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Abstract

The purpose of this paper is to discuss the inequalities for the trace of self-conjugate quaternion matrix. We present the
inequality for eigenvalues and trace of self-conjugate quaternion matrices. Based on the inequality above, we obtain
several inequalities for the trace of quaternion positive definite matrix.
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1. Introduction

Quaternion was introduced by the Irish mathematician Hamilton (1805-1865) in 1843. The literature on quaternion
matrices, though dating back to 1936 [1], is fragmentary. Quaternion is mostly used in computer vision because of their
ability to represent rotations in 4D spaces. It is also used in programming video games and controlling spacecrafts [2, 3]
and so forth. The research on mathematical objects associated with quaternion has been dynamic for years. There are
many research papers published in a variety of journals each year and different approaches have been taken for different
purposes, and the study of quaternion matrices is still in development. As is expected, the main obstacle in the study of
quaternion matrices is the non-commutative multiplication of quaternion. The theory on eigenvalues, determinant,
singular values and trace of real and complex matrices has been well established. On the contrary, little is known for the
trace of quaternion matrices.

Asusual, R and C are the set of the real and complex numbers. We denote by H (in honor of the inventor, Hamilton)
the set of real quaternion:

H={a=a,+ai+a,j+ak,a,a,a,,a, R}
For a=a,+ai+a,j+akeH , the conjugate of a is a=d" =a,—aji—a,j—ak and the norm of g4 is
N(a)=+laa =aa =(a, +a} +a; +a;)"*. Let H™" and H™ be respectively the collections of all nxn matrices
with entries in 4 and 7 -column vectors. Let I, be the collections of all n x 7 unit matrices with entries in H .
For X e H™,X" is the transpose of X . If X:(XI,XZ,_,X”)T, then )7(:()}“)?2,,,,,)@{ is the conjugate of X
and X' = ()%1,)62,,._’)}") is the conjugate transpose of X . The norm of X is defined to beN(X):\/)(*X. For an
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*

'/')nxn :

nXn matrix 4 = (a,-,) (a, e H), the conjugate transpose of Aisthe nxn matrix 4° = ,JT =(a

j / nxn

The research of matrices is continuously an important aspect of algebra problems over quaternion division algebra, the
subject, such as eigenvalues, singular values, congruent and positive definite of self- conjugate matrices as well as
sub-determinant of self- conjugate matrices and so on, has been extensively explored [4-15], while little is known for
the trace of quaternion matrices. For linear algebraists and matrix theories, some basic questions on the trace of
quaternion matrix are different from real or complex matrix. For instance, if 4 and Bare the nxn matrices, then

Tr(AB)=Tr(BA) and Tr(4)= Zn: 4, arenot always right. In this section, we introduce the notation and terminology. In

section 2, we define some definitions and recall several lemmas. In section 3, we discuss the inequality about
eigenvalues and trace of self-conjugate quaternion matrices. In section 4, we conclude the paper with several
inequalities for the trace of quaternion positive definite matrix obtained by the result in section 3 and the Holder’s
inequality over quaternion division algebra.

2. Definitions and Lemmas
We begin this section with some basic definitions and lemmas.
Definition 2.1 Let A€ H™". A is said to be the self-conjugate quaternion matrix if 4" = 4.

H(n,*) is the set of self-conjugate quaternion matrices, (n,>) is the set of quaternion positive definite matrices.

Definition 2.2 Let 4 H™". A is said to be the quaternion unitary matrix if 4°4=44"=1,. H (n,u) is the set of

quaternion unitary matrices.

Definition 2.3 Let 4 € H™". ia” is said to be the trace of matrix A, remarked by 77(4). That is Tr(4)= Zﬂ“a‘_ .
i=1

i=1
Lemma 1. “'Let 4 H (n,*). Then, A is unitary similar to a real diagonal matrix, that is, there exists a unitary matrix
UeH(n’u), such that

U AU = diag(A,, 2,4, )
where, Ay Ay,ee A, € Rare the eigenvalues of 4.
Lemma 2. Let 4 € H(n,*) and Be H(n*). If there exists{J e H(nu), such that B=UAU", then, Trd=TrB.
Proof. Since 4 ¢ H(n,*), by Lemma 1, there exists } e H(nu), such that

V' AV =diag (A, A, 4,)>

where, Ay Ay,ee A, € Rare the eigenvalues of 4.Forany (U e H(n,u), we have

Zujuj =Z”:N2 (u,)=1(j=12-.n) (2.2
i=1 i=1

Jj=1 j=1

So

Meanwhile, we have B =UAU", then
B =UVdiag (4,2, 4,)V'U -

Since Uy e H( nu) , therefore
TrA=TrB=) 4"

i=1

Thus
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TrA=TrB 2.4)
3. The inequality for the trace of self-conjugate quaternion matrices

It is well known that the eigenvalues and trace of any self-conjugated quaternion matrix are all real numbers. In this
section, we shall discuss the inequality about eigenvalues and trace of self-conjugate quaternion matrices.

Theorem 1. Let 4 eH(n,>) B eH(n *) , their eigenvalues are aza,>22a, Bzpz-2p respectively, if

A, B are commutative, then T,, 4 B Za B -

Proof. Since 4¢ H(n,*),B c H(n,*), by lemma 1, there exists unitary matrices U,U, e H(n,u), such that
Ul*AU1 :diag(al,a2,~-~,an) 3.D
U, BU, = diag(p,. B, ) (32)
where ¢, > O(i = 1,2,...,1).Therefore
Tr(AB)=Tr| U diag (ey. .-, )U,U,diag (B,. B+, B,)Us |-
By (3.1) and (3.2), we have

*

U, ABU, = diag(a,,a,, -, ) U,U,diag (B, By, B,)U,U, -

Let UI*U2 =U :(uff')nxn , it is easy to know {/ GH(n,u), then
iuiju;:i]vz(uij_):l,(jzl,z,...’n)
i=1 i=l
iuiju;:i]\ﬂ(uij)zl’ (i:l’z’...,n).
Jj=1 i=1

Since (AB)*:B*A*:BA, and 4, B are commutative, then (AB)*:AB, ) ABeH(n,*)- Hence, by Lemma 2,
Tr(A4B)=Tr(U; 4BU, ) then

Tr(AB)=Tr| diag (a,.cy.+.a,)Udiag (B, B, 8,)U" |

Nz(“ll) Nz(”lz) Nz(“m) A

Nz(uzl) Nz(uzz) Nz(uu) ﬁz .

:(al’az’...’an)

NZ(“m) Nz(unz) Nz(um) ﬁn

Let
S Nz(ull) Nz(ulz) Nz(uln) A
& _ Nz(uzl) Nz(uzz) Nz(uzn) 5
‘fn Nz(unl) Nz (unZ) o N (unn) ﬁ,,
then

S6-30 33

>é- zzw,)ﬂ,:iﬂ,-—i(l SN 3 3 v s

i=1 j=k+1
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5 - (3.4)

k
i=1

By (3.3),(3.4) .and ¢, > 0(i =1,2,---n), then

4. The inequality for the trace of quaternion positive definite matrix

In this section, we first obtain an inequality for the trace of two quaternion positive definite matrices based on Theorem
1.Then by Theorem 1 and the Holder’s inequality over quaternion division algebra, the inequality for trace of the sum
and multiplication of quaternion positive definite matrices is obtained.

Theorem 2. Let A e H (n,>), B H(n,>), their eigenvalues are ¢, >, > >a,, B>, 2> [ respectively, if

A, B are commutative, then

\/TF(AB)S\/TF(A)TF(B)STr(A)erTr(B)S TrZ(A);—TrZ(B).

Proof. Since Tr(4)= o = Zn:a, > and Tr(B) = N = iﬁ' > 0> by Theorem 1,we have

P P P P
Tr(AB)< Zn:alﬂi :
P
Because of 4 ¢ H(n,>) , then there exists [ e H(n,u), such that
U'AU =diag(a,,a,,,a,)
where ¢, > 0(,' = 1,2,...,1).50,
U'ABU =U"AUU'BU =diag(a,,,,+,a,)U BU - (4.1

Since Be H (n,>), then B and I, are self-congruent, hence U BU and I, are self-congruent, that is , U'BU is

quaternion positive definite matrix. For any main sub-matrix L of U'ABU, by (4.1), we know that L can be obtained
by the main sub-matrix G of U'BU .Then

L= L™ :aiaj"'|G|mW:aiaj”' 1G>0,

where ||.|| is the determinant of quaternion matrix defined by Chen L X [10]. So, U 4BU is quaternion positive
definite matrix, hence Tr( A B) >0 .Since

Tr(A)Tr(B)—Tr(AB)Ziaiiﬂ, —ia,ﬂ, >0

SO
JTr(4B) <\Tr(A)Tr(B) - (4.2)
Because of
Tr*(A)+Tr* (B)=2Tr(A)Tr(B)
then
2Tr* (A)+2Tr* (B) > Tr* (A)+2Tr(A)Tr(B)+Tr* (B)
namely
Tr (A)+ 77 (B) (Tr(A)+Tr(B)J2
2 2
SO
Tr(A)+Tr(B) _ |Tr*(4)+Tr*(B) (4.3)
2 2
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By (4.2) and (4.3), the conclusion holds.

Theorem 3. Let 4 eH(n,>),BeH(n,>) . Their eigenvalues are a>a,>>a,, B> p respectively, if

p> Ll +l -1 .and 4, Bare commutative, then

q
Tr(4B)< (Tr(A"))% (Tr(Bff))é :
Proof. By Theorem 1 and the Holder’s inequality, we have
il '
Tr(4B)< ia[ﬂ[ < (Z afj” (iﬁﬁ]q = (Tr(AP))% (Tr(B‘f))é :
i=1 i=1 i=1

Specially, when p = g =2, we have

Tr(4B)< \/(Tr(AZ))\/(Tr(BZ)) .
Theorem 4. Let 4 eH(n,>),BeH(n,>) . Their eigenvalues are aza,>>a, B=p>>p respectively, if

p>1 ,and 4, B are commutative, then

1 1 1
(Tr((A+B)”))” <(1r(47)) +(1r(87)) -
Proof.Let ,_ P ,then ;.. Ql.,.l —1-Since
r-1 P q
(4+B)" = A(A+B)‘"_1 +B(A+B)’7_l
then, by Theorem 3 and the Holder’s inequality, we have

Tr[(4+B) |=1r[ (4+B) "+ B(4+B)"]

1 1
1 i 1 B

<(1r4")r [Tr(((A +B)" )qj (0B I:Tr(((A +B)") Hg
() (o]

Q=

ol
’ {(TrAP)llﬂ +(TrBP)ll’i|
pfl_"

- [Tr((A +B) )]7 (TrAP)% +(TrBP);lv]

That is
e[ (4+8) ] [n((mg)")r {(TVAP);’ +(TrBP);la]
So
(n((mg)ﬁ)); <(1v( Ap))% +(7( Bp))i.
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