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Abstract 
In this paper we extend directly adaptive multicut aggregation method of Svyatoslav Trukhanov, Lewis Ntaimo and 
Andrew Schaefer to solving two-stage problems of stochastic convex programming. The implement of the algorithm is 
simple, so less computation work is needed. The algorithm has certain convergence. 
Keywords: Multicut aggregation, Adaptive cut, Stochastic programming, Stochastic convex programming 
1. Introduction 
(Birge, J. R. & Louveaux, F. V.,1997)L-shaped algorithm for stochastic programming problems with recourse generally 
generate a single cut at each major iteration. While(Ruszczynski, A. & Shapiro, A.,2004) the multicut version of the 
algorithm allows for cuts up to the number of outcomes to be placed at once. So the L-shaped algorithm tends to have 
more major iterations than the multicut algorithm, however the multicut algorithm have more optimality cuts, the size of 
master problem relatively big. To settle the disadvantage of L-shaped algorithm and multicut algorithm, Svyatoslav 
Trukhanov, Lewis Ntaimo and Andrew Schaefer (Trukhanov, S.,Ntaimo, L., & Schaefer, A.,2007) have proposed the 
adaptive multicut aggregation algorithm for solving two stage stochastic linear programming with recourse. The 
computational results of the algorithm shows that the algorithm is more effective than L-shaped algorithm and multicut 
algorithm. 
Two-stage problems of stochastic convex programming are difficult for solving. For solving they are transformed into 
problems of linear programming by linearization, but the size of the problems is greatly increased, the problems are 
difficult to solve. In this paper we extend directly adaptive multicut aggregation method for solving two-stage stochastic 
linear programming problems to two-stage stochastic convex programming with recourse. The method is simple and 
has certain convergence. 
2. Two-Stage Stochastic Convex Programming 
A two-stage stochastic convex programming with fixed recourse in the extensive form can be given as follow: 
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Where s is the scenario(outcome). 1
1( ) : nf x R R→  and 2

2 ( ) : nsf x R R→ , 1, 2,3s S= ⋅⋅⋅ ,are convex functions. X  and 
sY  are bounded convex sets. ( )sT T s=  is 

2 1m n×  matrix, W  is 
2 2m n×  matrix, ( )sh h s= , sh  is 2m  vector. 

3. Adaptive Multicut Aggregation Method 
The adaptive multicut aggregation method (Trukhanov, S.,Ntaimo, L., & Schaefer, A.,2007) has point out that this 
method has two advantages comparing L-shaped algorithm and multicut algorithm. First, it use more information from 
subproblems, which assumes adding more than one cut at each major iteration avoiding ‘information loss’; Second ,it 
can keep the size of master problem relatively small, which requires to limit the number of cuts added to master 
problem. The adaptive multicut aggregation method is required to partition the sample space S  into D  aggregates 
{ } 1

D
d d

S
=

, such that 
1 2 DS S S S= ⋅⋅⋅U U U , , i ji j S S∀ ≠ = ∅I . The sample space S  can be partitioned into some subsets 

based on some aggregation rules. So each subset can generate a optimality cut, and it introduce D  different optimality 
variables 

dθ . 

At the k-th iteration, let the scenario set partition be { }1 2( ) , ,
kLS k S S S= ⋅⋅⋅ ,where the set 

iS , 1,2, ki L= ⋅⋅⋅ , are disjoint, 

that is , i ji j S S∀ ≠ = ∅I  and 
1

kL
i iS S= =U . Let ( )F k  denote the set of iteration numbers up to k  where all 

subproblems are feasible and optimality cuts are generated .The optimality cut at k-th iteration has following form:         

( ) , ( ), ( )
Tt t

d ddg x t F k d S kα θ+ ≤ ∈ ∈                    (3) 

Where t
dα , t

dg  is defined in (14). Then the method generated ( )S k (the number of element in ( )S k  ) different 
optimality cuts. If for every ( )d S k∈ , the following formula hold: 

 ( ) , ( ), ( )
Tt t k

d ddg x t F k d S kα θ+ ≥ ∈ ∈                   (4) 

the algorithm stop, kx  is optimal, otherwise the algorithm add optimality cut like (3) to the master problem. 
At each iteration, the number of aggregation D  must satisfy 1 ( )D S k< < . The master problem will have ‘adaptive’ 

optimality variables dθ , that is ,the number of optimality variables will change during the course of the algorithm. The 
goal is to let the algorithm use more information and then settle for a level of aggregation that tends to faster 
convergence to the optimal solution. Svyatoslav Trukhanov, Lewis Ntaimo and Andrew Schaefer (Trukhanov, S., 
Ntaimo, L., & Schaefer, A.,2007) has proposed the redundancy threshold δ ( 0 1δ< < )to be a aggregation rule. In the 
master problem, if the optimality cuts contain ‘little’ information about the optimal solution, then these cuts are inactive. 
These inactive optimality cuts can be aggregated into one cut without information loss. Conside some iteration k after 
solving the master problem for some aggregate ( )d S k∈ , let df  be the number of iterations when optimality cuts 

corresponding to d  are redundant. If 
( )

df
F k

δ> , then all d  are combined to form one aggregate, and there is a 

new optimality cut generated in the next iteration. As a supplement to the redundancy threshold, a bound on the 
minimum and maximum number of aggregation ( )S k  should be imposed. This prevents the algorithm leading to the 
L-shaped algorithm (highest level of cut aggregation) and multicut algorithm(no cut aggregation). 
4. description of the algorithm 
4.1 the master problem 

For { }1 2( ) , ,
ki LS S k S S S∈ = ⋅⋅⋅ , the aggregation probability of 

iS  is defined as 
i

i

S s
s S

p p
∈

= ∑  with 
1

1
k

i

L

S s
i s S

p p
= ∈

= =∑ ∑ . Then 

the master problem has the following form: 
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θ
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∑                                     (5a)  

               s.t.   ( ) , ( ), ( )
Tj j

d d dx j F k d S kα β θ+ ≤ ∈ ∈                  (5b) 

                ( ) { }, , 0, 1, \ ( ),
Tj s j s x j k F k s Sβ γ+ ≤ ∈ ⋅⋅⋅ ∈                 (5c) 

                      x X∈                                            (5d) 
Where (5b) is the optimality cut, (5c) is the feasibility cut. 
4.2 feasibility cut 
The method of getting feasibility cut is the same as one for stochastic linear programming(Ruszczynski, A., & Shapiro, 
A.,2004). 
Solving following programming: 

,
min

y z
z                                           (6) 

                         s.t.  s sWy z h T x+ = −  

                             sy Y∈  

Where z  is the artificial variable, ⋅  is a norm on the space 2mR .Let ( )sU x  be the optimal of problem (6).If 

( ) 0s kU x = , s S∀ ∈ ,then kx  is the feasible point of problem (2),otherwise feasibility cut like (5c) is generated 

( ), , 0
Tk s k s xβ γ+ ≤ , 

where               
,

, ,
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and                ( ), , ,( ) ( ) ( ) ( )
Ts s k k s T k k s k sU x U x x x xγ β γ≥ + − = +            (8) 

4.3 optimality cut 
Solving the subproblem (2), let k

sπ  be the dual multipliers associated with an optimal solution of problem (2).then 
calculate: 
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For 1( )f x  the optimality cut at kx  is  

( ),0 ,0
1( )

Tk kf x g xα≥ +                               (10) 

where             
( )
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So for ( )f x  the optimality cut at kx  is: 

                 ( ), ,
( )

Tk s k ssf x g xα≥ +                                (12) 
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4.4 Update Cut Aggregation Level 
Generate aggregation ( )S k  using ( 1)S k −  based on some aggregation rules, each element of ( )S k  is a union of 

some elements from ( 1)S k − .For example , 
1 2, , ( 1)jd d d S k⋅ ⋅ ⋅ ∈ −  are aggregated into d , ( )d S k∈ ,then 

1

j

j
i

d d
=

=U  
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and 
1

j

j

d d
i

p p
=

= ∑ ,Master problem will be modified by removing variables 
1 jd dθ θ⋅⋅⋅  and introducing the new one 

dθ .For each major iteration ,the optimality cut is updated as following: 
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With above formula, a new aggregation optimality cut is generated: 

                     ( ) , ( ), ( )
Tt t

d ddg x t F k d S kα θ+ ≤ ∈ ∈                 (16) 

5. Algorithm 
Step0: Let 0, (0)k F φ= = , initialize (0)S , iθ = −∞ , (0)i S∈ ; 

Step1: For every s S∈ , solve subproblem (6) at kx x= : 

(a) if ( ) 0s kU x = ,construct the optimality cut (12.); 

(b) if ( ) 0s kU x > , construct the feasibility cut (8); 

Step2: Generate ( )S k  using ( 1)S k −  based on some aggregation rules, construct aggregation optimality cut (16) ; 

Step3: if 
( )

1

( )
S k

k
d d

d
f x p θ

=

= ∑ ,
( )

1

S k
k

d d
d

p θ θ
=

=∑  stop, otherwise { }( ) ( 1)F k F k k= − U , continue; 

Step4: Solve the master problem (5),if it is infeasible, stop, otherwise denote by ( )1 1,k kx θ+ +  it’s solution, 

1k k= + ,and go to step1; 
6. convergence of the algorithm 

Assumption: There exists a constant C  such that k

dg C≤ , for all 1, 2,k = ⋅⋅ ⋅and ( )d S k∈ . 

Lemma 1(Ruszczynski, A., & Shapiro, A.,2004): For every s S∈ , the number of iterations for which ( ) 0s kU x >  is 
finite. 
Theorem 1: If problem (1) has no feasible solutions the algorithm will stop at step4 after finitely many iterations; If 
problem (2) has feasible solutions then the method either stops at stop3 at an optimal solution or generates a sequence 
of point { }kx ,such that *( )lim k

k
f x f

→+∞

= ( *f  is the optimal of problem (1)). 

Proof: Since the master problem is a relaxation of (1), if the method stops at step4, the original problem is infeasible. 
Also, It always have *k fθ ≤ , so the method can stop at step3 only if kx  is optimal. It remains to analyze the case of 
infinitely many steps. 
The construction and the use of feasibility cuts is the same as in the linear case. By lemma1 It is true that if the problem 
has no feasible solutions, the method will discover this after finitely many iterations. Moreover, if feasible points exist 
and the method does not stop at an optimal solution, It must have ( )kf x < +∞  for all sufficiently large k . 

For 0ε >  define { }*: ( )kK k f f xε ε= + < < +∞ .Let 1 2,k k Kε∈  with 1 2k k< . 

Since 1 *( )kf x f ε> +  and 1* kf θ≥  there will be many new optimality cuts at 1kx . It will be in the master from 1k  

on, so it has to be satisfied at 2kx : 

11 2 1 2

1

*

( )

( ) ( )
T

kk k k k
d

d S k

f x g x x fθ
∈

⎛ ⎞
+ − ≤ ≤⎜ ⎟
⎝ ⎠
∑                       (17) 



Vol. 2, No. 5                                                                  Modern Applied Science 

 126 

On the other hand     2 *( )kf x fε < −                                          (18) 

By (17) and (18), It must have the following formula : 

12 1 2 1

1( )

( ) ( ) ( )
T

kk k k k
d

d S k

f x f x g x xε
∈

⎛ ⎞
< − − −⎜ ⎟

⎝ ⎠
∑                 (19) 

The function ( )f x  is subdifferentiable in its domain and X  is compact, so there is a constant C  such that 

1 2 1 2( ) ( )f x f x C x x− ≤ − , for all 1 2, ( )x x domf x X∈ I .By assumption, a C  big enough can be chose so that k

dg C≤  

for all k . It follows that  

              ( ) 1 2
1( ) 1 k kS k C x xε < + −   for all 1 2,k k Kε∈                   (21) 

 Since the set X  is compact, (21) implies that the set Kε
is finite for each 0ε > , then *( )lim k

k
f x f

→+∞

= .  

7. Summary 
This paper extend directly adaptive multicut aggregation method for solving two-stage stochastic linear programming 
with recourse to solving two stage problems of stochastic convex programming with recourse. The algorithm of the 
method is exactly described and its convergence proof is given. In the future, more work should be done to find the 
effective aggregation rules and apply for multi-stage stochastic programming. 
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