) 

The solution of Eq. (2) is 

( )
0x

d x

dx H

τσ
+ =                                                                                 (3) 

When the temperature and humidity of the semi-rigid base course is decreasing, the displacement of section x  in the 
base course, which is composed of restriction displacement and free displacement, is expressed as 

( )
x t d

u u t x
σ

α α ω= + +                                                                            (4) 

where 
x

u = The displacement of section x  in base course; u
σ

= Restriction displacement, 
t

α = Thermal 

shrinkage coefficient, t = The temperature changes, 
d

α = Dry shrinkage coefficient, ω = The humidity 

changes. By differentiating Eq. (4), a differential equation is obtained 

( )x

t d

du du
t

dx dx

σ α α ω= + +                                                                          (5) 

By differentiating Eq. (5), the following second-order differential equation is obtained 

2 2

2 2

x
d u d u

dx dx

σ=                                                                                   (6) 

The shrinkage stress in the section can also be given as 

( )
du

x E
dx

σσ =                                                                                   (7) 

Where E = Elastic modulus of the base course. By differentiating Eq. (7) and combining with Eq. (6), a differential 
equation is obtained as  

2

2

( )
x

d ud x
E

dx dx

σ
=                                                                                (8) 

By combining Eq. (8) with Eq. (3), the governing equation is expressed as  

2

2
0x x

d u
E

dx H

τ
+ =                                                                                 (9) 

By combining with Eq. (1) and letting /
x

C EHβ = , Eq. (9) can be written as 

2

2

2
0x

x

d u
u

dx
β− =                                                                                (10) 

The general solution of differential equation (10) is evaluated as  

1 2x
u C ch x C sh xβ β= +                                                                           (11) 

The boundary conditions can be expressed as: ① If 0x = , then 0xu = , ② If / 2x L= , then ( ) 0xσ = . From 

boundary condition ①, the value of 
1

C can be easily calculated as 
1

0C = . By combining with Eq. (5), Eq. (7) can be 

written as  

( ) ( )x

t d

du
x E t

dx
σ α α ω= − −                                                                       (12) 

By differentiating Eq. (11), with 
1

0C = , the following equation is obtained  

2
( )x

du
C ch x

dx
β β=                                                                              (13) 
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By combining Eq. (12) , Eq. (13) and boundary condition ②, 
2

C  can be calculated as 
2

( / 2)
t d
t

C
ch L

α α ω
β β

+
= , and then 

x
u  can be expressed as 

( )
( / 2)

t d

x

t
u sh x

ch L

α α ω β
β β

+
=                                                                        (14) 

By combining Eq. (12) and Eq. (14), the shrinkage stress of the section is calculated as  

( ) ( )[1 ]
( / 2)

t d

ch x
x E t

ch L

βσ α α ω
β

= − + −                                                              (15) 

From Eq. (15), it can be seen that the shrinkage stress has maximum value when 0x = , and the maximum value is 
evaluated as 

max

1
( ) ( )[1 ]

( / 2)
t d

x E t
ch L

σ α α ω
β

= − + −                                                            (16) 

4. Influencing factors of the maximum value of the shrinkage stress 

In the expression of 
max

( )xσ , the value of t  is negative because the temperature is dropping, and during the course of 

dry shrinkage, the humidity is decreasing gradually, so the value of ω   is also negative. Thus, the value of the 
shrinkage stress is positive, viz. tensile stress. From Eq. (15), Eq. (16) and the expression of β , it can be seen that the 

shrinkage stress has maximum value in the middle of the semi-rigid base course, and the maximum value of shrinkage 

stress will increase with the increase of elastic modulus, temperature changes, humidity changes, thermal shrinkage 
coefficient, and dry shrinkage coefficient of the semi-rigid base course. Furthermore, the maximum value of shrinkage 

stress has relations with the degree of the restriction of the subbase course to the base course, which is depicted as
x

C , 

the thickness H  and lengthL . The maximum value will increase with the increase of 
x

C , H  and L  of the base 

course. However, all of theses relations are not linear. 

 5. Conclusions

The following are the main conclusions from the study:

The shrinkage stress in the middle of the semi-rigid base course has maximum value. The maximum value has relations with
the elastic modulus, thermal shrinkage coefficient, dry shrinkage coefficient of semi-rigid base materials and tempera-
ture changes, water content changes of semi-rigid base courses. Besides, the maximum value also has relations with the
degree of the restriction of the subbase course to the base course, the thickness and length of the base course. The
expressions of shrinkage stresses of semi-rigid base courses presented in this study will have an important value for
the design and construction of asphalt pavement with semi-rigid base courses and for the prevention of the cracking
of semi-rigid base courses.
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Figure 1. Stressing Model of Semi-rigid Base Course 




