
Modern Applied Science; Vol. 7, No. 3; 2013
ISSN 1913-1844 E-ISSN 1913-1852

Published by Canadian Center of Science and Education

64

FPGA Implementations of Ladder Diagrams

Neil W. Bergmann1, Peter Waldeck1 & Sunil K. Shukla1
1 School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia

Correspondence: Neil W. Bergmann, School of Information Technology and Electrical Engineering, University
of Queensland, Brisbane Q 4072, Australia. Tel: 61-7-3365-1182. Email: n.bergmann@itee.uq.edu.au

Received: January 23, 2013 Accepted: February 20, 2013 Online Published: February 26, 2013

doi:10.5539/mas.v7n3p64 URL: http://dx.doi.org/10.5539/mas.v7n3p64

Abstract
The performance of programmable logic controllers is often constrained by the microprocessor and the real-time
firmware of the controller. Field programmable gate arrays (FPGAs) are an attractive potential implementation
medium for high-speed control because of their fast and parallel execution and programmable nature. Ladder
Diagrams are a standard graphical programming method for industrial controllers, but compilers from Ladder
Diagrams to FPGA hardware do not yet exist. This paper explores the comparative speed of four different classes
of FGPA implementation of Ladder Diagrams - Interpreted Software, Compiled Software, Interpreted Hardware
and Compiled Hardware. It also explores parallel versus serial execution of Ladder Diagrams in hardware, and
identifies timers as a major resource user in parallel implementations. Overall, a Shared Timer Serial Compiled
Hardware system for FPGA implementation of Ladder Diagrams is recommended. Using comparable FPGA
resources to other alternatives it provides a 20-600 times speed improvement over other solutions whilst
maintaining correct Ladder Diagram semantics.

Keywords: FPGA, Programmable Logic Controller, ladder diagram, control systems

1. Introduction
Before the introduction of programmable controllers, relays were commonly used to implement control systems.
With the advent of low-cost microprocessors, Programmable Logic Controllers (PLCs) replaced relays as the
predominant control element (Bolton, 2009). As part of their heritage as relay replacements, PLCs are often
programmed using a technique originally designed for relay networks - Ladder Diagrams (LD).

FPGAs (Field Programmable Gate Arrays) allow the design of programmable hardware, which theoretically
should have much higher execution rates for logic-based control algorithms compared to software
implementations. Furthermore, the parallel execution implied by Ladder Diagrams appears to be well-matched to
the parallelism inherent in FPGA-based logic circuits.

There has been little published on the direct implementation of Ladder Diagrams control algorithms in FPGAs,
and so this paper undertakes an initial investigation into the advantages and disadvantages of FPGA-based
implementations. It does this by comparing a number of different LD implementation styles and analysing their
relative performance when implemented on FPGAs.

1.1 Ladder Diagrams

Ladder Diagrams are a commonly used method for describing industrial control applications. An international
standard, IEC 61131.3 (IEC, 2003) provides a standardised method for drawing and interpreting Ladder
Diagrams. A brief introduction to LD semantics is described here, along with a short review of previous
implementations of LD using reconfigurable devices.

A Ladder Diagram consists of “rungs”, each of which evaluates a logic equation. The inputs to the equation are
either inputs to the system or internal logic states. Similarly, the output of each logic equation may be either an
output of the system or an internal state. The equation inputs are indicated by two vertical parallel lines and may
be inverted by adding a diagonal line between the lines. The equation output is usually indicated by a circle or a
pair of braces. And operations are formed by connecting two inputs adjacent to each other, in a similar fashion to
drawing circuit elements in series. Or operations are formed by connecting two inputs one above the other, in a
similar fashion to drawing circuit elements in parallel.

An example of three rungs is shown in Figure 1. In this example, internal state I2 is assigned the value of input

www.ccsen

I1, output
AND I5.

Using this
being a la
controllers
Rungs are
repeated c
implies tha
to convent
updated a
difficulties

Apart from
additions a
condition,
The timer
occurs, the
condition
timer stops

In this pro
methods fo

1.2 Why L

The proce
processor
worst-case
over-speci
system. R
higher-per

Safety-crit
operation.
redundant
performing
processors
computatio
implement

1.3 Previo

Ladder D

net.org/mas

O1 is assigned

s notation, com
anguage for d
s. As such, the
implicitly or e

ontinuously. T
at the semantic
tional logic ci

at the end of
s when implem

m simple logic
are timers, wh
an output stat
continues to r

e timer is said
becomes false
s running and

oject, we inves
or implementin

adder Logic o

essors used in
design techni

e performance
ified to ensure
Reconfigurable
rformance syst

tical systems
These proce

(in order to pr
g the same com
s operating in
onal cores to
tations to run o

us Works

Diagrams have

d the value of I

mplex sets of l
describing rela

semantics of m
explicitly num

This sequence o
cs of a Ladder
rcuits, where
a clock cycle

menting rungs d

, additional fu
hich allow tim
te and the dura
run while the s
d to be expired
e again. If at a
is reset.

stigate an exam
ng the LD on a

n FPGAs?

n modern indu
iques such as

which is ofte
 that they are
e logic can
tem. The logic

often require
ssing channel
rotect against h
mputations mu

n parallel (thu
o operate in
on a single dev

e been imple

Modern

I2 AND (NOT

Figure 1. Lad

logic equation
ay-based logic
modern Ladde

mbered from to
of steps in eva
r Diagram are
combinational
e. This “unna
directly in digi

unctionality is r
med sequencing

ation of the tim
start condition

d, the output st
any point whil

mple LD applic
an FPGA.

ustrial control
pipelines and

en the paramet
capable of me
be tailored
in an FPGA ap

multiple proc
ls may be eit
hardware failu
ultiple times (t
us increasing

parallel on
vice.

mented in re

n Applied Scienc

65

T I3) and outpu

dder diagram e

s can be desig
c, to an input
er Diagrams re
op to bottom, a
aluating logic i
dependent on
l logic circuits
atural” seman
ital logic, as ex

required for pr
g of events. A
mer. A timer i
is satisfied, u

tate of the time
e the timer is

cation, which

llers are usual
d caches tend
ter required fo
eeting timing r

to a particu
appears well su

cessing chann
ther diverse (
ures). Tradition
thus reducing
the cost of t
the same chi

econfigurable

ce

ut O2 is assign

example

gned. Ladder D
design metho

eflects impleme
and executed in
is termed a sys
the order of th

s are all execu
tics for execu
xplained later.

ractical applica
A timer is defin

s started when
until its (preset
er is set to tru
running the st

uses logic and

lly general-pu
to improve a

or real-time sy
requirements,
ular applicatio
uited to the bin

nels in order
in order to p
nally, this has r
the performan

the system). F
ip, thus allow

technology b

ned the value o

Diagrams have
od for sequen
entation on a s
n order, and th
stem cycle. Se
he rungs. This
uted in parallel
ution of rung

ations. Among
ned by three c
n its start cond
t) duration has
ue and remains
tart condition

d timers, and in

urpose microp
average perfor
ystems. Proces
and so increas
on, potentiall

nary operations

to provide as
protect against
required either
nce of the proc
FPGAs allow
wing diverse

before, althou

Vol. 7, No. 3;

of ((NOT I4) O

e now moved
ntial programm
sequential mac
hen the sequen
quential evalu
is exactly opp
l, and outputs
s introduces

g the most com
components: a
dition is set to

elapsed. Once
s true until the
becomes false

nvestigate diff

processors. Mo
rmance rather
ssors are thus
sing the cost o
ly resulting
s of control log

ssurance of co
t design fault
r a single proc
cessor), or mu

multiple diff
and/or redun

ugh relatively

2013

OR I6)

from
mable
hine.

nce is
ation

posite
only

some

mmon
start
true.

e this
start

e, the

ferent

odern
than

often
of the
in a

gic.

orrect
s) or
essor
ltiple

ferent
ndant

few

www.ccsenet.org/mas Modern Applied Science Vol. 7, No. 3; 2013

66

implementations have been reported. Welch and Carletta (2000) have described a specialised FPGA fabric
custom-designed for implementing ladder logic. This fabric simplifies the mapping and routing of a design and
eliminates the need for translation of logic into alternative forms, thus simplifying and speeding up development
using these devices. The fabric specifies a method for implementing the LD, but does not include a description
of the Input/Output (I/O) connections of the device. At present, no devices utilizing this fabric have been
manufactured.

Miyazawa et al. (1999) show how Ladder Diagrams could be implemented using translation to VHDL (VHSIC
Hardware Description Langugae, where VHSIC is Very High Speed Integrated Circuit). The description shows
how the semantics of sequential execution could be modeled by using either clock events or instantiation of
flip-flops in VHDL. The code produced is simply a translation of the logic equations into VHDL. There is no
analysis of the efficiency of such VHDL-based implementations on FPGAs.

Silva et al. (2007) describe an implementation of industrial control logic targeted at Altera FPGAs (hardware
implementation) or Simatic PLC (software implementation). Petri nets are used to describe the design rather than
Ladder Diagrams, so the implementations are not directly comparable. These are then translated into either
VHDL or software, as appropriate for the target.

Du et al. (2009) have implemented a system which converts Ladder Diagrams into VHDL, and their system is
particularly noteworthy because it allows analysis of the ladder Diagram to identify rungs which can be executed
in parallel. Their input language is not any standard LD format, but they use their own generic Boolean language
format, enhanced with counters and timers. The output of their system is a VHDL program - they have not
investigated the efficiency and performance of the LD controllers when implemented on a real FPGA.

Ichikawa et al. (2011) have similarly produced a system which converts Ladder Diagrams into VHDL. They
examine sequential design (one cycle per rung), levelised design (non-dependent rungs executed in parallel) and
flat designs (where rungs depend only on input variables, and all can be executed in parallel). They have
implemented a system for converting PLC programs for a particular Mitsubishi PLC into an FPGA
implementation using their own FPGA board as a target. They showed similar hardware speedups to the work
described in our project (one clock cycle per rung for sequential designs). However, it is not clear that they have
implemented timers, which are a particularly resource-hungry construct, and their work does not target standard
LD languages.

All of the current implementations of LD to FPGA implementations described above convert to a compiled
hardware implementation, based on a VHDL circuit. If timers are implemented at all, then they are implemented
with one physical timer for each logical timer. This work investigates some new approaches which extend this
previous work. Firstly, it investigates both a compiled hardware version, and also an interpreted hardware
implementation which provides a different speed-area tradeoff. Secondly, timers are identified as the major
consumers of hardware resources for compiled implementations, and a shared timer implementation is
investigated.

1.4 Project Objectives

To date, there has been limited investigation of the suitability of FPGAs as an implementation target for Ladder
Diagrams, and this project extends this previous work by investigating a wider selection of FPGA-based
implementation choices. The goal of this work is to investigate how the software based implementation of
Ladder Diagrams, currently used in a range of industrial controllers, compares to implementations in
reconfigurable logic. In order to do this, the semantics of the existing LD applications should be maintained so
that the consistency of the system can be assured. This initial work explores several design options, investigating
multiple design methods. This is both to explore these different options individually, and also to investigate the
practicality of different diverse implementations on a single FPGA, as might be required in a safety-critical
application.

2. Materials and Methods
Modern FPGAs allow designs to be implemented in a range of different ways, including software running on
softcore processors. Implementations of the Boolean equations typical of industrial control applications designed
using Ladder Diagrams can fit into two broad categories: interpreted and compiled. Interpreted implementations
maintain the same base software or hardware across all applications, with logic equations specific to the
application being interpreted by that base platform as a sequence of instructions or byte codes. This approach
allows the interpreter to be extensively tested and verified to ensure correctness and safety. In contrast, compiled
implementations evaluate the logic directly, with different hardware or software being generated for each

www.ccsen

application
compilatio

Four differ
of simple L
generated
remainder
display the
of the I/O
systems u
implement
on the Mic

2.1 Interpr

The most
dedicated
architectur
structure, a

This modu
allowing th
receiving i

2.1.1 State

This modu
output or
(ReadReq
WriteState

2.2.2 Logi

This modu
module co
ReadReq i
sequentiall

2.2.3 Logi

This modu
which is fe
structure a
state has b

net.org/mas

n by a comp
on process itsel

rent Ladder D
LD equations.
from a Ladd
of this paper

e value of all s
modules of a r

use a Microbl
tations run as
croblaze proce

reted Hardwar

complex of
to evaluating L
re, with four m
as shown in Fi

ular design as
he addition of
instructions fro

es RAM

ule stores the v
an internal log
and WriteSta

e instructions u

ic RAM

ule stores the
ontinuously lo
instructions) a
ly rung by run

ic Engine

ule performs t
ed to appropria
and a logic valu
been specified,

piler. This app
lf to be extens

Diagram implem
 The equations

der Diagram e
r. All the syst
states, as well
real industrial
laze soft proc
peripherals of

essor. These fou

re

the implemen
Ladder Diagra
modules (as w
igure 2.

Fi

sists in enabli
f further modul
om each other.

values of each
gic state. The

ate respectivel
update the valu

instructions i
oops through
and issuing Ev
ng.

the actual eva
ate logic to ev
ue for that pos
the module is

Modern

proach is like
ively tested an

mentation styl
s were develop

editing system
tems use a sim
as accept inpu
controller. In o
cessor for I/O
f this processor
ur different im

ntations, the I
ams. The hardw
well as a Micr

igure 2. Hardw

ing extensive
les as required
. Instructions a

of the states u
module opera

ly). It respond
ue of the state s

n the Ladder
the logic, req

valLogic instru

aluation of eac
aluate the rung

sition. The outp
sues a WriteSt

n Applied Scienc

67

ely to offer i
nd verified - a p

es have been d
ped using an in

m. This format
mple commun
uts from the us
order to simpli

O control in
r, while softwa

mplementation

Interpreted HW
ware has been
roblaze proces

ware interpretat

testing of ind
d in the future.
are a uniform 3

used by the sys
ates in a simpl
ds to ReadRe
stored.

Diagram to b
questing the v
uctions to the L

ch rung. The v
g. EvalLogic in
put state is itse
tate instruction

ce

improved perf
process which

developed and
ndustry standa
t will be refe

nications appli
ser. This applic
ify communica
these experim
are implement
styles are now

W system is
designed in a

ssor) commun

tion engine

dividual compo
 Each of the m

32-bit format. T

stem. Each sta
le manner, han

eq instructions

be evaluated. O
value of state
Logic engine.

values of state
nstructions spe
elf a position w
n containing th

formance, but
h presents its ow

d analysed, bas
ard textual form
erred to as OR
ication running
cation replicate
ation with this

ments (Xilinx,
tations evaluat

w described.

essentially a
modular fashi
icating over a

onents of the
modules is cap
The modules a

ate corresponds
ndling read an
s by issuing N

Once initialize
es from the S

The logic is t

es are stored
ecify a position
within the engi
he logic output

Vol. 7, No. 3;

t does require
wn challenges

sed on a typica
mat which cou
RIG format in
g on a host P
es the function
 application, a
 2013). Hard
te the logic dir

custom proc
on using a net

a common net

system, as we
pable of issuing
are as follows:

s to either an i
nd write opera
Notify instruct

ed and started
States RAM (u
therefore evalu

in latches, eac
n within the en
ine. Once an o
of the rung.

2013

e the
.

al set
uld be
n the
PC to
nality
ll the

dware
rectly

essor
work
work

ell as
g and

nput,
ations
tions.

d, the
using
uated

ch of
ngine
utput

www.ccsen

2.2.4 Time

This modu
duration a
the timers,
timer is ch
instruction
a similar m
instruction

The modu
processor)
register co
Based on t

2.3 Interpr

The imple
straightfor
memory c
original to
Microblaz
timers is im
equal to th
the timers

2.4 Compi

The system
diagram, t
specific La

The sizes
system. Fo
current val
other state
multiplexe
ORIG form
particular

net.org/mas

er

ule implement
and current sta
, requesting th
hanged to run
n is issued, upd
manner, if the
n is issued, sett

ules are conne
) are routed th
ontaining the
the address spe

reted Software

ementation of
rward. A stand
controller core
ools and no tr
ze tools. Execu
mplemented u
he interval of t
appropriately.

iled Hardware

m architecture
the Microblaze
adder Diagram

of the input
or each state, th
lue of the state

es in order to g
er allows the s
mat logic from
application. T

ts timers. Each
tus (stopped, r

he value of eac
nning and an e
dating the outp
 start conditio
ting the output

ected via an o
hrough this ne
instruction to
ecified within

e

f an Interprete
dard Microblaz
es. The softwa
ranslation is re
ution is optim

using the stand
the timers in t

for the Comp
e and logic w

m.

Fig

decoder and o
here is a set of
e, while the lo

generate the ne
state to be wri
m the industry
The multiplexe

Modern

h timer is def
running or exp
ch start conditi
end time is ca
put condition t
on becomes fa
t condition to f

on-chip netwo
etwork. The n

be routed, al
the instruction

ed SW progra
ze system arch

are application
equired. The a

mized by only
ard Microblaz
the application

iled HW imple
wrapper are sta

gure 3. Compi

output multipl
f 3 component

ogic evaluates t
ext state logic.
itten by the M
y tools and ge
er and flip-flo

n Applied Scienc

68

fined by 4 cha
pired). Once s
ion. If the start
alculated. Once
to true, provide
alse, the status
false.

ork. All instru
etwork consis
ong with suit

n, the data is di

am for Ladde
hitecture is us

n makes use o
application is
evaluating a r

ze timer periph
n logic. On ex

ementation of
atic while all

led hardware a

lexer are depe
ts as shown at
the next state.
This is fed thr

Microblaze. A
enerates VHD
ops are genera

ce

aracteristics: s
started, the mo
t condition cha
e the timer du
ed that the star
is updated to

ctions betwee
sts of a simple
able multiplex
irected to the b

er Diagrams o
sed, consisting
of the ORIG f

written in C,
rung where ne

heral core. It is
xpiry, an interru

f Ladder Diagr
other compon

architecture

endent on the
the top of the
The logic ma

rough a multip
software appli
L containing

ated using a fo

start condition
odule continuo
anges to be tru
uration has ela
rt condition ha

o being stoppe

en modules (an
e router which
xers and logic
buffer of the ap

on the Micro
g of processor,
format logic a

which is wel
ecessary. The
s set to expire
upt handler up

ams is shown
nents are gener

number of st
diagram. The

ay take input fr
plexer to the fl
ication on the
suitable logic
or-generate sta

Vol. 7, No. 3;

n, output cond
ously loops thr
ue, the status o
apsed, a Write
as remained tru
ed and a Write

and the Microb
h contains a s
c for each mo
ppropriate mod

oblaze is relat
, timer, UART
s generated by
ll supported by
implementatio
at a regular pe
pdates the stat

in Figure 3. In
rated based on

ates present in
flip-flop store

rom any numb
lip-flop inputs

e host PC take
equations for

atement in VH

2013

ition,
rough
of the
State

ue. In
State

blaze
ingle
dule.
dule.

ively
T and
y the
y the
on of
eriod,
us of

n this
n the

n the
es the
ber of
. The
s the

r that
HDL,

www.ccsenet.org/mas Modern Applied Science Vol. 7, No. 3; 2013

69

dependent on the number of states required. The logic is generated for each state in the system, resulting in a
sequence of statements of the form:

LogicOut(x) <= FlipFlopOut(y) AND FlipFlopOut(z);

Each of these statements corresponds to one rung in the LD program. Therefore each of the rungs are evaluated
in parallel and latched into the flip-flops simultaneously. This no longer maintains sequential execution of rungs
as found in the interpreted implementations described previously. Logic calculations which span several rungs
will take several cycles to be resolved. Without care, there is a chance that parallel execution of rungs may lead
to inconsistent or incorrect behaviour, however in many cases it will lead to enhanced performance, since all
rungs are evaluated in a single clock cycle. We have called this non-compliant implementation the Parallel
Compiled Hardware System.

It is also possible to build a compiled hardware implementation which executes rungs sequentially, and preserves
the correct semantics. This is done by gating each of the output flip-flops with an enable bit which cycles around
a ring counter (one bit per rung). This then executes rungs sequentially, and a system cycle for N rungs is N
clock cycles. This is called the Serial Compiled Hardware System.

With additional effort, it would be possible to develop a CAD tool to group consecutive rungs into sets of
independent rungs which could be executed in parallel, gaining the benefits of some parallel execution while
preserving correct semantics, however developing such a tool is outside of the scope of this initial work.

In addition to the direct logic equations of most rungs, timers are implemented by replacing the logic with a
timer component. The component specifies the information required for the timer to operate correctly. An
example of this is:

timer16 : timer

generic map (

DURATION => 40000)

port map (

clk => clk,

rst => rst,

start => FlipFlopOut(75),

expiry => LogicOut(76));

During the development and testing of larger Compiled HW circuits, it was observed that a large proportion of
the FPGA hardware (more than 80%) was consumed by timers. Each timer requires several 32-bit registers plus
associated logic. By comparison, each logic rung may require just a few single-bit logic gates. Therefore, an
additional version of the compiled hardware system was designed for circuits with a large number of timers,
which uses a single timer module to implement all of the system timers. The timer module has individual expiry
registers for each timer stored in a memory block, but shares the same time-count register and expiry-check logic.
One logical timer can be checked each clock cycle. For parallel rung execution, this considerably increases the
system cycle time, however with serial rung execution, the timer execution can be overlapped with rung
execution and does not increase the execution time. Use of a shared timer gives two extra hardware variants:
Shared Timer Parallel Compiled Hardware and Shared Timer Serial Compiled Hardware.

2.5 Compiled Software

The ladder logic equations may be solved by a sequence of logic statements in a high-level programming
language rather than the interpreted form presented above. Rather than a software application interpreting the
logic, the ORIG format logic can be used to generate code for compilation which directly evaluates the logic
equations.

A large part of the application code from the Interpreted SW implementation has been reused, with
communications code remaining the same. The logic itself is generated by a separate application on the host PC
and generates a C source file consisting of a large set of equations of the form:

logic[x] = (logic[y] & logic[z]) || !logic[q];

This source file then forms part of the application running on the Microblaze processor. This implementation
allows the logic to be executed more quickly than the interpreted form and maintains identical semantics as the
rungs are evaluated in order in the same way as the interpreted implementation. Timers are generated in a

www.ccsenet.org/mas Modern Applied Science Vol. 7, No. 3; 2013

70

separate C source file. The information required is the initialisation details, that is, the start condition, output
condition and duration of each timer. Once initialised, the timers run in the same manner as the Interpreted SW,
with an interrupt routine triggered by a timer interrupt updating the timer status.

3. Results
The performance of the various FPGA implementations of the same Ladder Diagram were explored by
implementing a simple example program consisting 18 ladder rungs of various types and 3 timers. This size
application was chosen in order to simplify the process of verifying that each implementation was correctly
evaluating the logic. Each logic circuit was compiled onto a Xilinx Spartan 3E-1600 FPGA. Each
implementation uses a Microblaze processor to provide data input and output, and any hardware-based logic
used the same clock as the Microblaze, which typically runs at 50 MHz. In all cases, correct operation of the
systems was confirmed for a variety of different input combinations.

3.1 Speed

The numbers of clock cycles taken by each implementation in evaluating the 18-rung application logic are
shown in Table 1. These times exclude external communications overheads which are relatively constant across
implementations. In most cases, the execution time varies with the input values. For some combinations of inputs,
the software is able to optimize execution and thus evaluate the logic more quickly. The Interpreted HW
implementation takes varying amounts of time due to communications interference. The execution time variation
was not large – the minimum execution time was around 85-90% of the worst-case time. The table shows the
worst-case execution time that was recorded for the example data sets.

Table 1. Execution times and resource use – simple example (18 rungs)

Implementation
Max. Execution Time FPGA Resource Use

(Clock Cycles) (Slices)

Interpreted SW 12819 2629

Interpreted HW 611 3024

Compiled SW 891 2629

Parallel Compiled HW 2 2731

Serial Compiled HW 19 2740

As expected, an interpreted approach is slower than a compiled approach. The significance of this overhead
relative to the require system cycle time determines whether the interpreted approach is still an attractive option.
As can be seen, the Interpreted SW is an order of magnitude slower than the Compiled SW system, while the
Interpreted HW implementation is similar to the Compiled SW.

For the Parallel Compiled HW system, equations are evaluated in parallel in a single clock cycle, plus one
additional cycle for logic value I/O. Communications overheads will most likely be far larger than the logic
execution times in this case. For the Serial Compiled HW, each rung executes in one clock cycle, plus one
additional cycle for I/O.

3.2 FPGA Resource Use

For each implementation, the hardware resources used on the FPGA for the simple 18-rung system were
measured and the results are also shown in Table 1. FPGA resource use is measured in slices, where a slice is a
basic FPGA logic unit consisting of two 4-input LUTs (Look Up Tables) and two flip-flops. The Xilinx Spartan
3E is a low-cost, low-end FPGA, and provides 14,752 slices in total. The software implementations represent the
resource use of the Microblaze processor. The hardware implementations represent the resource use of the
hardware co-processor (excluding the Microblaze). For the hardware implementations, the Microblaze only acts
as an I/O processor; in a practical circuit there would be specialised additional I/O hardware to connect to control
inputs and outputs.

Each of the interpreted implementations requires some form of storage for the logic equations. In the systems
designed, this has been stored on the on-chip FPGA memory, but for larger examples this would require storage
in external memory.

www.ccsenet.org/mas Modern Applied Science Vol. 7, No. 3; 2013

71

3.3 Larger Designs

For the Interpreted SW, Interpreted HW and Compiled SW implementations, the hardware cost is largely
independent of the complexity of the Ladder Diagram size, and the execution time grows approximately linearly
with the number of rungs. All of these implementations store the Ladder Diagram in memory, either as compiled
processor code, or as Ladder Diagram byte codes for interpretation. The required memory quickly outgrows the
available on-chip FPGA memory and an external memory system is required, with both cost and performance
implications.

For the Compiled HW implementation, the size of the execution hardware depends strongly on the size of the
Ladder Diagram. To measure the growth in size of the compiled hardware, a much larger system was compiled
for this target - a railway interlocking application consisting of 1451 rungs and 246 timers. A more modern
FPGA (Virtex4-LX25) was used as the potential target for these later experiments. It was found that this LD
would use 113% of the available resources on the FPGA (even without the Microblaze I/O controller) for the
Parallel Compiled HW version. The Serial Compiled HW version would require 118% of the available resources.
For this reason, designs with a shared timer architecture, as explained earlier, were also investigated.
Performance figures are given in Table 2, and these are are estimates based on the results of circuit compilation,
and simulation-based testing. Several of the circuits were too large to fit on the target FPGA, so detailed testing
of downloaded designs was not possible.

As well as the area and speed, an area-time product measurement is given in Table 2 which gives some measure
of the relative computational efficiency of the implementations. The Parallel Compiled HW is by far the most
efficient, because all rungs are executed every second cycle, however correct Ladder Diagram semantics is not
maintained.

Table 2. Execution times and resource use - complex example (1451 rungs, 246 timers)

Implementation Max. Execution Time

(Clock Cycles)

FPGA Resource Use

(Slices)

Area-Time

(Slices x Cycles)/1000

Parallel Compiled HW 2 12,177 24

Serial Compiled HW 1452 12,903 18735

Parallel Compiled HW
(Shared Timer)

246 3,419 844

Serial Compiled HW
(Shared Timer)

1452 4,145 6018

4. Discussion
Existing Programmable Logic Controller systems use a combination of Interpreted SW and Compiled SW
implementations. Indeed some safety critical systems use diverse implementations of both techniques for internal
consistency checking. The aim of this research has been to determine the potential advantages of FPGAs as an
alternate implementation strategy.

FPGA-based softcore processors already allow conventional software-based implementations of Ladder
Diagrams to be used. There is no performance benefit here compared to conventional microprocessors - in fact
softcore processors usually have a clock rate 2-5 times slower than conventional microprocessors. However, if
an FPGA is already being used for hardware tasks such as I/O control, then the PLC processor can also be
included on the FPGA to reduce chip count.

The more interesting FPGA-based architectures are the hardware-based implementations. The Interpreted HW
architecture consumes similar FPGA resources to a softcore processor, and provides a 20 times speed-up
compared to an interpreted SW architecture. The Compiled SW implementation provides similar performance to
the Interpreted HW, and is probably a simpler and more portable solution. On a conventional microprocessor
(rather than an FPGA softcore), the compiled software is likely to be faster. The design of the HW interpreter is
also the most complex of all the options. The Interpreted HW implementation is probably only useful when a
faster interpreted solution is required, either because of available Ladder Diagram design tools, or because of the
need for multiple diverse solutions.

www.ccsenet.org/mas Modern Applied Science Vol. 7, No. 3; 2013

72

The compiled HW solution is the most interesting. For extremely high speed controllers, the Parallel Compiled
HW can execute a complete system cycle in two clock cycles (even one cycle with pipelined I/O design).
However, the fact that the system execution involves a different semantic model to standard sequential execution
means that its use would be restricted to very specialised applications which require very high speed. It cannot be
really considered as a legitimate Ladder Diagram implementation method. Additionally, timers require very large
circuit area, and moving to a Shared Timer Parallel HW model greatly increases system cycle time.

For standard Ladder Diagram execution, a Serial Compiled HW implementation style is needed. Here, our
investigations show that for practical Ladder Diagram implementations, area is dominated by timers. For this
reason, the Shared Timer Serial Compiled HW provides a significant reduction in area (70% reduction compared
to parallel timers in this example), with no decrease in performance since timer evaluation is overlapped with
sequential rung execution.

Based on the simple 18-rung example, the Shared Timer Serial Compiled Hardware option is estimated to
provide a performance speedup of 30 times compared to Interpreted HW, 40 times compared to Compiled SW
and a 600 times improvement compared to Interpreted HW. The FPGA resource use of the Shared Timer Serial
Compiled Hardware for the large 1451 rung example is similar to the hardware cost of the Microblaze software
processor or the Interpreted HW engine, and should be a practical solution for many applications.

5. Conclusions
FPGAs have been shown to be an interesting implementation target for Ladder Diagrams, however they are not
without their problems.

An Interpreted HW engine provides better performance than an Interpreted SW solution, but provides little
benefit over a Compiled SW solution, and is probably only useful when a faster interpreted solution is required.

A Compiled HW solution is an interesting option but suffers from a mismatch between Ladder Diagram
sequential semantics and FPGA logic parallel execution. A Serial Compiled HW system is needed to preserve
Ladder Diagram semantics, but this then means that only one rung is active at a time. Both circuit size and
system cycle time increase with the number of rungs. The use of multiple timers greatly increases circuit size,
and so a shared timer architecture is prefered. For serial execution, the time for sequential evaluation of timers
can be hidden within the sequential rung execution time. A potentially interesting area of future work is
automatic identification of rungs that can be executed in parallel, which could significantly reduce execution
time while preserving Ladder Diagram semantics.

Overall a Shared Timer Serial Compiled HW implementation model appears to offer the most interesting way
forward, and will allow the design of complex Ladder Diagrams with considerably lower system cycle times, in
the sub 1ms range. This would enable Ladder Diagrams to be used to program control systems in a wider range
of high-speed control applications.

Acknowledgements
This work was supported by the Australian Research Council’s Linkage Project LP0668067.

References
Bolton, W. (2009). Programmable Logic Controllers (5th ed.). Burlington MA: Newnes.

Du, D., Liu, Y., Guo, X., Yamazaki, K., & Fujishima, M. (2009). Study on LD-VHDL conversion for
FPGA-based PLC implementation. International Journal of Advanced Manufacturing Technology,
40(11-12), 1181-1190. http://dx.doi.org/10.1007/s00170-008-1426-4

Ichikawa, S., Akinaka, M., Hata, H., Ikeda, R., & Yamamoto, H. (2011). An FPGA implementation of hard-wired
sequence control system based on PLC software. IEEJ Transactions on Electrical and Electronic
Engineering, 6(4), 367-375. http://dx.doi.org/10.1002/tee.20670

IEC: International Electrotechnical Commission. (2003). International Standard 61131.3: Programmable
Controllers – Part 3: Programming languages for programmable controllers. Geneva: IEC.

Miyazawa, I., Nagao, T., Fukagawa, M., Itoh, Y., Mizuya, T., & Sekiguchi, T. (1999). Implementation of ladder
diagram for programmable controller using FPGA. Proceedings of 7th IEEE International Conference on
Emerging Technologies and Factory Automation, pp. 1381-1385.
http://dx.doi.org/10.1109/ETFA.1999.813150

Silva, C. F., Quintans, C., Mandado, E., & Castro, M. A (2007). Methodology to implement logic controllers
with both reconfigurable and programmable hardware. Proceedings of the IEEE International Symposium

www.ccsenet.org/mas Modern Applied Science Vol. 7, No. 3; 2013

73

on Industrial Electronics, pp. 324-328. http://dx.doi.org/10.1109/ISIE.2007.4374620

Welch, J. T., & Carletta, J. (2000). A direct mapping FPGA architecture for industrial process control
applications. Proceedings of the International Conference on Computer Design, pp. 595-598,
http://dx.doi.org/10.1109/ICCD.2000.878352

Xilinx Inc. (2013). MicroBlaze Soft Processor Core. Retrieved January 23, 2013, from
http://www.xilinx.com/tools/microblaze.htm

