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Abstract

Under the generalized weak convexity of (F, &, O, d ), we studied the results of several sorts of duality type about the

problem of multi-objective fractional programming (MFP), extended this results to the generalized arcwise connected

hypothesis, established the optimized problem of arcwise connected area (ACP) and the optimal sufficient condition of
min f(x) s.. g(x)<0 under constraint condition, and gave the duality model, and obtained the conclusions of
xe§

weak duality and strong duality.

Keywords: Arcwise connected function, Generalized convexity, Weak (strong) duality, Strong Quasi-arc, Optimal
solution

1. Introduction

One of important extensions about convexity was the concept of invariant convexity put forward by Hanson in 1981,
after that, in twenties years, thirty sorts of generalized convexity functions are introduced, which makes the research
contents of the optimized problems become very deep and abundant. The extrusive problem in these problems is the
duality problem under the weak convexity concept. In the optimization theory, for an appointed mathematic
programming problem, there are many types of duality, and two famous dualities are Wolfe duality (Wolfe, 1961,
p-239-244) and Mond-Weir duality (Mond, 1981, p.263-28), and in recent years, the mixed duality has been thought as
the type of various optimized problems, and the mixed duality (Aghezzaf, 2000, p.91-101, Aghezzah, 2001, p.617-628,
Zi, 1993, p.113-118, Liang, 2001, p.446-461, Mond, 1982, p.105-124, Mukherjee, 2000, p.571-586, Preda, 1992,
p.365-377, Xu, 1996, p.621-635, Yang, 2000, p.999-1005, Zhang, 1997, p.29-44).

Generally, when we solute an optimized problem, the feasible area is usually in the area with interior points, but in
practical problems, it always doesn’t possess this condition, for example, the feasible area of the problem is the
following line-type figure without interior point which is seen Figure 1. Its feasible area is connected by curve S. So
when we define the function in this feasible area, we can not consider its partial derivative or directional derivative, and
the grads of the function. For these problems, in early 1970, Ortega and Rheinboldt (Ortega, 1970) put forward the
concept of regional arcwise connection, after that, Avriel and Zang (Avriel, 1980, p.407-435) extended it as various
generalized convexities. The arcwise connected function and various generalized functions possess very good
local-global extremum property, and in this article, we mainly introduce the duality problem result under the
generalized weak convexity of (F, &, 0, d ) introduced by Liang. Z. A, Huang. H. Z. and Purdulos. P. M (Liang, 2003,
p-447-471), and extend it into the weak duality and strong duality of generalized arcwise connected function optimized
problem (ACP), and give some results.

2. Basic conclusions of MFP duality under generalized weak convexity of (F,¢, p,d )
Here, we will give the conclusions of several duality problems about MFP.
Supposed (MFP) min /@ 7 /i) L@ S (1—1)
g~ g(x) g g,
st h(x)<0, xe X.
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When X c R" is an open set, f,,g (i=1,2,---p) is the real valued function on X, and h is m dimensional vector

value function defined on X, and a7 =412, .. -myandM,, M, - M, isa

partition of M, i.e. (q] M,=M,M,N\ M, =¢,When k #1, so the generalized Mond-Weir duality of MEP is
k=0

Maxf(u)+l§4 h,, (u)e A(f‘( )+ZT hy, (u)+---+f( ))+/1§4h ()" (12
g(u) v g, () ! g, )

g fi) ]
V= AVh (u)=0
IZ::TI g ( ) +; J J (7/[)

i

ﬂ’TMkth (H)ZO, k:1a2>'“q

»
T=(7,,7,,-7,) € Rf,T>O,ZTi =1

i=1
Ay, € R k=012,--q ueX
Where, e=(1,1,---1)" and iMk represent column vectors, and their component subscripts belong to A/, .

2.1 Mond-weir duality

(MFD1) g ) (ﬁ(”),fz(”),...,fp(”))f (2---1)
gu)y g g W g,(u)

s.t Z f8+2/wh(u) 0

i=1 i

A h(u)>0
P
t=(1,,7,,+7,) € R, 7>0,> 7, =1

A=A, A, A) eR',ue X

Theorem 2.1 (weak duality) (Liang, 2003, p.447-471): Supposed X is a feasible solution of (MFP), and (u,7T ,/7_,) is
a feasible solution of (MFDI), and if f, and —-g(i=12,.-p) are convex (F,a,p,,d;)) on u , so

hj(j=1,2,~--m) 1S convex (F,ﬁ,é‘i,cj) on U ,and the inequation exists.

d(a) e
Ti A
; e Z e

8@ L@,
) PRl

¢ (xu)

>0 (2--2)

d(xu) so J(¥) f(ﬁ)
g(x) g(ﬁ)

Where, o (x,u)=a,(x,u)

g, 2(%)
Deduction 2.1 (weak duality) (Liang, 2003, p.447-471): Supposed X is a feasible solution of (MFP), and (i7,7,1) is
a feasible solution of (MFDI1), and if fl and g (i=1.2,---p) are strongly convex (F,a,p,,d,) (or convex (F,a.))-

On #, h,(j=12,m) isstrongly convex u(F,[,{,,c,), so J@ @)
g(x)  g)

Theorem 2.2 (strong duality): Supposed X is an effective solution of (MFP), and X fulfills the restrain condition
(GGCQ) (Avriel, 1980, p.407-435), s0 (T, /T)e R? xR exists and makes (;, ;, /T) be a feasible solution of (MFDI1),
and the objective function values on the corresponding points of (MFP) and (MFD1) are equal, and if it fulfills the

generalized convex inequation in Theorem 2.1, s0 (X, 7, A ) is an effective solution of (MFD1).

In fact, because X is an effective solution of (MFP), and (GGCQ) exists on X , as a necessary and effective condition,
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(T,A)e R’ xR",T>0 exists and makes (u,7, A) be a feasible solution of (MFDI). Though the corresponding
objective functions of (MFP) and (MFD1) are equal, but if (i,7,4) is not the sufficient solution of (MFD1), so a

feasible solution (x*,z", 1" ) of (MFD1) must exist and make J(x) ~ / (x*) .
g(x)  glx)

Its result is contradictive with the conclusion of weak duality in Theorem 2.1, so (u,7, A ) is an effective solution of
(MFD1).

2.2 Schaible duality
The extended formula of (MFP) Schaible duality (Schaible, 1976, p.452-46 & Schaible, 1976, p.858-867) is
(MFD2) MaxAd= (A, 2,,..2,)"
P

st YTV, () - A8, @)+ D v, Vh ) =0
Fw)-Ag,w)=0 T=12---p

p
Vihw)20, 7>0,> 7 =1

i=1

AeR’,te R’ ,ve R Jue x
Theorem 2.3 (weak duality) (Liang, 2003, p.447-471): Supposed that X is a feasible solution of (MFP), and

(u,7, A ,V) is a feasible solution of (MFD?2), if one of following equation comes into existence.

(1) f; and —g, (i=1.2,---p) are convex F,a,p,d, on u, h;(j=L12,---m) is convex (F,,{ ,c,) on

2) fl and -g, (i=12,---p) are convex F,q,, p,d, On u, h(j=12,-m) is convex (F,ﬂ,fj,cj) on U,
and these vectors 7 7, fulfill

Zpli/);(1+2)+i\7j§j >0 (2---3)
g(x)

Theorem 2.4 (strong duality) (Liang, 2003, p.447-471): Supposed X is an effective solution of (MFP), and X fulfills

the restrain condition (GGCQ) (Avriel, 1980, p.407-435), so 7€ R, A€ Rf,ve R} exists and makes

(X,7,,V) be a feasible solution of (MFD2), and 7 = L) If all hypotheses in Theorem 2.3 are fulfilled, so the
g(x)

corresponding (X, 7, A ,V) is an effective solution of (MFD2).

2.3 Extended Bector duality

G(x)

g:(x)

Supposed G (x) = ﬁl g, (x), G.(x)= (i=12,...p)

so (MFP) can be written as the following form

MFP) min? ) = (G0N G (91:() _G,0f,®
g(x) G(X) G(x) G(*)

st h(x)<0,xe X.

>

We use the equation of (MFP) from the form of (MFP) to establish the following duality which is called as the
extended Bector duality,
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MFD3) Max (G By @) Gy @), W49l )

G(u) G(u)

P G,(u)f, (u)+ vATJUhM0 (u)
s.t ;rivu 0

vath @)20 u=12,---q

q
+> Vv by ) =0
k=1

G, () f,)+ vy, by ()20, i=12,-p

P
i
=1

T P
7, =l7=(7,7,-7,) € R, ,7>0

i

ue X,v, €RM k=12,-¢q

Theorem 2.5 (weak duality) (Liang, 2003, p.447-471): Supposed that X is a feasible solution of (MFP), and

(u,7,v) is a feasible solution of (MFD3), and -G is convex (F,a,p,d) on u point, G,f,(i=1,2---p) is convex

F,a,p;,d on u point, and  (j=12,--m) is convex (F,Ot,fj,d) on u point, and if p>maxp, and the
1<i<p

following inequation exists.

’ G,)f; )+ vy, b, (@) g
DT+ )+ Y v G Y v, 20 (2—5)

i=l G(H) JjeM, k=1 jeM,

o T Gu)f (u)+ul, hy, (u)e
g(x) G(u)

Where, G(u) = diag{G,(u)---G,(u)},ec R’ ,e=(1L1,---1)}.

Theorem 2.6 (strong duality) (Liang, 2003, p.447-471): Supposed X is an effective solution of (MFP), and X fulfills
the restrain condition (GGCQ) (Avriel, 1980, p.407-435), so (%)) exists and makes X,7,V be a feasible solution of
(MFD3), and the objective function values of (MFP) and (MFD3) are respectively equal on X and (X, ;’, V), If the
hypotheses and conditions in Theorem 2.5 are fulfilled, so the (X, ;', V) is an effective solution of (MFD3).

3. The optimal condition and duality of generalized arcwise connected function

After we give the weak duality and strong duality of (MFP) under some very weak generalized functions, now we
consider the optimized problem which area is arcwise connection.

(ACP) min f(x)
st xe X
here, X ={xe §;g,(x)<0,j=12,---m}.f(x),g,;(x),(j =12,---m) is the real valued function on the set of
arcwise connection § ¢ R”, and to any X,,X, € S and the arc H, . ,f(x)andg (x) (j=12,--m) connecting

x,andx, are arcwise derivative about {7 onx,
142

Definition 3.1: Supposed H,_, is a continual vector value function, ie.

H, :[0l]—>S,andH,  (0)=x,H  (1)=x,. x,x,e€ S c R" are arcwise connections. If a vector

V' H . (4))€ R" and a vector value function ¢:[0,1]— R" exist and fulfill 111_{13 a(t)=0 to make following
equation come into existence when 0 < A <1

Hxlxz (/1) - Hxlxz (ﬂ'o) = (/1 - ﬂ'o )V_’Hxlxz (lo) + (ﬂ - ﬂo)-a(ﬂ - ﬂo) : (3—1)

So vector y- H,. (4) is called as the directional derivative of H, on the point of 2 =4, , which is got from the

following equation
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VH,, (1) = lim {[H

XXy

(H-H.

XXy

A)A=2)} - (3—2)

X)X,

Thus, we can define the arcwise derivative concept of arcwise connected function.
Definition 3.2: Supposed f(x) is the continual real valued function on the arcwise connected set § < R”, to any one

point x in S, x €5, HM0 is the arcwise connecting x and X,. If x tends towards x, along H he

t
XXy ?
following limitation exists.
FUH L, ()= f(x,) (3--3)
A-1

Tu,, (60)=(V"Hy ()" Vf (x,) =lim
Sowecall f(x) isarcwise derivative about F _ ~ onthe pointof X,and itis markedas f, (x,).

In this way, to 0<A<1, a continual arcwise connected function (ACF) f(x) on S can be denoted as

JH, (D)= f)+(A-D [  (x)+1A-Da.(-2). G4
Here, & :[0,1]— R, and fulfills lima/(¢)=0.
t—0
Definition 3.3: Supposed f(x) is the continual real valued function on the arcwise connected set §c< R”, to any one

point x in S, x,€ S, the arcwise H connecting X and X, exists and makes the following containment
X,X

relationship come into existence.

J) < f(x0)= fu,, (%) 20 (3—5)

So we call that f(x) is the puppet arcwise connected function on x, which is marked as PACF.

Under the same condition, if the containment relationship is  f(x) < f(x,) = f, Ho (xy) >0, so we call f(x) is the
strong puppet arcwise connected function on xo which is marked as SPACF, and if f(x) < f(x,) = f, i, (x)>0,50

we call f(x) is the strict strong puppet arcwise connected function on xy which is marked as STPACF.
If f(x) is PACF, SPACF and STPACF on any point of S, so we call f(x) is PACF, SPACF and STPACF on S.

Theorem 3.1 (Zhiun, 2001): Supposed f(x) is the quasi-arcwise connected function QACF on an arcwise connected set
ScR",if x,e 8 isastrictlocal minimum point of f(x), so X, is a strict global minimum point of f(x) on S.

Theorem 3.2 (Zhiun, 2001): Supposed f(x) is the strong quasi-arcwise connected function SQACF on an arcwise
connected set § c R", if x, e § is astrict local minimum point of f(x), so X, is the only strict global minimum point
of f(x) on S.

Prove: counterevidence. Supposed f(x) is SQACF and x, € S is a local minimum point of f(x), if xe S exists and

makes f(X) < f(x,),sothearcwise f;_ connecting X with X, exists, toany 0<A<I, thereis

FOH < () < f(xy)- (3---6)
To any neighbor area of X, we can always find 2’0 to make f_ (A) in this neighbor area when 4 < <1, thatis
contradictive with that X, is a local minimum point of f(x), so the theorem is proved.

To STQACEF, there are following theorems.
Theorem 3.3: Supposed f(x) is the STQACF defined on an arcwise connected set S c R”, and if x e 5 is a strict

local minimum point of f(x), so X, is the global minimum point of f(x) on S.

Theorem 3.4: Supposed f(x) is the real valued continual funciton on an arcwise connected set §c< R, x, €S is the
point to fulfill Vf(x,)=0, and if f(x) is STPACF, so X, is the global minimum point of f(x) on S. If f(x) is SPACF,

so X, is the only strict global minimum point of f(x) on S.

Prove: supposed f(x) is STPACF, x, € S is the point to fulfill Vf(x,)=0,sotoany x € S and corresponding

arcwise [ __, thereis
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Ju,, () =(V H,_ (MVf(x,)=0.

Thus, from the definition of STPACF, we can obtain  f(x) = f(x,), i.e. xo is the global minimum point of f(x) on S,

and if f(x) is SPACF, so from definition, we can obtain f(x)> f(x,). To any x € §, x# X, comes into
existence, i.e. X is the only global minimum point of f(x) on S.
Theorem 3.5: supposed in the problem (ACP), X ={xe S’g/(x) <0,j=12,---m} is the feasible area,

x),o .(x),7=12,---m 1is arcwise derivative on the arcwise connected set S — R”, and if x" is the optimal
7g/ b ] 249 —_ p
solution of (ACP), and £, (x )and(g,), .(x') are convex functions about x, so ’"o* € R,r € R™ exists and

makes following equation come into existence to any X € 5.

ro*fHﬂ* (x")+ P (g,)HN (x)<0 (3---7)
rTg(x")<0 (3---8)
(I’O* .V*) >0 (3___9)

Here, 1:=1(x")={i| g,(x") =0}, =J(x') = {j| g,(x") <0}

Prove: first, we prove the equation group
S @)>0 (3---10)
&)y (>0 (3—11)

has no solution in S.

counterevidence, if xe€ § exists and is a solution of the equation group, and because f,, (x*) and (g,), (x)

exist, sotoany 0< A <1

SH, ()= [ +@A=DS, ()+1-Da(l-2) (3--12)

g(H (D))=g()+(A-Dg)y . G)+1-De(-2) (3-—13)
here, @:[0.1] - R. lima(1)=0 (3.—-14)
2, :[0] > R. lima, (1) =0 (3.—-15)

from (3.10), (3.11), (3.14) and (3.15), we can obtain, to enough big AmarkasA, < A <1

fu  (H=a(1=2)>0

(8)y . ()-a,(1-1)>0 iel

thus, from (3.10) and (3.11), to 4, < A <1, there are

fu () = f(x7)<0 (3.--16)

(8 . (6)=g(x)<0 iel  (--17)

Because g, jel is arcwise derivative and continual on x* , and the arcwise Hm' %)) is also the continual function
about A, so limg, (H,.(A)=g, (x)<0.

Thatmeans 1, jeJ exists, and when L<a<ts g (H_.(2))<0 (3.——18).

Supposed Izmax{ﬂ,o,/f;}, so from (3.16), (3.11), (3.18), to A <A<1, we can obtain F .(1)e X, and
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f(H .(A)- f(x")<0- Thatis contradictive with that x" s the optimal solution of (ACP), so the equation group (3.10)
and (3.11) has no solution.

Because £ ao( x*)and( gy (x*) are convex function about x, so r.eRr €R" which are not zero completely
XX XX

exist and make flowing equation come into existence to any X € S .
* * x7 *
rofy (x)+r (gl)Hm(x )<0.

Let I"J* =0, so the theorem is proved.

Now, we establish the Mond-Weir duality of (ACP), and give the theorems of weak duality and strong duality.

(ACPD) Max f(u)
st 1y fu (u)+rTgHw u)<0 (3.—-19)
ergj(u)ZO (3.—-20)
j=0
ue S (r,,¥)20,7,€ R,re R" 3.—-21

Theorem 3.6 (weak duality): supposed x is the feasible solution of (ACP), (u,7,,7) is the feasible solution of

(ACPD), and if f(x) is STPACF on u point, »_r,g () is SPACF onu,
J=0

so ()2 fu).

Prove: reduction to absurdity, if f(x) < f(u), because f(x) is PACF on u point, from definition, there is
rofy (W)=0 (3---.22).

If 7, >0, so the inequation strictly comes into existence, and because x is the feasible solution of (ACP), (u,7,,r)

is the feasible solution of (ACPD), and we can obtain

i rig,;(x) < i r;g;(u) (3.—-23)

zk/.gj (1) is SPACF onu, so

(Zri“ g, ), ()20 (3.——24).

If some 1, >0,/ =12,3,---m, so the inequation strictly comes into existence, thus, from (3.22) and (3.24), we can

obtain
¥, fH (u)+ rTgHM u)>0 (3.—-25).
That is contradictive with (3.19), so f(x)= f(u).
Theorem 3.7 (strong duality): supposed x" s the optimal solution of (ACP), fu (x)and (g,), C(x%)
are convex functions about X, so I’O* € R, r € R™ which are not zero completely exist and make (x* 5 I’O* R r ) be the
feasible solution of (ACPD), and the objective function values of (ACP) and (ACPD) are equal on Xx " If to every
feasible (u,7,,7) of (ACPD), f(x) is STPACF on u point, irj g, (u) is SPACF on u, so (x ,r,,r ) is the

J=1
optimal solution of (ACPD).

87



Vol. 2, No. 6 Modern Applied Science

Prove: because X is the optimal solution of (ACP), so from theorem 3.1, ro* € R,r" € R™ exist and make
(x*,ro*,r*) is the feasible solution of (ACPD), so the objective function values of (ACP) and (ACPD) are equal on

xLIf (x*,ro*,r*) is not the optimal solution of (ACPD), so the feasible solution of (ACPD) (u,ro,r) exists and

makes

f)> f(x7) (3---26).

Because f(x) is STPACF on u point, er g, (u) is SPACF on u, (3.22) is contradictive with theorem 3.4, so
=1

(x* . ’”o* . r ) is the optimal solution of (ACPD).
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Figure 1. A Line-type Figure without Interior Point
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