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Abstract 

Forest management planning relies heavily on mathematical models that involve time. Concerns about climate 
change and ecosystem services have highlighted the limitations of traditional growth and yield prediction tools. 
Modern dynamical system theory provides a framework for a flexible representation of varying environments, as 
well as of responses to intensive silviculture and natural disturbances. Emphasis changes from trying to directly 
model functions of time to modelling rates of change. The fundamental concepts are introduced here in a 
non-technical manner. The theory is illustrated with a recent whole-stand growth model for even-aged stands, but 
it is noted that it applies to any system that evolves over time. It is shown also how a modular approach can 
improve balance and efficiency in the development of such models. 

Keywords: modelling, stand dynamics, system theory, system dynamics, forest growth and yield, thinning, 
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1. Introduction 

Due to the long planning horizons involved, experience and experimentation are not as useful in forestry as in 
other disciplines. Therefore, mathematical modelling plays an important role, and has been used in one form or 
another for centuries (Lowood, 1990). In particular, growth forecasting through yield tables and their modern 
successors is an important prerequisite for rational forest management.  

Simple yield tables or traditional growth and yield models are often all that is needed. However, by essentially 
specifying fixed functions of time, they fail to address satisfactorily issues that are becoming increasingly 
important, including a changing environment, growth and carbon cycling in immature stands, and response to 
disturbances (García, 2011). Dynamical systems theory provides an alternative point of view that can fulfil those 
needs. The ideas are not new, and are routinely applied in other areas. But perhaps due to unfamiliarity and 
entrenched traditions, their adoption in forest modelling has been slow (Weiskittel et al., 2011, Burkhart & Tomé, 
2012). A non-technical explanation of the basic concepts is presented here. Although illustrated through growth 
modelling examples, the ideas are general and apply to any system that evolves in time. 

2. From Trajectories to Rates of Change, and Back 

Yield tables and many growth and yield models define functions of time, typically including stand height, 
number of trees, basal area, and volumes, for various ages and site qualities. Consider the height and basal area 
columns from a yield table, for a given site quality. The trajectory followed by a stand can be represented as in 
Figure 1, with points on the curve corresponding to ages. 

But what about thinning, as in the lower curves of Figure 1? Frequent light thinnings, as commonly practised in 
Europe, are often approximated by smooth curves, or a small number of standard regimes may be represented in 
managed yield tables. Evaluation of a full range of management alternatives is impractical, in particular the 
timing and intensity of a few heavy thinnings typical of plantation forestry in many countries. Other disturbances, 
and the updating of projected yields with inventory data, cause similar discontinuities.  
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procedure is applied. 

3. Inputs, Outputs, Dimensionality 

The rate of change equations may depend on other variables, “inputs”, such as a site quality or productivity 
index q. Note that q does not need to be constant, it can be time-dependent possibly due to climate or nutrient 
level changes. All that happens then is that the length and/or direction of the arrows vary over time. We simply 
use whatever arrow happens to be at the current point when we get there. 

In addition to the state variables H and B, one may be interested in things like volume, or size distribution 
parameters (“outputs”). These may be estimated from the current values of the state variables. For instance, total 
volume may be obtained through stand volume functions such as V = b0 + b1 B H, or log V = b0 + b1 log B + b2 
log H. 

 
Figure 3. Three-dimensional trajectories observed in permanent sample plots. Left: thinned and unthinned 

loblolly pine data from García et al. (2011). Right: interior spruce plot measurements (García, 2011). A dynamic 
growth model predicts rates of change for the three variables at any point 

 

So far, we have assumed that the behaviour of the two state variables is determined by their current values. For 
some purposes, a two-dimensional state may be a good enough approximation. Stand density management 
diagrams are a good example (Farnden, 1996). However, two stands with the same H and B, but different 
number of trees per hectare, may differ in their basal area growth. Also, merchantable volumes are affected by 
average tree size in addition to H and B. The model can be improved by adding the number of trees per hectare N 
(or the average spacing, or mean diameter) as a third state variable. The principles are the same, but now there is 
a 3-dimensional state space and 3 rate equations (Figure 3). 

More state variables can be used. A stand immediately after thinning may not fully occupy the site, growing less 
than another stand with the same H, B and N but not recently thinned. Therefore, a fourth variable might improve 
accuracy, especially with heavy thinning and pruning (e.g., García et al., 2011). Iindividual-tree based models 
can be described in the same way, but they may contain hundreds of state variables, at least one diameter for 
each tree in the stand being modelled. 

In the model, predicted rates and outputs are determined by the current state description. In other words, the state 
summarizes the relevant information about the system past. This should be seen more as a definition than as an 
assumption. In principle, it is always possible to add variables until they constitute a proper state, up to any 
desired degree of approximation. The appropriate dimensionality is a practical compromise between accuracy, 
parsimony, available data, and other considerations. For management purposes, it is also important to choose a 
scale at which reliable estimates of the initial state are possible, and at which the dynamics can be predicted 
(García, 2010). 
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4. Dynamical Systems and System Dynamics 

The basic idea of modelling through rates of change probably originated with Isaac Newton in the 17th Century, 
and is standard in physics and engineering. In the 1960’s, System Theory abstracted the general principles from 
the physical details, paving the way for wider applications (Zadeh & Polak, 1969; Kalman et al., 1969; Patten, 
1971). There were contributions also from Cybernetics and Optimal Control Theory. Today the subject is part of 
Dynamical Systems Theory, although interest has shifted to chaotic behaviour and other aspects not directly 
relevant here (Wikipedia, 2012a). 

The general idea is to describe a system through a suitable number of state variables. Then, a set of difference 
equations (Note 1) specify the change of these variables over a given time interval, depending on the current 
state and possibly also on one or more input variables (Figure 4, left). Continuous time can also be used, with 
infinitesimal time intervals, and in that case the rate of change is given by differential equations. Outputs are 
represented as functions of the current state. 

The System Dynamics graphical notation of Forrester (1961) can facilitate communication, especially with less 
mathematically inclined researchers, practitioners, and students (Wikipedia, 2012b). There is also software that 
performs simulations based on the diagrams, requiring little or no mathematical or programming knowledge. The 
diagram represents each state variable as the stock of some material contained inside a box or compartment 
(Figure 4, right). Material moves in or out through pipes, with valves controlling the flow and therefore the rate 
of change in stock. Arrows indicate the dependence of a flow on stocks and on auxiliary variables (inputs or 
parameters). Arrows also define outputs as functions of stocks. 

 
Figure 4. Left: system equations (rate equations, output function). Right: representation in a Forrester System 

Dynamics diagram 

 

The stock/flow analogy might be stretched too far when dealing with variables such as height, and then a more 
general level/rate terminology may be more appropriate. Essentially, the stocks or levels correspond to state 
variables, and the flows or rates to difference or differential equations. 

A convenient mathematical shorthand substitutes a single symbol for a list of numbers, a vector, usually 
distinguished by boldface or underlining. Notation can thus be simplified, especially in theoretical developments 
that are valid for any number of variables (Figure 5). 

 
Figure 5. Writing lists of numbers as vectors (boldface) simplifies and generalizes the notation 

 

5. An Example 

How does this work in forest stand modelling? We illustrate with an even-aged whole-stand model from García 
(2011), García et al. (2011). With extensive data, as on the left-hand side of Figure 3, observed behaviour can be 
summarized by flexible purely empirical equations on three or four state variables, free from the influence of 
preconceived ideas. With sparse data (Figure 3, right), it is desirable to constrain the options under the guidance 
of eco-physiological theory and previous experience, through models that are parsimonious and consistent with 
biological knowledge. This is the case shown here. Although explained for this specific example, it should be 
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where p is the proportion of pine basal area in the stand. These are differential equations (continuous time t) 
rather than difference equations (discrete time). Although at first sight difference equations seem simpler, their 
use is cumbersome when measurement and projection intervals are not uniform and multiples of each other. 
Rates relative to height increment were independent of site quality (an extension of an old forestry hypothesis 
known as Eichhorn's law); they can be expressed as conventional time rates multiplying by the first equation. 

6. Modules 

The model can be extended by interfacing to other environmental or management components through suitable 
input and output variables. For example, the productivity index q could be driven by a climate model, and altered 
by genetic improvement. Similarly, nutrient cycling and fertilizing may control foliage and fine roots formation. 
Carbon cycling and the fate of dead biomass can be modelled further in a separate module. 

Figure 7 depicts such a modular structure. The central block is the stand growth model from Figure 6. The other 
components are shown as simplified examples for illustration only. Additional feedback or feed-forward links, e. 
g., between soil organic matter and nutrition, are possible but not shown. 

 

Figure 7. The example stand model linked to blocks representing simplified nutrition, climate, and dead biomass 
components. Reproduced with permission from García et al. (2011) 

 

It is common for modellers to focus on certain elements depending on their background and interests, at the 
expense of oversimplifying other components of the system. The result is typically monolithic models with 
detailed environmental components and simplistic stand dynamics, or vice-versa. A modular approach would 
facilitate an independent development of sub-models by specialists, and their later “mix and match” into more 
balanced wholes according to requirements. 

Modules can also be interfaced to describe more complex forests. For instance, spruce and aspen models like the 
one previously described can be coupled through the occupancy variable to build a model for two-storied 
spruce-aspen mixtures. Individual-based models can be interpreted as a large number of interacting tree dynamic 
models. 

7. Conclusions 

Long-term forest planning requires mathematical models, and the principles of Dynamical System Theory 
provide a solid foundation for these. The state-space approach makes it possible to accommodate disturbances 
and a varying environment. The concepts were demonstrated with a biologically consistent, parsimonious and 
robust class of semi-empirical models. Modular strategies can improve balance and efficiency. 
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Notes 

Note 1. Not to be confused with the “algebraic difference equations” used in forest modelling (Burkhart & Tomé, 
2012, Section 7.8). Mathematically, those are neither difference equations nor algebraic. 

Note 2. In some models growth is assumed to depend on age, instead of or in addition to height. Although both 
variables are highly correlated, physiology suggests that the dominant factor is size, not age. 


