Modern Applied Science

A Note on Two Theorems of C. Dong and J. Wang Concerning Combinatorial Identities

Arnold R. Kräuter
Department of Mathematics and Information Technology
University of Leoben
Franz-Josef-Strasse 18, A-8700 Leoben, Austria
Tel: 43-3842-402-3803 E-mail: kraeuter@unileoben.ac.at

Abstract

In a recent paper C. Dong and J. Wang rederived three classical combinatorial identities by applying a special Vandermonde determinant. Two of their results, however, turn out to be incorrectly stated. This note presents counterexamples along with revised versions of the results mentioned.

Keywords: Vandermonde determinant, Identities involving binomial coefficients

1. Introduction

C. Dong and J. Wang applied a special Vandermonde determinant in order to establish a couple of well-known combinatorial identities in an elementary way (Dong \& Wang, 2007). Unfortunately, two of these are incorrectly stated. In the following we present counterexamples as well as revised versions of the respective theorems in the cited paper.
Let V_{n} denote the n-square Vandermonde matrix (cf. Lancaster \& Tismenetsky, 1985, p. 35, Exercise 6) of the integers $1,2, \ldots, n$,

$$
V_{n}=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & 2 & 3 & \cdots & n \\
1 & 2^{2} & 3^{2} & \cdots & n^{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 2^{n-1} & 3^{n-1} & \cdots & n^{n-1}
\end{array}\right],
$$

and let $D_{n}=\operatorname{det}\left(V_{n}\right)$ be the determinant of V_{n}. Furthermore, let M_{j} be the minor of the entry in the nth row and j th column of V_{n}, and let S_{j} be the minor of the entry in the first row and j th column of V_{n}.
Lemma 1 (Dong \& Wang, 2007, p. 24, Eq. (1)).

$$
\begin{equation*}
M_{j}=\left(\prod_{m=1}^{n-2} m!\right)\binom{n-1}{n-j}, \quad j=1,2, \ldots, n \tag{1}
\end{equation*}
$$

Lemma 2 (Dong \& Wang, 2007, p. 24, Eq. (2)).

$$
\begin{equation*}
S_{j}=\left(\prod_{m=1}^{n-1} m!\right)\binom{n}{j}, \quad j=1,2, \ldots, n \tag{2}
\end{equation*}
$$

Using (1) and (2) Dong and Wang obtained, among others, the following identities for positive integers n (Dong \& Wang, 2007, p. 25, Eqs. (3) and (6), resp.):

$$
\begin{equation*}
\sum_{j=1}^{n}(-1)^{n+j} j^{n-1}\binom{n}{j}=n! \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j=0}^{n-1}(-1)^{j}(n-j)^{i}\binom{n}{j}=0, \quad 1 \leq i \leq n \tag{4}
\end{equation*}
$$

2. Counterexamples to Eqs. (3) and (4)

In their current form, Eqs. (3) and (4) turn out to be incorrect.
Example 1. Eq. (3) is false. For if, e. g., $n=4$, (3) would imply

$$
\sum_{j=1}^{4}(-1)^{4+j} j^{3}\binom{4}{j}=-4+48-108+64=0 \neq 4!
$$

Example 2. Eq. (4) is false in the case $i=n$. For if, e. g., $i=n=4$, (4) would imply

$$
\sum_{j=0}^{3}(-1)^{j}(4-j)^{4}\binom{4}{j}=256-324+96-4=24 \neq 0
$$

3. Restatements of Eqs. (3) and (4) with proofs

The original Eqs. (3) and (4) have to be replaced by the following statements.
Theorem 1 (cf. Gould, 1972, p. 2, Eq. (1.13), first part). For every nonnegative integer n we have

$$
\begin{equation*}
\sum_{j=1}^{n}(-1)^{n+j} j^{n}\binom{n}{j}=n!. \tag{5}
\end{equation*}
$$

Proof. According to the original proof (Dong \& Wang, 2007, p. 25, Theorem 1) the following holds:

$$
D_{n}=\sum_{j=1}^{n}(-1)^{n+j} j^{n-1}\left(\prod_{m=1}^{n-2} m!\right)\binom{n-1}{n-j}=\prod_{m=1}^{n-1} m!.
$$

This gives

$$
\sum_{j=1}^{n}(-1)^{n+j} j^{n-1}\binom{n-1}{n-j}=(n-1)!
$$

Using the identity (cf. Gould, 1972, p. iv)

$$
\begin{equation*}
\binom{n-1}{n-j}=\frac{j}{n}\binom{n}{j}, \quad 1 \leq j \leq n \tag{6}
\end{equation*}
$$

we eventually obtain (5).
Theorem 2 (cf. Gould, 1972, p. 2, Eq. (1.13), second part). For every nonnegative integer n we have

$$
\begin{equation*}
\sum_{j=0}^{n-1}(-1)^{j}(n-j)^{i}\binom{n}{j}=0, \quad 1 \leq i \leq n-1 \tag{7}
\end{equation*}
$$

Proof. Let $W_{n}{ }^{(i)}$ denote the n-square matrix obtained from the Vandermonde matrix V_{n} by replacing the nth row by the i th row, $\quad 1 \leq i \leq n-1$,

$$
W_{n}^{(i)}=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & 2 & 3 & \cdots & n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 2^{n-2} & 3^{n-2} & \cdots & n^{n-2} \\
1 & 2^{i-1} & 3^{i-1} & \cdots & n^{i-1}
\end{array}\right]
$$

Since $\quad W_{n}{ }^{(i)}$ is singular by construction, expansion of $\operatorname{det}\left(W_{n}{ }^{(i)}\right)$ by the nth row gives

$$
0=\operatorname{det}\left(W_{n}^{(i)}\right)=\sum_{j=1}^{n}(-1)^{n+j} j^{i-1} M_{j}
$$

Using Lemma 1 and Eq. (6) we get

$$
\begin{aligned}
& 0=\sum_{j=1}^{n}(-1)^{n+j} j^{i-1}\left(\prod_{m=1}^{n-2} m!\right)\binom{n-1}{n-j}= \\
& =\sum_{j=1}^{n}(-1)^{n+j} j^{i}\left(\prod_{m=1}^{n-2} m!\right) \frac{1}{n}\binom{n}{j}
\end{aligned}
$$

Replacing j by $n-j$ and by the symmetry of the binomial coefficients we eventually obtain (7).
Remark. The arguments used in the proof of Theorem 2 still hold when $W_{n}{ }^{(i)}$ is replaced by the matrix

$$
X_{n}^{(i)}=\left[\begin{array}{ccccc}
1 & 2^{i-1} & 3^{i-1} & \cdots & n^{i-1} \\
1 & 2 & 3 & \cdots & n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 2^{n-2} & 3^{n-2} & \cdots & n^{n-2} \\
1 & 2^{n-1} & 3^{n-1} & \cdots & n^{n-1}
\end{array}\right], \quad 2 \leq i \leq n
$$

followed by the expansion of $\operatorname{det}\left(X_{n}{ }^{(i)}\right)$ by the first row (which involves the numbers $\quad S_{j}$ given in Lemma 2).

References

Dong, Changzhou, \& Wang, Junqing (2007). Application of Vandermonde determinant in combination mathematics. Modern Applied Science, 1 (2), 24-26.
Gould, Henry W. (1972). Combinatorial Identities. Revised Edition. Morgantown, WV: H. W. Gould.
Lancaster, Peter, \& Tismenetsky, Miron (1985). The Theory of Matrices. Second Edition with Applications. Orlando, FL: Academic Press.

