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Abstract 

This paper discusses about the construction of type-2 fuzzy data points (T2FDPs) to capture the ambiguity of 
complex uncertainty data points based on the type-2 fuzzy set theory (T2FST). The construction is based on the 
type-2 fuzzy number’s (T2FN) definition since we deal with the problem of defining the complex uncertainty 
data points. In order to develop T2FDPs, we use interpolating cubic Bezier curve model for better 
undestandingof the resultant curve. There are three procedures to obtain crisp T2FDPs in the singular data form. 
These procedures include fuzzification (alpha-cut operation), type-reduction and defuzzification processes. Upon 
carrying out these procedures, we use interpolating Bezier curve model to visualize the complex uncertainty data 
points denoted as type-2 fuzzy interpolation Bezier curve (T2FIBC).  

Keywords: type-2 fuzzy set, type-2 fuzzy number, fuzzification, type-reduction, defuzzification, interpolation 
Bezier curve 

1. Introduction 

In CAD systems and computer graphics, data points in the form of control points are used to develop desired 
shapes using various types of curves and surfaces function. These curve and surface functions represent data 
points, which are used to analyze, manipulate and make a decision on developing a desired shape.  

Problems may arise during data point collection from physical mock-up models, visualization from 3D scanner 
or Coordinate-measuring Machine (CMM), which leads to data uncertainty. This may occur due to measurement 
errors or device malfunction. Hence, the process of representing collected data points into curve and surface 
functions may lead to a different shape altogether. This may also result an undesired shape representation. 

There are two options to overcom this problem. Either uncertainty data points are redefined manually to avoid 
uncertainty in data points or only use data points which are verified by comparing virtual models with physical 
mock-ups. Although we could design curves and surfaces by using verified data points, but this method is not 
just time consuming but the model does not capture the essence of the physical mock-up since the uncertainty 
data points were avoided. 

Zadeh introduced type-1 fuzzy sets theory (T1FST) to solve uncertainty problem (Zadeh, 1965). Since the 
establishment of T1FST, there are many theories and concepts were introduced to solve many problems 
involving uncertain data. One of the concepts is called type-1 fuzzy number (T1FN) concepts (Dubois & Prade, 
1980; Klir & Yuan, 1995; Zimmermann, 1985), which deals with the uncertainty of real values. This concept is 
used in CAGD to define the uncertainty data points as type-1 fuzzy data points (T1FDPs) which is elaborated 
further below. 

In order to design various shapes with T1FDPs, T1FDPs are substituded with control points in the curve and 
surface functions. These functions can be found in (Farin, 1999, 2002; Farin, Hoschek, & Kim, 2002; Piegl & 
Tiller, 1995; Rogers, 2001; Salomon, 2006; Yamaguchi, 1988). When T1FDPs are being modeled through curves 
and surfaces, then these circumstances called type-1 fuzzy curve and surface. The type-1 fuzzy curves and 
surfaces model has been developed recently due to the requirement in modeling the T1FDPs which gives the 
illustration of the T1FDPs properties (Abbasbandy, 2001; Abbasbandy & Babolian, 1998; Abbasbandy, Ezzati, & 
Behforooz, 2008; Abd. Fatah & Rozaimi, 2012; Abd. Fatah, Jamaluddin, & Ahmad, 2009; Abd. Fatah, 
Jamaluddin, Ahmad, & Abu Osman, 2004; Abd. Fatah, Rozaimi, & Jamaluddin, 2010; Anile, Falcidieno, Gallo, 
Spagnuolo, & Spinello, 2000; Behforooz, Ezzati, & Abbasbandy, 2010; Gallo & Spagnuolo, 1998; Gallo, 
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Spagnuolo, & Spinello, 1998, 2000; Lodwick, 2008; Nurul Ain, Abd Fatah, Gobithaasan, & Rozaimi, 2013; 
Rozaimi & Abd. Fatah, 2010, 2012; Rozaimi, Abd. Fatah, & Jamaluddin, 2010a, 2010b). 

However, the T1FST method reaches its limit when the uncertainty data points become more complex. Therefore, 
we need a new higher-level definition of T1FST in defining the complex uncertainty data points. In 1975, Zadeh 
introduced the type-2 fuzzy set theory (T2FST) which used to solve complex uncertainty matter, including in 
defining the complex uncertainty data points. 

This paper discusses about the construction of T2FDPs from complex uncertainty data points based on type-2 
fuzzy number (T2FN) concept. In this paper, uncertainty data points are defined as type-2 fuzzy data points 
(T2FDPs). Three T2FDPs procedures are applied to obtain crisp T2FDPs solution as the final result. These 
procedures are the fuzzification, type-reduction and defuzzification processes, which defined based on the 
formulation of T2FDPs. To illustrate its application, we develop interpolating Bezier curve model by means of 
T2FDPs, which is denoted as T2FIBC. 

This paper begins with Section 2, which discusses about the fundamental of T2FST, T2FN, and T2FR. These 
concepts are used to define the T2FDPs. For Section 3 defines T2FDPs from complex uncertainty data points 
together with the definitions of fuzzification (alpha-cut operation), type-reduction and defuzzification processes 
against T2FDPs. Section 4 elaborates on how interpolating cubic Bezier curve model is constructed. It is then 
followed by the construction of interpolating Bezier curve mnodel with T2FDPs denoted as T2FICBC model. 
Section 5 further elaborates the fuzzification, type-reductionand defuzzification processes involved to obtain 
crisp T2FICBC solution. Section 6-concludes the findings of this research.  

2. Preliminaries 

This section discusses about the fundamentals of T2FST, T2FN and also type-2 fuzzy relation (T2FR). These 
definitions are used in defining the complex uncertainty data points in the next section.  

Definition 1. A type-2 fuzzy set (T2FS), denoted A


, is characterized by a type-2 membership function 

( , )
A

x u  , where x X  and [0,1]xu U   that is, 

  ( , ), ( , ) | , [0,1]xA
A x u x u x X u U     


 

in which, 0 ( , ) 1
A

x u   (Mendel, 2001). 

Definition 2. A T2FN is broadly defined as a T2FS that has a numerical domain. An interval T2FS is defined 

using the following four constraints, where  [ , ],[ , ]A a b c d   
 


,  0,1  , , , ,a b c d      (Figure 

1) (Aguero & Vargas, 2007): 

1) a b c d       

2) [ , ]a d   and [ , ]b c   generate a function that is convex and [ , ]a d   generate a function is normal. 

3)  1 1 2 2
1 2 2 1, [0,1] : ( ) , , ,a c a c                   

1 1 2 2, , ,b d b d           for 2 2c b  .  

4) If the maximum of the membership function generated by [ , ]b c   is the level m , that is, [ , ]m mb c  , 
then 1 1, ,m mb c a d           . 

 
Figure 1. The illustration for definition of an interval T2FN 
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Definition 3. A type-2 fuzzy relation (T2FR) is a T2FS defined on the Cartesian product of crisp sets 

1 2, ,..., nX X X  where the tuples 1 2( , ,..., )nx x x  have varying degree of membership which are type-1 fuzzy sets 
(T1FSs) (John & Lake, 2001). 

3. Type-2 Fuzzy Data Points 

This Section 3 discusses about the construction of T2FDPs based on the definitions which were given in Section 
2. This definition of brand new T2FR is based on the T1FR refers to (Zimmermann, 1985) for detail. 

Definition 4. Let , , ,x yX Y U V R  and 

  ( , ), ( , ) | , [0,1]xA
A x u x u x X u U     


 and 

  ( , ), ( , ) | , [0,1]yB
B y v y v y Y v V     


 

are two T2FSs. Then,      , , , ,R x u y v


   , , ( , ) |
R BA

x u y v        , xx X u U   
 

  , [0,1]yy Y u V       is a T2FR on A


 and B


 if     , , ( , ) ,
R BA A

x u y v x u          , 

      , , , , xx u y v x X u U        , yy Y v V    . 

Definition 5. Let  | type-2 fuzzy pointP x x  and  | data point


i iP P P  which is set of type-2 fuzzy data 

point with iP P X  , where X is a universal set and ( ) : [0,1]P iP P   is the membership function which 

defined as ( ) 1P iP   and formulated by   , ( ) |i P i iP P P P 


 . Therefore, 

0 if

( ) (0,1) if

1 if

i

P i i

i

P X

P c P X

P X




  
 


                          (1) 

with ( ) ( ), ( ), ( )P i P i P i P iP P P P    
  

 which ( )P iP 


 and ( )P iP 


 are left and right footprint of 

membership values with ( ) ( ), ( ), ( )P i P i P i P iP P P P   
 

  
   

 where, ( )P iP




, ( )P iP 


 and ( )P iP




 are 

left-left, left, right-left membership grade values and ( ) ( ), ( ), ( )P i P i P i P iP P P P   
 

  
   

 where ( )P iP




, 

( )P iP 


 and ( )P iP




 are right-right, right, left-right membership grade values, which can be written as  

 : 0,1,2,...,iP P i n 
  

                                (2) 

for every i, , ,i i i iP P P P 
    

 with , ,i i i iP P P P
 

  
   

 where iP




, iP


 and iP




 are left-left, left and 

right-left T2FDPs and , ,i i i iP P P P
 

  
   

 where iP




, iP


 and iP




 are left-right, right and right-right 

T2FDPs respectively. This can be illustrated as in Figure 2.  

The illustration of T2FDP was shown in Figure 2 which T1FDP becomes the primary membership function 

bounded by upper bound, [ , , ]P P P
 
 
 

 and lower bound, [ , , ]P P P
 
 
 

 respectively. The process of 

defining T2FDP can be shown through Figure 3. 
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Figure 2. T2FDP around 5 

 

 
Figure 3. The difference between type-1 and type-2 fuzzy data point 

 

Figure 3 shows that the process of defining T2FDP from the ordinary point. This T2FDP formed based on the 
definition of T2FN and T2FR. 

The alpha-cut definition indicates how to obtain interval type-2 fuzzy data points (IT2FDPs) based on the 
selection of the alpha values (membership functions value). The operation of alpha-cut against the T2FDPs can 
be defined as follows. 

Definition 6. Based on Def. 5, let P


 be the set of T2FDPs with iP P
  

 where 0,1,..., 1i n  . Then P


 is 

the alpha-cut operation of T2FDPs which is given as equation as follows. 

, ,

; ; , , ; ;

; ; ; ; , , ; ; ; ;

 

   
    

       
          





      
           

      

    

     

           

i i i i

i i i i i i i

i i i i i i i i i i i i i i i

P P P P

P P P P P P P

P P P P P P P P P P P P P P P

  

     

 

(3) 

This alpha-cut definition illustrated in Figure 4. 

( )A x

( )A x ( )A x

( )A x

Ordinary data point

Crisp data point

Type-2 fuzzy data point

Type-1 fuzzy data point

x x

x x

P




P


P




P P




P


P




P
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P


x
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Figure 4. The alpha-cut operation towards T2FDPs 

 

The alpha-cut process which implies to T2FDPs is known as fuzzification process of T2FDPs. This process is 
the first process in order to obtain the crisp T2FDPs solution which gives the IT2FDPs based on the alpha values 
that was prescribed,  0,1  . The next process is type-reduction process sated above IT2FDPs are being 
reduced to IT1FDPs for allowing us to carry out defuzzification process of type-1 fuzzy case. This process is the 
final step in getting the crisp T2FDPs solution. Type-reduction dan defuzzification processes defined as follows.  

Definition 7. Let iP


 be a set ( 1)n   T2FDPs, then the type-reduction method of  -T2FDPs (after 

fuzzification), iP



 is defined by   

 , , ; 0,1,...,i i i iP P P P P i n
  

   
   

                          (4) 

where iP




 is left type-reduction of  -cut T2FDPs, 
0,...,

1

3i i i i
i n

P P P P
   

 
  



  
   

, iP  is the crisp point 

and iP




 is right type-reduction of  -cut T2FDPs, 
0,...,

1

3i i i i
i n

P P P P
   

 
  



  
   

. 

Definition 8. Let  -TR is the type-reduction method after alpha-cut process had been applied for every 

existing T2FDPs, iP



. Then, iP


 is denoted as defuzzification of T2FDPs for iP




 if for every iP P



 

, 

  for 0,1,...,iP P i n
                                (5) 

where for every 
0

1

3
, ,i i i i

i

P P P P
  

 



  
 

. The process in defuzzifying of T2FDPs is depicted in Figure 5. 

0 2 4 6 8 10 12
0

0.

0.

0.

0.

1

0.5P






0.5P





( ) 0.5LMFP






0.5P





0.5P







( ) 0.5LMFP







( )x
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Figure 5. Defuzzification process of T2FDP 

 

4. Interpolation Bezier Curve Model 

This section will discuss about the construction of interpolating Bezier curve model. In this case, we choose the 
cubic form for the interpolation curve model for piecewise formation which permits c and s design (Gobithasan 
& Ali, 2004). Therefore, the interpolating Bezier curve model follow suit;  

Definition 9. Let iP , iD B , 0,1,...,i n  be a given set of data points and the derivative value at t. Then, the 
interpolation cubic Bezier curve is defined (Sarfraz & Razzak, 2002) as 

3 2 2 3
1( ) (1 ) 3 (1 ) 3 (1 )i i i iB t t P t t K t t L t P                             (6) 

which iK  and iL  are 

1
1

3

3

i
i i

i
i i

D
K P

D
L P 



 

 
                                     (7) 

with iD  and 1iD   are tangent vectors at iP  and 1iP  respectively. These tangent vectors are defined as 
follows. For open curves, 

2 0
0 1 0

1 1

2
1

2( ) ,
2

( ) (1 )( ),

2( ) ,
2

i i i i i i i

n n
n n n

P P
D P P

D a P P a P P

P P
D P P

 





  

    


  

                       (8) 

where 

1

1 1

i i
i

i i i i

P P
a

P P P P


 




 
, 0,1,...,i n .                       (9) 

Thus, the curves lies in the convex hull of control points  1, , ,i i i iP K L P  and variation diminishing property is 
also satisfied (Bernstein Bezier Theory). 

T2FDP

P P


P


P




P




P
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


P



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
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PP

Type-reduction process

-cut operation
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
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

P 
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
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
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
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
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Figure 6. Interpolating cubic Bezier curve with 0 1 5, ,...,D D D  as the tangent vectors 

 

Figure 6 illustrates data points, 0 1 6, ,...,P P P  and their tangent vectors, 0 1 5, ,...,D D D  respectively were 
interpolated with interpolating cubic Bezier curve with smoothness as 1C -continuity. 

5. Type-2 Fuzzy Data Points with Interpolating Bezier Curve Model 

In this chapter, we blend T2FDPs and interpolating Bezier curve together to form type-2 fuzzy interpolation 
Bezier curve model. 

Definition 10. Let iP


, iD B
  

, 0,1,...,i n  be a given set of T2FDPs and the derivative value at t. Then, the 

T2FICBC is defined as 

3 2 2 3
1( ) (1 ) 3 (1 ) 3 (1 )i i i iB t t P t t K t t L t P      

        
,                   (10) 

where iK


 and iL


 defined as 

1
1

3

3

i
i i

i
i i

D
K P

D
L P 



 

 

  

  
                                    (11) 

with iD


 and 1iD 


 are type-2 fuzzy tangent vectors at iP


 and 1iP


 respectively. These type-2 fuzzy tangent 

vectors are defined as follow. For type-2 fuzzy open curves, 

2 0
0 1 0

1 1

2
1

2( ) ,
2

( ) (1 )( ),

2( ) ,
2

i i i i i i i

n n
n n n

P P
D P P

D a P P a P P

P P
D P P

 





  

    


  

      
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Thus, the type-2 fuzzy curves lies in the type-2 fuzzy convex hull of type-2 fuzzy control points 
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 and satisfying its variation diminishing (Bernstein Bezier theory). 
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The T2FICBC model has been defined based on Def. 10. Figure 7 depicts interpolating cubic Bezier curve model 
defined in Def. 10.  

 
Figure 7. The T2FDPs has been modeled by interpolation cubic Bezier curve model 

 

Up to now, T2FDPs has been defined from complex uncertainty data by means of T2FST, T2FN, T2FR and 

interpolating cubic Bezier curve model. T2FDPs are represented in a curve form as T2FICBC. This type-2 curve 

called T2FICBC due to the blending of every T2FDPs which formed by the type-2 fuzzy interval, 

[ , , , , , , ]i i i i i i i iP P P P P P P P
   

    
      

. 

Next step involves three processes namely fuzzification, type-reduction and defuzzification processes which are 
explained below: 

Algorithm 1. Algorithm of fuzzification, type-reduction and defuzzification processes of T2FICBC. 

Step 1: Define T2FDPs.  

For example, six T2FDP, 0,...,6iP


. Then, based on Def. 5 and Def. 10, T2FICBC may result curves as depicted in 

Figure 7.  

Step 2: Fuzzification process (alpha-cut operation). 

For left(x-axis)/lower(y-axis), 
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For right(x-axis)/upper(y-axis), 
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. 

Then, the new T2FDPs( -T2FDPs) were modeled through the interpolation cubic Bezier curve model which 
gives  -T2FICBC based on Def. 10 and illustrated by Figure 8. 
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Figure 8. The new T2FICBC( -T2FICBC) after fuzzification process( -cut operation) 

 

Step 3: Type-reduction process of  -T2FICBC. 

Based on Def. 7, the type-reduction equation of  -T2FICBC can be given as follows 
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The type-reduction of  -T2FICBC(TR- -T2FICBC) can be written as follows.  
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Figure 9. The type-reduce  -T2FICBC modeling  

 

Step 4: The defuzzification process  

The defuzzification process of TR- -T2FICBC involve the following formula. 
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Then, the crisp T2FICBC solution model is given by Figure 10. 
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Figure 10. Defuzzified curve obtained with TR- -T2FICBC 

 

Figure 10 shows the crisp T2FICBC solution obtained after defuzzification process. The crisp T2FICBC is being 
modeled with the crisp interpolation Bezier curve to simply shows the difference between those data points and 
also can make a conclusion based on the modeling T2FDPs and crisps data points. 

6. Conclusion 

The steps involved to develop type-2 fuzzy interpolation cubic Bezier curve (T2FICBC) has been shown along 
with simple numerical example. T2FDPs has been constructed by blending interpolating cubic Bezier curve 
model with the T2FDPs.  

The proposed curve modeling method take into consideration all the uncertainty data to produce a probable 
curve based on alpha-cut. There are also other processes implemented to obtain crisp T2FDPs solution where 
T2FDPs become a singular data point (upon data points defuzzification). The processes are fuzzification 
(alpha-cut operation) to obtain the T2FDPs interval based on the alpha values, type-reduction process which 
reduced T2FDPs to becomes T1FDPs for allowing the defuzzfication process of type-1. The process is the 
defuzzification process which is used to obtain the crisp T2FDPs solution in a singular form which this process 
became the final process for obtaining crisp T2FDPs solution. 
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