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Abstract 
This article mainly presents the fundamental theory, model and application of conditional heteroscedasticity residual 
sequence. And it also gives detailed, scientific and exact analysis and research on a financial security example. Then 
summarizing a conclusion: Financial Securities follows specific rules and tracks through above study. The research 
indicates that ARCH model only applies to a short-term, auto-correlative heteroscedastic function ,whereas the amended 
GARCH model has the opposite result, that is, GARCH fits a long-term, auto-correlative heteroscedastic function. 
Meanwhile, SAS program presents more intuitive, exact tables and figures. All analysis and results show that AR 
(m)-GARCH fits well.  
Keywords: Time series, Heteroscedastic function, ARCH, GARCH, SAS  
1. Introduction  
In recent years, with computing technology and signal processing technology, the theory and methods of time series 
analysis has been refined greatly, especially in the parameter estimation algorithm, model structure identification and 
intellectual computing technology integration and so on. Furthermore it gains fruitful achievement in these fields and 
covers an increasingly wide range of applications, and the results are at a high-level of level. For example, in the field 
of control engineering, motion control system for time series analysis modeling and forecast; in Internet technologies, 
network traffic analysis of time series model; theoretical studies in the database, data mining of time series methods; in 
electronic information field, random signals in time series modeling and analysis; in the field of biological engineering, 
DNA sequence analysis and calculation; in the field of biomedical engineering, biomechanical and electrical signals in 
time series analysis; in mechanical fault diagnosis study, non-destructive testing signals in time series analysis; fine 
chemical control in the use of time series spectral analysis techniques and so on.  
Although the time series offers a variety of different models to fit the actual problem, and make short-term prediction, 
such as commonly used model has ARMA, ARIMA, etc…We are familiar with ARMA, ARIMA model and think its 
residual sequence is white noise sequence which meets 0)( =tE ε ; and also meets 2)0( δγε ==tD , where, 2δ is a 
constant. However, when Engle did research on the UK inflation rate in 1982, he surprisingly found that the classic 
ARIMA model has failed to achieve the desired effect of the fitting. After careful study on sequence of residuals, he 
discovered a problem in some time series of residuals with heteroscdasticity. In recent year scholars found many 
financial time series has emerged of the nature of heteroscedasticity in practice, and usually there is a positive 
relationship between the standard deviation and the level. That is, with low levels of sequence, the sequence of 
fluctuations small, with high levels of sequence, the sequence of fluctuations in large. Although we have made 
appropriate assumptions to heteroscedastic function, a lot of practice has proved that this assumption is too simplistic. 
Thus, in order to estimate heteroscedastic function more accurately, Engle made conditional heteroscedasticity ARCH 
and GARCH models.  
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2. ARCH model 
The full name of ARCH model is autoregressive conditional heteroscedasticity model (autoregressive conditional 
heteroscedastic), it is made by Robert F. Engle, who is an American statistician, economist measurement. Set 
{ ,...2,1, =txt } is a time series, called the model with the following structure for the q-order Autoregressive Conditional 
Heterocedasticity Model, easily recorded as ARCH(q), its complete structure as follows: 
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; { tε } is white noise heteroscedasticity residual sequence which has  

0)( =tE ε .  
3. GARCH model 
After ARCH model was amended by Bollerslev, he proposed the GARCH model (generalized autoregressive 
conditional heteroscedastic), easily recorded as GARCH (p, q), its structure as follows: 
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the GARCH model heteroscedasticity function, { tε } is white noise heteroscedasticity  residual sequence which has  
0)( =tE ε . 

3.1 GARCH model constraints 
GARCH model in the use of modeling practical problems should pay attention: its effective use must meet the 
following two constraints. 
Condition 1: parameters of non-negative 
                              0,0,0 ≥≥> ji ληω ; 
Condition 2: parameters have limit 
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3.2 GARCH (p, q) modeling thought 
GARCH model fitted to follow the six steps: 
Step1.According to observations of the nature of sequences, fitting regression model; 
Step2.Test the residual sequence autocorrelation through statistic DW; 
Step3.The use of statistic PQ and LM for heteroscedasticity autocorrelation test; 
Step4.Through the DW test results, residual autocorrelation sequence diagram as well as PQ and LM test statistic for the 
fitted-order model fitting; 
Step5.The use of maximum likelihood estimation method to estimate the unknown parameters; 
Step6.Finally the use of Bear-Jarque normality test statistic for testing the validity of the model. 
4. AR (m)-GARCH  

When the GARCH model of regression function ,...),,( 21 −− tt xxtf  can not extract the sequence { tε } of the relevant 
information fully, the residual sequence may have a nature of auto-correlation, rather than pure randomness. At this 
point the need for { tε } first fitting autoregressive model, and then inspecting autoregressive residual sequence { tv } 

whether meets 2)0( δγε ==tD or not. If { tv } is heteroscedasticity, GARCH model is fitted. This model called AR 
(m)-GARCH (p, q) model, its structure as follows:  
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5. SAS Program Results and Discussion 
Table 1 shows security data about Reserve Bank of Australia from 1969, 1 to 1994, 9. Then we will analyze these data 
and fit an appropriate model to dignify them. Table 2 gives the DW test results. The results show residual sequence has 
obvious positive auto-correlativity. Parameter estimation demonstrates the regressive model parameters are all 
remarkable. From table 3, we know residual sequence autocorrelation has a long-term auto-correlativity, and the 
coefficient decreases slowly. Table 4 demonstrates PQ and LM test results. The results show remarkable heteroscedastic 
nature and long-term relation. From table 5, we can make sure that the value of different parameters in the AR 
(2)-GARCH (1, 1). Last we can acquire the formula of AR (2)-GARCH (1, 1) model, as follows: 
                  0 .0 3 5 8t tx t u= +  

1 21 .0 7 5 4 0 .0 8 1t t t tu u u ε− −= − +  
. .

, ~ ( 0 , 0 . 3 5 0 4 1 )
i i d

t t t th a a Nε =  
                  2

1 1 10.34 (2.554 23) 0.0298t th E hε − −= + − +  
Figure 1 shows the curve track of { tx }. From figure 1, we can see the curve presents remarkable linear increasing 
tendency, and the range of fluctuation increases with time extends. So we fit the linear regressive model. Figure 2 shows 
the curve of AR (2)-GARCH (1, 1). Comparing with figure 1, we see the two curves are quite similar. 
6. Conclusions 
From the above example of analysis and study, we acquire such conclusion: the AR (m)-GARCH model usually applies 
to Financial Sequence which has a long-term ,auto-correlative heteroscedasticity function, the AR(2)-GARCH(1, 1) fits 
well from the two figures. So under the heteroscedasticity conditions, we find a better model to fit this kind of practical 
problems. 
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Table 1. Reserve Bank of Australia data diagram  

4.99 5.00 5.03 5.03 5.25 5.26 5.30 5.45 5.49 5.52 5.70 5.68 5.65 5.80 6.50 6.45 6.48 6.45 6.35 6.40 6.43 
6.43 6.44 6.45 6.48 6.40 6.35 6.40 6.30 6.32 6.35 6.13 5.70 5.58 5.18 5.18 5.17 5.15 5.21 5.23 5.05 4.65 
4.65 4.60 4.67 4.69 4.68 4.62 4.63 4.90 5.44 5.56 6.04 6.06 6.06 8.07 8.07 8.10 8.05 8.06 8.07 8.06 
8.118.60 10.80 11.00 11.00 11.00 9.48 9.18 8.62 8.3 8.47 8.44 8.44 8.46 8.49 8.54 8.54 8.50 8.44 8.49 
8.40 8.46 8.50 8.50 8.47 8.47 8.47 8.48 8.48 8.54 8.56 8.39 8.89 9.91 9.89 9.91 9.91 9.90 9.88 9.86 9.86 
9.74 9.42 9.27 9.26 8.99 8.83 8.83 8.83 8.82 8.83 8.83 8.79 8.79 8.69 8.66 8.67 8.72 8.77 9.00 9.61 9.70 
9.94 9.94 9.94 9.95 9.94 9.96 9.97 10.83 10.75 11.20 11.40 11.54 11.50 11.34 11.50 11.50 11.58 12.42 
12.8513.10 13.12 13.10 13.15 13.10 13.20 14.20 14.75 14.60 14.60 14.45  14.50 14.80 15.85 16.20 
16.50 16.40 16.40 16.35 16.10 13.70 13.50 14.00 12.30 12.00 14.35 14.60 12.50 12.75 13.70 13.45 
13.55 12.60 12.00 11.00 11.60 12.05 12.35 12.70 12.45 12.55 12.20 12.10 11.15 11.85 12.10 12.50 
12.90 12.50 13.20 13.65 13.65 13.50 13.45 13.35 14.45 14.30 15.05 15.55 15.65 14.65 14.15 13.30 
12.65 12.70 12.80 14.50 15.10 15.15 14.30 14.25 14.05 14.70 15.05 14.05 13.80 13.25 13.00 12.85 
12.60 11.80 13.00 12.35 11.45 11.35 11.55 10.85 10.90 12.30 11.70 12.05 12.30 12.90 13.05 13.30 
13.85 14.65 15.05 15.15 14.85 15.70 15.40 15.10 14.80 15.80 15.80 15.00 14.40 13.80 14.30 14.15 
14.45 14.10 14.05 13.75 13.30 13.00 12.55 12.25 11.85 11.50 11.10 11.15 10.70 10.25 10.55 10.25 
10.30 9.60 8.40 8.20 7.25 8.35 8.25 8.30 7.40 7.15 6.35 5.65 7.40 7.20 7.05 7.10 6.85 6.50 6.25 5.95 
5.65 5.85 5.45 5.30 5.20 5.55 5.15 5.40 5.35 5.10 5.80 6.35 6.50 6.95 8.05 7.85 7.75 8.60 

 
Table 2. DW Test Results 
 

 Ordinary Least Squares Estimates 

         

SSE                  2774.27594           DFE                     306 

MSE                    9.06626       Root MSE                 3.01102 

SBC                  1562.52428           AIC              1555.06408 

Regress R-Square           0.1933   Total R-Square                 0.1933 

Durbin-Watson             0.0303       Pr < DW                  <.0001 

Pr > DW                  1.0000 

 

                                    Standard                 Approx 

Variable        DF     Estimate        Error      t Value      Pr > |t| 

         Intercept        1       7.5194        0.3440      21.86       <.0001 

  t             1       0.0165      0.001930       8.56      <.0001 
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Table 3. Estimation of Autocorrelation 

Estimates of Autocorrelations 
Lag    Covariance     Correlation                  -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
0        9.0074        1.000000    |                    |********************| 
1        8.8341        0.980764    |                    |********************| 
2        8.6228        0.957299    |                    |******************** | 
3        8.4323        0.936155    |                    |******************* | 
4        8.2226        0.912870    |                    |******************  | 
5        7.9961        0.887726    |                    |******************  | 
6        7.7979        0.865717    |                    |*****************   | 
7        7.5974        0.843466    |                    |*****************   | 

Table 4. PQ and LM Test Results 

 
Table 5. The fitted-model Results 

The AUTOREG Procedure 
                            GARCH Estimates 
   SSE                 107.927726     Observations               308 

MSE                   0.35041     Uncond Var          0.35041436 
   Log Likelihood        -275.54282     Total R-Square           0.9969 
   SBC                579.736136      AIC               561.085637 
   Normality Test         4322.0655     Pr > ChiSq               <.0001 
                                      Standard                 Approx 
  Variable        DF     Estimate        Error      t Value       Pr > |t| 

t              1       0.0358       0.0285       1.26       0.2086 
 AR1              1      -1.0754       0.0760      -14.15       <.0001 
 AR2              1       0.0810       0.0777       1.04        0.2971 
 ARCH0           1       0.3400       0.008580     39.63       <.0001 
 ARCH1           1     2.554E-23      2.352E-15     0.00       1.0000 
 GARCH1         1        0.0298      0.003006      9.90       <.0001 

                            Q and LM Tests for ARCH Disturbances 
                 Order             Q    Pr > Q            LM    Pr > LM 
                  1        286.1017    <.0001      283.4412     <.0001 
                  2        545.0776    <.0001      283.6751     <.0001 
                  3        782.4323    <.0001      283.8243     <.0001 
                  4        995.5900    <.0001      284.2103     <.0001 
                  5       1183.6297    <.0001      284.2391     <.0001 
                  6       1353.8193    <.0001      284.6598     <.0001 
                  7       1507.0917    <.0001      284.7027     <.0001 
                  8       1638.3835    <.0001      285.3592     <.0001 
                  9       1750.6976    <.0001      285.3872     <.0001 
                 10       1842.9918    <.0001      286.2225     <.0001 
                 11       1919.1500    <.0001      286.5690     <.0001 
                 12       1981.4862    <.0001      286.6223     <.0001 
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Figure 1. The figure of time series { tx } 

 

 
                           Figure 2. The figure of fitted-model 
 
 


