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Abstract 

Type II sensitivity of the solid assignment problem is discussed in this paper. Parametric-bound method is 
proposed that determines the Type II sensitivity ranges of cost coefficients in the solid assignment problem. The 
procedure of the parametric-bound method is demonstrated with a numerical example. The result obtained by the 
proposed method will help the decision makers to take an appropriate action while handling various types of 
assignment problems having three parameters. 
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1. Introduction 

The assignment problem (AP) involving two parameters introduced by Votaw and Orden (1952) is a special type 
of a transportation problem and a linear zero-one programming problem. It is also one of the well-studied 
optimization problems which can be solved, using the linear programming technique, the transportation 
algorithm or the Hungarian method developed by Kuhn (1955). A solid assignment problem (SAP) consists of 
three parameters which is an extension of the AP. The solid assignment problems have wide applications in both 
manufacturing and service systems, multi-passive-sensor, capital investment, dynamic facility location, satellite 
launching and so on. In Pierskalla (1968), the SAP was proposed and solved using the branch and bound method. 
Frieze and Yadegar (1981) developed an algorithm for solving three-dimensional APs with application in 
scheduling. Recently, Anuradha and Pandian (2012) proposed a method for solving a SAP. 

The sensitivity analysis (SA), one of the most interesting and preoccupying areas of optimization was studied by 
many researchers, using various algorithms. The assignment problem is a completely degenerate linear 
programming model. Chi-Jen Lin and Ue-Pyng Wen (2003; 2007) studied sensitivity analysis of the assignment 
problem. The three types of sensitivity analysis of a fuzzy assignment problem, using labeling algorithm have 
been studied by Chi-Jen Lin et al. (2011). 

This paper proposes a new method namely, parametric-bound method to find the Type II sensitivity range (SR) 
of SAP. Here, we show that the variables with positive optimal solutions are still positive and zero variables still 
unchanged in the SAP. The procedure of the parametric-bound method is demonstrated through a numerical 
example. The SA in a SAP by the proposed method can help the decision makers in evaluating the economical 
activities and making satisfactory decisions while handling a variety of three dimensional assignment problems. 
2. Solid Assignment Problem  

Consider n  jobs in n  factory and the factory has n  machines to process the jobs. Each job in a factory has 
to be associated with only one machine. A cost ijkc  is incurred, when the job j ( j 1,2,...,n )  is processed by 
the machine i  ( i 1,2,...,n )  in the factory k  ( k 1,2,...,n ) . Let ijkx  denote the assignment of jth job to 
ith machine in the kth factory. Our aim is to determine the assignment of jobs to machines at minimum 
assignment costs. 

Now, the mathematical model of the above solid assignment problem (SAP) is given below:  

(P)     Minimize                     z =   
  
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0 ijkx (or) 1, for all i, j and k                            (4) 

where ijkc  is the cost of assigning the job j to the machine i in the factory k. ijkx 1 , if the job j is assigned to 
the machine i in the factory k, and ijkx 0 , otherwise.  

Any set of non-negative allocations to SAP which satisfies the Equations (1), (2), (3) and (4) is called a feasible 

solution to SAP. A feasible solution to SAP which minimizes the total assignment cost, that is, 
1

n n n

ijk ijk
i 1 j 1 k

c x
  
  

is called an optimal solution to the SAP.  

3. Sensitivity Analysis 

Sensitivity analysis is used to find out the effect of the changes in the value of the parameters and the structure of 
the model. Three types of sensitivity analysis for a linear programming model namely, Type I sensitivity (Basic 
invariancy), Type II sensitivity (Support set invariancy) and Type III sensitivity (optimal partition invariancy) 
were categorized and summarized by Koltai and Terlaky (2000) and Hadigheh and Terlaky (2006; 2007). If the 
optimal solution of a linear programming model is non-degenerate, all the three types are the same. Koltai and 
Terlaky (2000) have shown that the Type I sensitivity analysis of the degenerate linear programming model does 
not provide satisfactorily information. For obtaining suitable sensitivity analysis in a degenerate linear model, 
Type II sensitivity must be considered. Since SAP is a highly degenerate linear model, Type II sensitivity is 
studied in this paper. 

3.1 Cost Sensitivity Analysis  

SA of coefficients from the objective function of the SAP is a particular case of parametrical programming, 
where one of the cost coefficients of the objective function, ijkc  of the decision variable ijkx  is replaced by 

 ijk ijkc  and the rest of the data remain unchanged. 

An SA at the costs of non basic cells do not alter the existing optimal solution, as the current cost itself is very 
high and there has been no allocation along this route. The SA at the costs of allocated cells is likely to change 
the transportation schedule. In this case, SAP is re-studied with the current optimal solution. Using the current 
optimal solution of SAP, the MODI-indices   i j ku ,i 1,2,...,n;   v , j 1,2,...,n;   w ,k 1,2,...,n  can be obtained, 
using the basic cell property and kwjviuijkcijk  , for all non-basic cells are computed. Then, ijkc  is 
replaced by  ijk ijkc  and the rest of the data remain unchanged and the new values for the MODI-indices 

  i j ku ,i 1,2,...,n;   v , j 1,2,...,n;   w ,k 1,2,...,n  are computed. The SR of ijk  is evaluated using the 
optimality conditions, that is,      ijk ijk i j kc u v w 0  for all non basic cells. The SRs of other cells can be 
obtained this way. 

3.2 Computation of MODI-indices 

Let ijkijkc   be the cost coefficient of (i, j, k)th cell in the perturbed problem where ijk  is a parameter. 
The optimal solution of SAP contains only n  basic cells, but we have 3n  MODI-indices. 

We choose the MODI-indices  i iu ,i 1,2,3,...,n  and j jv ,   j n 1,n 2,...,2n  where 
i ,i 1,2,3,...,2n  are parameters. By applying the conditions ,0)(  kwjviuijkc for all basic cells (i, j, 

k), we can find the rest of the MODI-indices kw ,k 1,2,3,...,n  as a function of i ' s . 

The following theorems are used in the proposed method for finding the costs SRs of basic and non-basic 
variables in the SAP.  

Theorem 3.1: Let (i, j, k)th cell be a non-basic cell corresponding to an optimal solution of the SAP with 

ijk ijk i j kc u v w ( 0 )      . If ijk ijkc   is the perturbed cost of ijkc , then the range of ijk ijk[ , )    . 

Proof: Now, since (i, j, k)th cell is a non-basic cell and the perturbed cost ijkijkc   is not affected the current 
optimal solution to the problem, ijk ijk i j kc u v w 0     . This implies that, ijk ijk   . Therefore, the range 
of ijk  = ijk[ , )   
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Hence, the theorem is proved.  

Theorem 3.2: Let (i, j, k)th cell be basic cell corresponding to an optimal solution of the SAP with 

ijk ijk i j kc u v w ( 0 )      . If ijk ijkc   is the perturbed value of ijkc  and iU  is the minimum value of ijk  
for all non-basic cells in the ith origin, jV  is the minimum value of ijk  for all non-basic cells in the jth 
destination and kW  is the minimum value of ijk  for all non-basic cells in the kth conveyance, then the range 
of ijk ijk( ,M ]    where ijkM   the maximum { iU , jV , kW }. 

Proof: Now, since ijk ijkc   is the perturbed value of ijkc  and the current optimal solution remains optimal, 

ijk ijk i j kc u v w 0      , for all non-basic cells in the ith origin, the jth destination and the kth conveyance are 
positive.  

Now, attaching the ijk  to first kwjviu  then and then , , we have the following: 

              lllwsvijkiuislc  and  s  allfor  cells, basic-non is )s,i,(,0)(  ; 

               and  allfor  cells, basic-non is )j,(r, ,0)( lrllwijkjvrurjlc   or 

             s andr    allfor  cells, basic-non is )s,(r, ,0)( kijkkwsvrurskc  . 

Thus, we can conclude on the basis of the above implications that ijk  iU ; ijk   jV   or ijk  kW . Now, 
since we attach any one of the MODI-indices i j ku ,v  and  w , we take, ijkM   maximum { iU , jV , kW } for 
getting some better range. Therefore, the range of ijk ijk( ,M ]   . 

Hence, the theorem is proved. 

4. Parametric-Bound Technique 

We, now introduce a new procedure, namely parametric-bound technique based on the Theorem 3.1 and the 
Theorem 3.2 to analyze the costs SA in a SAP.  

The parametric-bound technique proceeds as follows. 

Step 1. Compute an optimal solution to the given SAP using the method adopted by Anuradha-Pandian (AP 
method) (2012). 

Step 2. Assign the parameters i ,i 1,2, ,2n    to the MODI-indices such that i iu ,i 1,2, ,n    and 

j jv , j n 1,n 2, ,2n      and then, compute the values of the rest of MODI-indices, k w ,k 1,2,...,n  as a 
function of si ' . 

Step 3. Construct the MODI-indices table for the optimal solution obtained in the Step1 and then, Compute 

ijk ijk i j kc u v w      for each non-basic cell (i, j, k) which is a function of the parameters s'i . 

Step 4. Compute all possible relations among the parameters i , i 1,2,...,2n  using optimality condition, 

ijk i j kc (u v w ) 0    , for all non-basic cells (i, j, k). 

Step 5. Using the Theorem 3.1 and overall relations obtained in the Step 3., compute the costs range of all 
non-basic cells. 

Step 6. Compute the costs range of all basic cells using the Theorem 3.2 and the relations obtained in the Step 4. 

For easy computing and clear understanding, the proposed method will be applied directly on a table as that of 
classical transportation algorithm. Parameters corresponding to the cell (i, j, k) are displayed as follows: we put 
the cost ijkc

 

at the left-side and the 
ijk ijk i j kc u v w    

 
at the right-side. 

The proposed technique is illustrated the following numerical example. 

Example 1: Suppose that there are three men denoted by 1M , 2M  and 3M , three factories denoted by 1F , 

2F  and 3F , and three jobs denoted by 1J , 2J and 3J . It is known that ijkc  is the assignment cost of the job j 
in the factory k to be performed by the man i. Besides, three men, three factories and three jobs can be associated 
with only one of the others, that is, only one man is associated with only one factory with only one job. The 
assignment costs ijkc  are given in the following table. 
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Table 1. The assignment costs ijkc  

Jobs J1 J2 J3 

 FactoriesMens F1 F2 F3 F1 F2 F3 F1 F2 F3 

M1 10 8 12 9 10 27 15 10 13 

M2 8 6 7 9 6 12 7 11 12 

M3 9 7 6 10 7 12 8 6 8 

 

Now, by the AP method (2012), the optimal solution to the given solid assignment problem is 3F
3 1M J , 

1F
2 3M J  and 2F

1 2M J  and the total minimum assignment cost is 23. 

Now, we take i iu ,i 1,2,3   and j jv , j 4,5,6  . 

Now, using the basic cell condition, the values of the rest of the MODI-indices kw ,k 1,2,3  are obtained as 
follows: 1 2 6w 7 ;    2 1 5w 10    

 
and 3 3 4w 6     .

 
 

Table 2. MODI-indices 

  41 v  52 v  63 v  

 

11 u  
6271  w  10       111 9       121  15     131  

51102  w  8        112 10        0 10     132  

4363  w  1        113 27      123  13     133  

 

22 u  
6271  w  8        211 9       221  7        0 

51102  w  6        212 6       222  11     232

4363  w  7        213 12      223  12     233
 

33 u  
6271  w  9        311 10      321  8      331

51102  w  7        312 7       322  6      332

4363  w  6          0 12      323  8      333
 
where 111 1 2 4 63         ; 112 4 52      ; 113 1 36     ; 121 1 2 5 62        

 
;
 

123 1 3 4 521         ; 131 1 28     ; 132 5 6 ;   
 133 1 3 4 67         ; 

211 4 61     ; 212 1 2 4 54          ; 213 2 31     ; 221 5 62    
 

; 222 1 24      ;

223 2 3 4 56         ; 232 1 2 5 61         ; 233 2 3 4 66         ;  

311 2 3 4 62 ;         312 1 3 4 53          ; 321 2 3 5 63         ; 322 1 33      ; 

323 4 56     ; 331 2 31 ;      332 1 3 5 64          and 333 4 62     . 

Now, by the optimality conditions, that is, ijk i j kc u v w 0     for all non-basic cells (i, j, k), we obtain the 
following overall results:  

                1 2 5 61 2;        
    1 24 8;              4 56 2;       

                      5 60 2;   
       1 33 6;   

      1 3 4 53 6;         

                   4 62 1;    
       2 31 1;    

        2 3 4 62 6.        
 

 

Now, using the Theorem 3.1 and the Theorem 3.2 and also, the above relations, we obtain the following the Type 
II ranges of ijk ' s  in the given SAP. 
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Table 3. Type II ranges of ijk ' s  

  1J  2J  3J  

 

1M  
1F  ),1[   ),3[   ),4[   

2F  ),4[   ]2,(  ),2[   

3F  ),3[   ),18[   ),5[   

 

2M  
1F  ),3[   ),2[   ]2,(  

2F  ),10[   ),4[   ),3[   

3F  ),2[   ),5[   ),8[   

 

3M  
1F  ),8[   ),4[   ),2[   

2F  ),18[   ),3[   ),4[   

3F  ]2,(  ),4[   ),3[   
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