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Abstract 
The performance of programmable logic controllers is often constrained by the microprocessor and the real-time 
firmware of the controller. Field programmable gate arrays (FPGAs) are an attractive potential implementation 
medium for high-speed control because of their fast and parallel execution and programmable nature. Ladder 
Diagrams are a standard graphical programming method for industrial controllers, but compilers from Ladder 
Diagrams to FPGA hardware do not yet exist. This paper explores the comparative speed of four different classes 
of FGPA implementation of Ladder Diagrams - Interpreted Software, Compiled Software, Interpreted Hardware 
and Compiled Hardware. It also explores parallel versus serial execution of Ladder Diagrams in hardware, and 
identifies timers as a major resource user in parallel implementations. Overall, a Shared Timer Serial Compiled 
Hardware system for FPGA implementation of Ladder Diagrams is recommended. Using comparable FPGA 
resources to other alternatives it provides a 20-600 times speed improvement over other solutions whilst 
maintaining correct Ladder Diagram semantics. 

Keywords: FPGA, Programmable Logic Controller, ladder diagram, control systems 

1. Introduction 
Before the introduction of programmable controllers, relays were commonly used to implement control systems. 
With the advent of low-cost microprocessors, Programmable Logic Controllers (PLCs) replaced relays as the 
predominant control element (Bolton, 2009). As part of their heritage as relay replacements, PLCs are often 
programmed using a technique originally designed for relay networks - Ladder Diagrams (LD).  

FPGAs (Field Programmable Gate Arrays) allow the design of programmable hardware, which theoretically 
should have much higher execution rates for logic-based control algorithms compared to software 
implementations. Furthermore, the parallel execution implied by Ladder Diagrams appears to be well-matched to 
the parallelism inherent in FPGA-based logic circuits. 

There has been little published on the direct implementation of Ladder Diagrams control algorithms in FPGAs, 
and so this paper undertakes an initial investigation into the advantages and disadvantages of FPGA-based 
implementations. It does this by comparing a number of different LD implementation styles and analysing their 
relative performance when implemented on FPGAs. 

1.1 Ladder Diagrams 

Ladder Diagrams are a commonly used method for describing industrial control applications. An international 
standard, IEC 61131.3 (IEC, 2003) provides a standardised method for drawing and interpreting Ladder 
Diagrams. A brief introduction to LD semantics is described here, along with a short review of previous 
implementations of LD using reconfigurable devices.  

A Ladder Diagram consists of “rungs”, each of which evaluates a logic equation. The inputs to the equation are 
either inputs to the system or internal logic states. Similarly, the output of each logic equation may be either an 
output of the system or an internal state. The equation inputs are indicated by two vertical parallel lines and may 
be inverted by adding a diagonal line between the lines. The equation output is usually indicated by a circle or a 
pair of braces. And operations are formed by connecting two inputs adjacent to each other, in a similar fashion to 
drawing circuit elements in series. Or operations are formed by connecting two inputs one above the other, in a 
similar fashion to drawing circuit elements in parallel.  

An example of three rungs is shown in Figure 1. In this example, internal state I2 is assigned the value of input 
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implementations have been reported. Welch and Carletta (2000) have described a specialised FPGA fabric 
custom-designed for implementing ladder logic. This fabric simplifies the mapping and routing of a design and 
eliminates the need for translation of logic into alternative forms, thus simplifying and speeding up development 
using these devices. The fabric specifies a method for implementing the LD, but does not include a description 
of the Input/Output (I/O) connections of the device. At present, no devices utilizing this fabric have been 
manufactured. 

Miyazawa et al. (1999) show how Ladder Diagrams could be implemented using translation to VHDL (VHSIC 
Hardware Description Langugae, where VHSIC is Very High Speed Integrated Circuit). The description shows 
how the semantics of sequential execution could be modeled by using either clock events or instantiation of 
flip-flops in VHDL. The code produced is simply a translation of the logic equations into VHDL. There is no 
analysis of the efficiency of such VHDL-based implementations on FPGAs. 

Silva et al. (2007) describe an implementation of industrial control logic targeted at Altera FPGAs (hardware 
implementation) or Simatic PLC (software implementation). Petri nets are used to describe the design rather than 
Ladder Diagrams, so the implementations are not directly comparable. These are then translated into either 
VHDL or software, as appropriate for the target.  

Du et al. (2009) have implemented a system which converts Ladder Diagrams into VHDL, and their system is 
particularly noteworthy because it allows analysis of the ladder Diagram to identify rungs which can be executed 
in parallel. Their input language is not any standard LD format, but they use their own generic Boolean language 
format, enhanced with counters and timers. The output of their system is a VHDL program - they have not 
investigated the efficiency and performance of the LD controllers when implemented on a real FPGA. 

Ichikawa et al. (2011) have similarly produced a system which converts Ladder Diagrams into VHDL. They 
examine sequential design (one cycle per rung), levelised design (non-dependent rungs executed in parallel) and 
flat designs (where rungs depend only on input variables, and all can be executed in parallel). They have 
implemented a system for converting PLC programs for a particular Mitsubishi PLC into an FPGA 
implementation using their own FPGA board as a target. They showed similar hardware speedups to the work 
described in our project (one clock cycle per rung for sequential designs). However, it is not clear that they have 
implemented timers, which are a particularly resource-hungry construct, and their work does not target standard 
LD languages. 

All of the current implementations of LD to FPGA implementations described above convert to a compiled 
hardware implementation, based on a VHDL circuit. If timers are implemented at all, then they are implemented 
with one physical timer for each logical timer. This work investigates some new approaches which extend this 
previous work. Firstly, it investigates both a compiled hardware version, and also an interpreted hardware 
implementation which provides a different speed-area tradeoff. Secondly, timers are identified as the major 
consumers of hardware resources for compiled implementations, and a shared timer implementation is 
investigated. 

1.4 Project Objectives 

To date, there has been limited investigation of the suitability of FPGAs as an implementation target for Ladder 
Diagrams, and this project extends this previous work by investigating a wider selection of FPGA-based 
implementation choices. The goal of this work is to investigate how the software based implementation of 
Ladder Diagrams, currently used in a range of industrial controllers, compares to implementations in 
reconfigurable logic. In order to do this, the semantics of the existing LD applications should be maintained so 
that the consistency of the system can be assured. This initial work explores several design options, investigating 
multiple design methods. This is both to explore these different options individually, and also to investigate the 
practicality of different diverse implementations on a single FPGA, as might be required in a safety-critical 
application. 

2. Materials and Methods 
Modern FPGAs allow designs to be implemented in a range of different ways, including software running on 
softcore processors. Implementations of the Boolean equations typical of industrial control applications designed 
using Ladder Diagrams can fit into two broad categories: interpreted and compiled. Interpreted implementations 
maintain the same base software or hardware across all applications, with logic equations specific to the 
application being interpreted by that base platform as a sequence of instructions or byte codes. This approach 
allows the interpreter to be extensively tested and verified to ensure correctness and safety. In contrast, compiled 
implementations evaluate the logic directly, with different hardware or software being generated for each 
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dependent on the number of states required. The logic is generated for each state in the system, resulting in a 
sequence of statements of the form: 

LogicOut(x) <= FlipFlopOut(y) AND FlipFlopOut(z); 

Each of these statements corresponds to one rung in the LD program. Therefore each of the rungs are evaluated 
in parallel and latched into the flip-flops simultaneously. This no longer maintains sequential execution of rungs 
as found in the interpreted implementations described previously. Logic calculations which span several rungs 
will take several cycles to be resolved. Without care, there is a chance that parallel execution of rungs may lead 
to inconsistent or incorrect behaviour, however in many cases it will lead to enhanced performance, since all 
rungs are evaluated in a single clock cycle. We have called this non-compliant implementation the Parallel 
Compiled Hardware System. 

It is also possible to build a compiled hardware implementation which executes rungs sequentially, and preserves 
the correct semantics. This is done by gating each of the output flip-flops with an enable bit which cycles around 
a ring counter (one bit per rung). This then executes rungs sequentially, and a system cycle for N rungs is N 
clock cycles. This is called the Serial Compiled Hardware System. 

With additional effort, it would be possible to develop a CAD tool to group consecutive rungs into sets of 
independent rungs which could be executed in parallel, gaining the benefits of some parallel execution while 
preserving correct semantics, however developing such a tool is outside of the scope of this initial work. 

In addition to the direct logic equations of most rungs, timers are implemented by replacing the logic with a 
timer component. The component specifies the information required for the timer to operate correctly. An 
example of this is: 

timer16 : timer 

generic map ( 

DURATION => 40000) 

port map ( 

clk => clk, 

rst => rst, 

start => FlipFlopOut(75), 

expiry => LogicOut(76)); 

During the development and testing of larger Compiled HW circuits, it was observed that a large proportion of 
the FPGA hardware (more than 80%) was consumed by timers. Each timer requires several 32-bit registers plus 
associated logic. By comparison, each logic rung may require just a few single-bit logic gates. Therefore, an 
additional version of the compiled hardware system was designed for circuits with a large number of timers, 
which uses a single timer module to implement all of the system timers. The timer module has individual expiry 
registers for each timer stored in a memory block, but shares the same time-count register and expiry-check logic. 
One logical timer can be checked each clock cycle. For parallel rung execution, this considerably increases the 
system cycle time, however with serial rung execution, the timer execution can be overlapped with rung 
execution and does not increase the execution time. Use of a shared timer gives two extra hardware variants: 
Shared Timer Parallel Compiled Hardware and Shared Timer Serial Compiled Hardware.  

2.5 Compiled Software 

The ladder logic equations may be solved by a sequence of logic statements in a high-level programming 
language rather than the interpreted form presented above. Rather than a software application interpreting the 
logic, the ORIG format logic can be used to generate code for compilation which directly evaluates the logic 
equations. 

A large part of the application code from the Interpreted SW implementation has been reused, with 
communications code remaining the same. The logic itself is generated by a separate application on the host PC 
and generates a C source file consisting of a large set of equations of the form: 

logic[x] = (logic[y] & logic[z]) || !logic[q]; 

This source file then forms part of the application running on the Microblaze processor. This implementation 
allows the logic to be executed more quickly than the interpreted form and maintains identical semantics as the 
rungs are evaluated in order in the same way as the interpreted implementation. Timers are generated in a 
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separate C source file. The information required is the initialisation details, that is, the start condition, output 
condition and duration of each timer. Once initialised, the timers run in the same manner as the Interpreted SW, 
with an interrupt routine triggered by a timer interrupt updating the timer status. 

3. Results 
The performance of the various FPGA implementations of the same Ladder Diagram were explored by 
implementing a simple example program consisting 18 ladder rungs of various types and 3 timers. This size 
application was chosen in order to simplify the process of verifying that each implementation was correctly 
evaluating the logic. Each logic circuit was compiled onto a Xilinx Spartan 3E-1600 FPGA. Each 
implementation uses a Microblaze processor to provide data input and output, and any hardware-based logic 
used the same clock as the Microblaze, which typically runs at 50 MHz. In all cases, correct operation of the 
systems was confirmed for a variety of different input combinations. 

3.1 Speed 

The numbers of clock cycles taken by each implementation in evaluating the 18-rung application logic are 
shown in Table 1. These times exclude external communications overheads which are relatively constant across 
implementations. In most cases, the execution time varies with the input values. For some combinations of inputs, 
the software is able to optimize execution and thus evaluate the logic more quickly. The Interpreted HW 
implementation takes varying amounts of time due to communications interference. The execution time variation 
was not large – the minimum execution time was around 85-90% of the worst-case time. The table shows the 
worst-case execution time that was recorded for the example data sets. 

 

Table 1. Execution times and resource use – simple example (18 rungs) 

Implementation 
Max. Execution Time FPGA Resource Use 

(Clock Cycles) (Slices) 

Interpreted SW 12819 2629 

Interpreted HW 611 3024 

Compiled SW 891 2629 

Parallel Compiled HW 2 2731 

Serial Compiled HW 19 2740 

 

As expected, an interpreted approach is slower than a compiled approach. The significance of this overhead 
relative to the require system cycle time determines whether the interpreted approach is still an attractive option. 
As can be seen, the Interpreted SW is an order of magnitude slower than the Compiled SW system, while the 
Interpreted HW implementation is similar to the Compiled SW.  

For the Parallel Compiled HW system, equations are evaluated in parallel in a single clock cycle, plus one 
additional cycle for logic value I/O. Communications overheads will most likely be far larger than the logic 
execution times in this case. For the Serial Compiled HW, each rung executes in one clock cycle, plus one 
additional cycle for I/O. 

3.2 FPGA Resource Use 

For each implementation, the hardware resources used on the FPGA for the simple 18-rung system were 
measured and the results are also shown in Table 1. FPGA resource use is measured in slices, where a slice is a 
basic FPGA logic unit consisting of two 4-input LUTs (Look Up Tables) and two flip-flops. The Xilinx Spartan 
3E is a low-cost, low-end FPGA, and provides 14,752 slices in total. The software implementations represent the 
resource use of the Microblaze processor. The hardware implementations represent the resource use of the 
hardware co-processor (excluding the Microblaze). For the hardware implementations, the Microblaze only acts 
as an I/O processor; in a practical circuit there would be specialised additional I/O hardware to connect to control 
inputs and outputs. 

Each of the interpreted implementations requires some form of storage for the logic equations. In the systems 
designed, this has been stored on the on-chip FPGA memory, but for larger examples this would require storage 
in external memory. 



www.ccsenet.org/mas Modern Applied Science Vol. 7, No. 3; 2013 

71 
 

3.3 Larger Designs 

For the Interpreted SW, Interpreted HW and Compiled SW implementations, the hardware cost is largely 
independent of the complexity of the Ladder Diagram size, and the execution time grows approximately linearly 
with the number of rungs. All of these implementations store the Ladder Diagram in memory, either as compiled 
processor code, or as Ladder Diagram byte codes for interpretation. The required memory quickly outgrows the 
available on-chip FPGA memory and an external memory system is required, with both cost and performance 
implications. 

For the Compiled HW implementation, the size of the execution hardware depends strongly on the size of the 
Ladder Diagram. To measure the growth in size of the compiled hardware, a much larger system was compiled 
for this target - a railway interlocking application consisting of 1451 rungs and 246 timers. A more modern 
FPGA (Virtex4-LX25) was used as the potential target for these later experiments. It was found that this LD 
would use 113% of the available resources on the FPGA (even without the Microblaze I/O controller) for the 
Parallel Compiled HW version. The Serial Compiled HW version would require 118% of the available resources. 
For this reason, designs with a shared timer architecture, as explained earlier, were also investigated. 
Performance figures are given in Table 2, and these are are estimates based on the results of circuit compilation, 
and simulation-based testing. Several of the circuits were too large to fit on the target FPGA, so detailed testing 
of downloaded designs was not possible. 

As well as the area and speed, an area-time product measurement is given in Table 2 which gives some measure 
of the relative computational efficiency of the implementations. The Parallel Compiled HW is by far the most 
efficient, because all rungs are executed every second cycle, however correct Ladder Diagram semantics is not 
maintained. 

 

Table 2. Execution times and resource use - complex example (1451 rungs, 246 timers) 

Implementation Max. Execution Time

(Clock Cycles) 

FPGA Resource Use

(Slices) 

Area-Time 

(Slices x Cycles)/1000

Parallel Compiled HW 2 12,177 24 

Serial Compiled HW 1452 12,903 18735 

Parallel Compiled HW 
(Shared Timer) 

246 3,419 844 

Serial Compiled HW 
(Shared Timer) 

1452 4,145 6018 

 
4. Discussion 
Existing Programmable Logic Controller systems use a combination of Interpreted SW and Compiled SW 
implementations. Indeed some safety critical systems use diverse implementations of both techniques for internal 
consistency checking. The aim of this research has been to determine the potential advantages of FPGAs as an 
alternate implementation strategy. 

FPGA-based softcore processors already allow conventional software-based implementations of Ladder 
Diagrams to be used. There is no performance benefit here compared to conventional microprocessors - in fact 
softcore processors usually have a clock rate 2-5 times slower than conventional microprocessors. However, if 
an FPGA is already being used for hardware tasks such as I/O control, then the PLC processor can also be 
included on the FPGA to reduce chip count. 

The more interesting FPGA-based architectures are the hardware-based implementations. The Interpreted HW 
architecture consumes similar FPGA resources to a softcore processor, and provides a 20 times speed-up 
compared to an interpreted SW architecture. The Compiled SW implementation provides similar performance to 
the Interpreted HW, and is probably a simpler and more portable solution. On a conventional microprocessor 
(rather than an FPGA softcore), the compiled software is likely to be faster. The design of the HW interpreter is 
also the most complex of all the options. The Interpreted HW implementation is probably only useful when a 
faster interpreted solution is required, either because of available Ladder Diagram design tools, or because of the 
need for multiple diverse solutions.  



www.ccsenet.org/mas Modern Applied Science Vol. 7, No. 3; 2013 

72 
 

The compiled HW solution is the most interesting. For extremely high speed controllers, the Parallel Compiled 
HW can execute a complete system cycle in two clock cycles (even one cycle with pipelined I/O design). 
However, the fact that the system execution involves a different semantic model to standard sequential execution 
means that its use would be restricted to very specialised applications which require very high speed. It cannot be 
really considered as a legitimate Ladder Diagram implementation method. Additionally, timers require very large 
circuit area, and moving to a Shared Timer Parallel HW model greatly increases system cycle time. 

For standard Ladder Diagram execution, a Serial Compiled HW implementation style is needed. Here, our 
investigations show that for practical Ladder Diagram implementations, area is dominated by timers. For this 
reason, the Shared Timer Serial Compiled HW provides a significant reduction in area (70% reduction compared 
to parallel timers in this example), with no decrease in performance since timer evaluation is overlapped with 
sequential rung execution.  

Based on the simple 18-rung example, the Shared Timer Serial Compiled Hardware option is estimated to 
provide a performance speedup of 30 times compared to Interpreted HW, 40 times compared to Compiled SW 
and a 600 times improvement compared to Interpreted HW. The FPGA resource use of the Shared Timer Serial 
Compiled Hardware for the large 1451 rung example is similar to the hardware cost of the Microblaze software 
processor or the Interpreted HW engine, and should be a practical solution for many applications. 

5. Conclusions 
FPGAs have been shown to be an interesting implementation target for Ladder Diagrams, however they are not 
without their problems. 

An Interpreted HW engine provides better performance than an Interpreted SW solution, but provides little 
benefit over a Compiled SW solution, and is probably only useful when a faster interpreted solution is required. 

A Compiled HW solution is an interesting option but suffers from a mismatch between Ladder Diagram 
sequential semantics and FPGA logic parallel execution. A Serial Compiled HW system is needed to preserve 
Ladder Diagram semantics, but this then means that only one rung is active at a time. Both circuit size and 
system cycle time increase with the number of rungs. The use of multiple timers greatly increases circuit size, 
and so a shared timer architecture is prefered. For serial execution, the time for sequential evaluation of timers 
can be hidden within the sequential rung execution time. A potentially interesting area of future work is 
automatic identification of rungs that can be executed in parallel, which could significantly reduce execution 
time while preserving Ladder Diagram semantics. 

Overall a Shared Timer Serial Compiled HW implementation model appears to offer the most interesting way 
forward, and will allow the design of complex Ladder Diagrams with considerably lower system cycle times, in 
the sub 1ms range. This would enable Ladder Diagrams to be used to program control systems in a wider range 
of high-speed control applications. 
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