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Abstract 
In this paper, we present a recurrent neural network for solving convex quadratic programming problems, in the 
theoretical aspect, we prove that the proposed neural network can converge globally to the solution set of the problem 
when the matrix involved in the problem is positive semi-definite and can converge exponentially to a unique solution 
when the matrix is positive definite. Illustrative examples further show the good performance of the proposed neural 
network. 
Keywords: Recurrent neural network, Convex quadratic program, Convergence 
1. Introduction and model formulation 
In this paper, we are concerned with the following quadratic optimization program: 
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and its dual 
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where nnRA ×∈  is symmetric and positive semi-definite, nmRD ×∈ , mRb ∈ ,and nRc ∈ . It is well known that quadratic 
optimization problems arise in a wide variety of scientific and engineering applications including regression analysis, 
image and signal progressing, parameter estimation, filter design, robot control, etc. In many real-time applications 
these optimization problems have a time-varying nature, they have to be solved in real time. The main advantage of 
neural network approach to optimization is that the nature of the dynamic solution procedure is inherently parallel and 
distributed. Therefore, the neural network approach can solve optimization problems in running time at the orders of 
magnitude much faster than the most popular optimization algorithms executed on general-purpose digital computers. 
At present, there are several neural network approaches for solving quadratic programming problem. Next, we describe 
the proposed neural network. 
By the duality theorem of convex programming, ),( ** yx is an optimal solution to Eq.(1) and (2),         
respectively, if and only if ),( ** yx satisfies the Karush-Kuhn-Tucker conditions 
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We see that the above Eq. (3) may be transformed into the linear projection equation of the following form 
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We can see that the optimal solutions of (1) and its dual (2) can be obtained by solving the project equation (4). 
We propose a neural network for solving (1) and (4), whose dynamical equation is defined as follow: 

))()(( uqMuuPMI
dt
du T −−−+= Ω

                                                                 (5) 

Theorem 1. If mnRyxu +∈= ),( *** , is an equilibrium point of the proposed neural network, then **, yx  is optimal 
solution to Eq.(1) and Eq.(2), respectively. On the other hand, if **, yx is optimal solution to Eq.(1) and Eq.(2), then 

TTT yx ))(,)(( **  is an equilibrium point of the proposed neural network. 
2. Preliminaries  
This section, we introduce the related definitions and lemmas for later discussion. 
Definition 1. If RRg l →∈Ω1: , then any nonempty set of the form 

RrrugurL ∈≤Ω∈= },)(|{)( 1 ,  

is said to be a level set of g. 
Definition 2. A system is said to have globally exponential convergence rate with degree η  at *u  if every trajectory 
staring at any initial point lRtu ∈)( 0 satisfies the condition 
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where 0c  and η  are positive constants independent of the initial points.  

Lemma 1 (Gronwall). Let u  and v  be real-valued non-negative continuous functions with domain }|{ 0ttt ≥ , let 
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Lemma 2: let Ω be a closed convex set. Then 
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Lemma 3. let RRg l →∈Ω1: , where 1Ω  is unbounded. Then for all level sets of g are bounded if and only if 
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With the lemma 1 and 2, we can give the existence and uniqueness of the solution to Eq. (5). 
Theorem 2. For each mnRu +∈0  there exists a unique continuous solution )(tu for (5) with 00 )( utu =  over ),[ 0 ∞t . 
Proof.  Let ))()(()( uqMuuPMIuT T −−−+= Ω .then )(uT  is Lipschitz continuous in mnR + since for any 
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mnRvu +∈,  
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Thus for any mnRu +∈0 , there exists a unique and continuous solution )(tu of Eq. (5), defined in Ttt <≤0 , with the 
initial condition 00 )( utu = . Let ),[ 0 Tt be its maximal interval of existence, we next show that ∞=T . From lemma 2, 
it follows 

||)(||||||||)(|| uqMuuPMIuT T −−−+= Ω  
       ||))(||||)()(||||(|||||| ** uuPuPuPqMuMI T −+−+++≤ ΩΩΩ  
       ||))(||||||||||||||||)||2((|||| ** uPuquMMI T +++++≤  

then 

dssuTutu
t

t
||))((||||||||)(||

0
0 ∫+≤  

      ∫+−+≤
t

t
dssukttku

0

||)(||))(||(|| 2010
 

where ||))(||||||||(|||||| **
1 uPuqMIk T

Ω+++= and ||)||2(||||2 MMIk T ++= . Therefore, using Lemma 1 we have 
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Hence the solution )(tu is bounded on ),[ 0 Tt . So ∞=T .   
3. Convergence result 
In the present section, under the assumption that Φ≠Ω* . We prove the convergence of the proposed neural network. 
Theorem 3. Let M  is positive semi-definite, then the neural network (5) is stable in the sense of Lyapunov and 
globally convergences to the solution subset of the problem (4). 
Proof. First, definite  

))()(()( uqMuuPMIuF T −−−+= Ω . 
Clearly, 0)( =uF  if and only if u  is a solution to problem (4). Thus the equilibrium point of the system in Eq.(5) 
correspond to solutions to problem (4) because TMI + is non-singular. Next, by theorem 2 we see that there exists a 
unique and continuous solution )(tu with any initial point mnRu +∈0 for system (5). 
Now let 0u be any initial point taken in Ω , and let );,()( 00 uttutu = be the solution of the initial value problem 
associated with (3). We then consider the following Lyapunov function 
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see that all the level sets of V are bounded. On the other hand, using the technique of the proof from the literature, by 
the properties of the projection operator we have for all mnRu +∈ and all Ω∈y  

0)]([)]([ ≥−−+−+−−− ΩΩ qMuuPuqMuqMuuPy T . 
Since *u is a solution of the problem (4), for all Ω∈y  
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Taking *uy = in the first inequality and taking )( qMuuPy −−= Ω in the second inequality and then adding the two 
resulting inequalities yields 
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Therefore, we have  
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Thus )(uV is a global Lyapunov function for the system in (5) and the system (5) is stable in the sense of Lyapunov. 
Since 00}|)({ Ω⊂≥ tttu  where )}()(|{ 00 uVuVu ≤Ω∈=Ω and the function )(uV is continuously differentiable on the 
bounded and closed set 0Ω , it follows from Lasalle’s invariance principal that trajectories )(tu will converge to E , the 
largest invariant subset of the following set:  
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Which is a nonempty, convex, and invariant set containing in the solution set *Ω . So  
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Therefore, the proposed neural network converges globally to the solution set of the problem (4). 
Remark 1. If A is positive definite then M is positive definite, too. Thus, form the proof of theorem 3 we can get the 
neural network (5) is globally exponentially convergent.  
Since  

2
2

*** ||)(||))()()(()()( qMuuPuqMuuPuMIuuuuMuu TT −−−≥−−−+−+−− ΩΩ  

We have 
0))()()(()()( *** ≥−−−+−+−− Ω qMuuPuMIuuuuMuu TT  

by Schwarz inequality we obtain 

||||||)(|||||| *uuqMuuPuMI T −≥−−−+ Ω µ  

where )
2

(min
MM T += λµ , thus 

||||
||||

||)(|| *uu
MI

qMuuPu T −
+

≥−−− Ω
µ  

So  

2||)(||)( qMuuPuuV
dt
d −−−−≤ Ω

 

       2*
2

2

||||
||||

uu
MI T −

+
−≤ µ  

       )(
||||

2
2

2

uV
MI T+

−≤ µ  

Thus 
)(2

0
0)()( tteuVuV −−≤ δ  

where 0
|||| 2

2

>
+

= TMI
µδ , and hence 

)(*
0

* 0||||||)(|| tteuuutu −−−≤− δ  
Therefore, the proposed neural network is globally exponentially converges to the solution subset of the problem (4) if 
M is positive definite. 
4. Simulation example 
In order to demonstrate the effectiveness and efficiency of the proposed neural network, in this section, we discuss the 
simulation results through an example. The simulation is conduct on Matlab, the ordinary differential equation solver 
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engaged is ode45s. 
Example 1. Consider the convex quadratic program  
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Its exact solution is T)5,5( . we use the system (5) to solve the above problem . All simulation result show that the 
solution trajectory always converges to the unique point Tu )000.9,0,000.6,0,000.5,000.5(* = which corresponds to the 
optimal solution T)5,5( and its dual solution T)9,0,6,0( . Let the starting point be T)0,0,0,0,4,2( and 

T)0,3,0,1,6,5( respectively. Figure 1 (a) and (b) show the transient behavior of the neural network for those starting 
point, respectively. 
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Figure 1. Transient behavior of the neural network (5) in example 1 
(a) the initial point T)0,0,0,0,4,2( ; (b) the initial point T)0,3,0,1,6,5(  

5. Conclusion  
In this paper, we have presented a recurrent neural network for solving convex quadratic programming problems, in the 
theoretical aspect, we have proved that the proposed neural network can converge globally to the solution set of the 
problem when the matrix involved in the problem is positive semi-definite and can converge exponentially to a unique 
solution when the matrix is positive definite. Illustrative examples further show the good performance of the proposed 
neural network. 
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