
Modern Applied Science; Vol. 6, No. 10; 2012
ISSN 1913-1844 E-ISSN 1913-1852

Published by Canadian Center of Science and Education

37

A Terminological Search Algorithm for Ontology Matching

Ahmad Zaeri1 & Mohammad Ali Nematbakhsh1
1 Computer Department, University of Isfahan, Isfahan, Iran

Correspondence: Ahmad Zaeri, Computer Department, University of Isfahan, Hezar Jarib Street, Isfahan, Iran. Tel:
98-311-793-4010. E-mail: zaeri@eng.ui.ac.ir

Received: August 6, 2012 Accepted: September 16, 2012 Online Published: September 26, 2012

doi:10.5539/mas.v6n10p37 URL: http://dx.doi.org/10.5539/mas.v6n10p37

Abstract
Most of the ontology alignment tools use terminological techniques as the initial step and then apply the
structural techniques to refine the results. Since each terminological similarity measure considers some features
of similarity, ontology alignment systems require exploiting different measures. While a great deal of effort has
been devoted to developing various terminological similarity measures and also developing various ontology
alignment systems, little attention has been paid to develop similarity search algorithms which exploit different
similarity measures in order to gain benefits and avoid limitations. We propose a novel terminological search
algorithm which tries to find an entity similar to an input search string in a given ontology. This algorithm
extends the search string by creating a matrix from its synonym and hypernyms. The algorithm employs and
combines different kind of similarity measures in different situations to achieve a higher performance, accuracy,
and stability in comparison with previous methods which either use one measure or combine more measures in a
naive ways such as averaging. We evaluated the algorithm using a subset of OAEI Bench mark data set. Results
showed the superiority of proposed algorithm and effectiveness of different applied techniques such as word
sense disambiguation and semantic filtering mechanism.
Keywords: terminological search, similarity measures, semantic similarity, ontologies matching

1. Introduction
The vision of Semantic Web is about having data and knowledge machine understandable so that machines can
analyze and process complex request of humans more efficiently. In other words, the semantic web should
facilitate information sharing in any form and integrate information from different sources such as web contents
or database records (Berners-Lee, Hendler, & Lassila, 2001). An initial step toward this vision has been taken by
representing terminologies of different domains as Ontologies. Even in the same domain, having different
ontologies cannot be avoided due to complexity or expansiveness of knowledge or contrasting and distinctive
views of different users (Romero, Vázquez-Naya, Loureiro, & Ezquerra, 2009). Consequently, to successfully
integrating data sources with different ontologies, it is needed to align their ontologies through a process called
Ontology Alignment. In its simplest form, an ontology alignment is finding of one to one correspondences
among entities of two ontologies. In recent years, a large number of ontology alignment systems have been
developed to detect such correspondences.

These systems usually employ different alignment techniques which have been categorized by Euzenat et al.
(2007) in four main classes: terminological, structural, extensional, and semantic techniques. Terminological
techniques try to find correspondences by investigating similarities between entities names. Alternatively, the
structural methods consider internal structure of an entity or its relations to other entities as a source of detecting
correspondences. Most of the developed alignment tools use terminological techniques as the initial and the main
alignment approach and then apply the structural techniques to refine the results and to improve the accuracy.
Besides these two main techniques, some systems use extensional and semantic techniques. Extensional
techniques are inspired by the idea that having more commonalities between two entities’ individuals (i.e.,
instances) might imply higher probability of matching between them. Although semantic techniques usually
employ theoretical models and deduction to find similarity between interpretations of entities, the inductive
nature of ontology alignment makes using of such deductive techniques difficult. Thus, semantic techniques are
mostly utilized for validation of detected correspondences (Euzenat & Shvaiko, 2007).

Terminological techniques are divided into two main groups, the string based and the language based

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 10; 2012

38

approaches. The first one are techniques that just consider entity names as a sequence of characters and assume
that higher similarity between structures of two sequences shows a higher similarity between them. For example,
these techniques consider PublishedBy highly similar to Publisher, whereas they distinguish Paper from Article.
The second one considers occurrence of some meaningful words in the names and compare two names by
similarity between the meaning of those words (e.g., by using some external thesaurus). For example, these
approaches can easily detect similarity between Paper and Article.

However, each of these measures has its own cons and pros. For example, string based measures usually have
higher computational speeds and are more immune to small morphological changes (e.g., Food and Foods), but
they are more sensitive to none morphological changes (e.g., Food and Flood). On the other hand, language
based measures are less sensitive to none morphological changes (e.g., difference between Food and Flood can
be easily detected), but they are much slower and are more sensitive to morphological changes. Although
stemmer algorithms could help to find the root of a word, it would not be so beneficial if morphological changes
highly alter the meaning of the word (e.g., rewriter and writing).

Each terminological similarity measure considers some aspects or features of similarity, so ontology alignment
systems require exploiting different measures to achieve higher accuracy. Based on using similarity measures,
ontology alignment systems can be divided into two groups: First, alignment systems which directly use
similarity measures or combine different measures by some special technique such as averaging or weighted
averaging; Second, alignment systems which independently developed their own techniques without using well
known terminological measures.

While a great deal of effort has been devoted to developing various terminological similarity measures and also
developing various ontology alignment systems, little attention has been paid to develop similarity search
algorithms which exploit different similarity measures in order to gain their benefits and avoid their limitations.

In this paper, we suggest a novel terminological similarity search algorithm to find a concept Name (property or
individual) in an ontology that is similar to a search string SimString. This algorithm extracts all synonyms and
hypernyms of SimString from the WordNet and then creates a matrix which each row of this matrix represents
one meaning of SimString. In fact, this algorithm not only tries to find concepts similar to SimString but also tries
to find concepts similar to synonyms and hypernyms of all different SimString meanings as well. In addition, this
algorithm prioritizes the synonyms and hypernyms in which it considers more specific words firstly then tries
more general ones, so it can handle the situations that besides equal concepts, super concepts are interested.
Once all ontology concepts names were compared to matrix candidates, each row of matrix, which represents
one meaning of SimString, is scanned to find the at most one candidate per each row. This algorithm applies
special kind of semantic filtering by removing all selected candidates that have a semantic similarity to
SimString less than a threshold. The JIANG similarity measure has been used in the filtering part. In other words,
we suppose that having a high semantic similarity is necessary but not sufficient to consider two words similar.
ISub (Stoilos, Stamou, & Kollias, 2005) lexical similarity measure, as reported, has a clear superiority in
ontology name searching over other measures such as Levenstein. Hence, ISub has been used in calculating of
syntactical similarity calculation. Finally, algorithm uses a word sense disambiguation based on averaging to
select the final similar concept (property or individual). This algorithm employs and combines different kind of
similarity measures in different situations to achieve a higher performance, accuracy, and stability in comparison
with either using one measure separately or combining different measures in simple ways such as averaging.

The rest of this article is structured as follows. After giving an overview of related work in Section 2, we
illustrate the main algorithm in Section 3. Following this, Section 4 provides details on the experiments that we
carried out and the results achieved. In these experiments we showed the superiority of our algorithm by using
bench mark data set (Euzenat, Meilicke, Stuckenschmidt, Shvaiko, & dos Santos, 2011). We conclude with
discussion of the approach and topics for future work in Section 5.

2. Related Work
Today, large numbers of ontology alignment systems exist in literature. Most of these alignment systems use
terminological techniques as the first step to find the correspondences between ontologies’ entities. These
techniques usually utilize similarity measures to find such correspondences. Different similarity measures have
been proposed to exploit different aspects of similarities between entities. As mentioned earlier, in literature,
terminological similarity measures are usually divided into string based and language based measures.

Most widely used string based measure is the Levenshtein distance (Levenshtein, 1966). The Levenshtein
distance between two strings is the minimum number of insertion, deletion, or substitution of a single character
needed to transform one string into the other. Commonly used in bioinformatics, Needleman-Wunsch distance

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 10; 2012

39

(Needleman & Wunsch, 1970) is the modified version of Levenshtein distance which applies higher weight to
insert and delete operations in comparison with substitution. Jaro distance (1995) and its modified variant
Jaro-Winkler distance (1999) have been proposed for matching the names that may contain some spelling errors.
Jaro measure considers common character between two strings and their order to calculate the similarity. Jaro
measure is defined as follow (Euzenat & Shvaiko, 2007):

)
|)s,com(s|

|)s,transp(s||)s,com(s|

|s|

|)s,com(s|

|s|

|)s,com(s|
(

3

1
=)s,Jaro(s

21

2121

2

12

1

21
21

(1)

which com(s1,s2) is the common character between s1 and s2 and transp(s1,s2) is the characters in com(s1, s2) with
different orders in s1 and s2.

Another feature for calculating similarity is to consider the number of common substrings between two strings.

||||

|),(|2
=),(

21

21
21 ss

ssubstringmaxCommonS
sssubsim

(2)

Stoilos et al. (2005) have proposed ISUB measure which has specially been designed for ontology alignment by
extending the idea of subsim measure:

),(),(),(=),(21212121 sswinklerssDiffssCommssISUB (3)
which

||||

||2

=),(
21

21 ss

tringmaxComSubS

ssComm
i

i

 (4)

and imaxCommonSubstring extends the idea of maximum common substring by considering the next common
substrings after removing previous common substrings.

))(*)()()((0.40.6

)(*)(
=),(

2121

21
21 suLensuLensuLensuLen

suLensuLen
ssDiff

(5)

uLen represents the length of the unmatched substring from the initial strings.),(21 sswinkler is the
Jaro-Winkler similarity measure added for extra improvement.

They argue that for the case of ontology matching ISUB has a higher performance in comparison with other
string based measures in the term of F1, precision, and recall (Stoilos et al., 2005).

In contrast to string based measures, language based measures consider string in the word level other than
character level. In literature, language based measures are included two main groups: intrinsic and extrinsic.
Intrinsic measures employ some linguistics techniques such as stemming, removing stop words, and part of
speech tagging to find similarities between words while extrinsic measures uses some external resources such as
dictionary and thesaurus to match words by considering their meaning. Many of extrinsic measures in ontology
world utilize WordNet (Fellbaum, 1998) as an external resource to calculate extrinsic similarity measures
(Euzenat & Shvaiko, 2007).

The WordNet extrinsic measures are divided into the three categories based on the kind of information that they
consider: path based, information content based, and hybrid measures.

Path based measures: These measures use distance between two words’ node in the taxonomy graph and their
place to calculate the similarity. Higher distance between two nodes shows lower similarity between words.

Rada et al. (Rada, Mili, Bicknell, & Blettner, 1989) uses the length of path between two concepts as the distance
between two concepts.

)),((= 21 CCpathlengthceradaDistan (6)

Leacock and Chodorow (1998) have normalized the Rada distance by using a D factor as the depth of the
taxonomy contains the two concepts. Then they have translated it to a similarity measures as follow:

)
2

)),((
(=),(21

21 D

CCpathlength
logCCLCSim min

(7)

Wu and Palmer (1994) define the similarity of two concepts based on their distance to the lowest common super
concept and the distance of the common super concept to the root of taxonomy as well. The basic idea here is

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 10; 2012

40

that as the common subsumer goes far from the root the similarity of two concepts is become less sensitive to the
distance of two concepts.

321

3
21 2

2
=),(

NNN

N
CCmWuPalmerSi

(8)

where 3C is common subsumer of 1C and 2C . If 1C and 2C have more than one common subsumer, the 3C
would be the most specific one. 1N , 2N , and 3N are the lengths of the paths between 1C to 3C , 2C to 3C ,
and 3C to root respectively.

Information content based measures (Cross & Hu, 2011): Finding path between two words in a taxonomy graph
is usually a time consuming task, so information content based measures just employ the content of two nodes to
determine the similarity between their corresponding words. Taxonomy is enriched by an information content
function as follows:

))((=)(cplogcIC (9)
IC represents the probability of encountering an instance of a concept c to all other concept instances.

Resnik (1995) have introduced the first measure based on the information content function.

)]([=),()2,1(21 cICmaxCCResnikSim CCSc
(10)

where),(21 CCS is the set of 1C and 2C common subsumers. This measure just considers the common
subsumer which has the highest amount of information content.

Lin (1998) extends Resnik measure to also consider information content of 1C and 2C as well.

)()(

)(2
=),(

21

3
21 CICCIC

CIC
CCLinSim

(11)

Jiang and Conrath (1997) have proposed another distance measure based on information content, but this
measure has inspired by different idea. More data on common subsumer rather than on nodes themselves, the
higher of the probability of similarity between the nodes.

 1 2 1 2 3JiangDistance(C ,C)= IC(C) IC(C) 2 IC(C) (12)
where 3C is the common subsumer of 1C and 2C with the highest information content.

Combined measures: These measures utilize combinations of different measures. For example, it could exploit
the positions of two nodes in taxonomy graph as well as their contents to find the similarity between two
concepts.

Pirro (2009) has combined the idea of feature based similarity with the information content based measures to
propose a new measure. Feature based similarity have been suggested by Tversky et al. (1977) employs the
common features of 1C and 2C as well as their differentiating features as follows:

|)()/(||)()/(||)()(|

|)()(|
=),(

122121

21
21 CfeCfeCfeCfeCfeCfe

CfeCfe
CCTverskySim

(13)

which fe is the feature set of the concept, and , 0 are the parameters of the Tversky similarity.

The Pirro similarity measure is defined as (Pirro, 2009):

)()()(3=),(21321 CICCICCICCCPirroSim (14)
where 3C is the most informative common subsumer as defined in Resnik measure.

After briefly reviewing terminological similarity measures, we now discuss the terminological matching
techniques used in ontology matching systems. Some of these ontology matching systems directly employ those
similarity measures while some others use special techniques to perform the terminological matching.

OLA (Euzenat & Valtchev, 2003) utilizes a measure derived from Wu-Palmer for terminological mapping.
ASMOV (Jean-Mary, Shironoshita, & Kabuka, 2009) uses Wu-Palmer to find similarity between properties
while uses Lin measure to find similarity between concept names.

Having one of the highest results in the OAEI contest, Agreement Maker (Cruz, Antonelli, & Stroe, 2008) uses
three different matchers for terminological matching. These matchers are Base Similarity Matcher (BSM),
Parametric String-based Matcher (PSM), and the Vector-based Multi-word Matcher (VMM).

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 10; 2012

41

Agreement Maker uses BSM to generate the initial alignments among concept names of two ontologies. BSM
first tokenizes the entity compound names and then removes all stop words (such as, “the”, “a”). It then uses the
WordNet to enrich each word in the tokenized string by its glossary. BSM then employs the stemming algorithm
to translate the words of enriched strings to their roots. After these preprocessing steps, BSM uses following
similarity measure to calculate the similarity between the two enriched concept names:

||||

||2
=),(21 DD

DD
CCBaseSim

(15)

where D and D are enriched versions of 1C and 2C respectively.

In PSM, users can choose various parameters which are suitable to the specific application. Users can select a set
of string similarity measures such as Levenshtein or Jaro-Winkler, a set of preprocessing operations such as
stemming or stop word elimination, and a set of weights for considered similarity measures. PSM computes the
similarity between two concept names as the weighted average of values calculated by different selected
similarity measures.

VMM enrich a concept name by extra information such as description field and neighbor names. Similarity
between these enriched terms are then calculated using TF-IDF (Salton & McGill, 1986) technique.

RiMOM (Li, Tang, Li, & Luo, 2009) uses linear combination of modified Lin measure and a statistical measure.
Falcon (Jian, Hu, Cheng, & Qu, 2005) employs a modified version of edit distance and combines the results by
using the TF-IDF technique. CIDER (Gracia, Bernad, & Mena, 2011) uses Jaro Winkler measure to compute the
similarity between concept names after enriching each concept name with its WordNet synonyms. CODI (Huber,
Sztyler, & Noessner, 2011) combines various similarity measures such as Levenshtein and Jaro-Winkler through
different methods. These methods include averaging, weighted averaging, maximizing. For weighted averaging
methods, weights are calculated by a special learning method. AROMA (David, Guillet, & Briand, 2007)
enhances the matching results by employing Jaro Winkler measure with a fixed threshold.

H-MATCH (Castano, Ferrara, & Montanelli, 2006) calculates the shortest path between the two entity names by
using a thesaurus. LogoMap (Jimenez-Ruiz, Morant, & Grau, 2011) combines indexes, calculated by information
retrieval technique, and anchor alignments to detect the matches among entities. LogoMap employs ISUB
measure to compute anchor alignments confidences.

3. Approach
Within natural language, we use a vocabulary of atomic expressions and a grammar to construct well-formed and
meaningful expressions as well as sentences. In the context of an ontology language the vocabulary is called
signature, and can be defined as follows.

Definition 1 Signature. A signature S is a quadruple IRPCS ,,,= where C is a set of concept names, P is a
set of object property names, R is a set of data property names, and I is a set of individual names. The union

RP is referred to as the set of property names.

Definition 2 Similarity Search Algorithm . Given two ontologies O1 and O2 and their signatures

11111 ,,,= IRPCS and 22222 ,,,= IRPCS , a similarity search algorithm is defined as:

TSimStringS),((15)

where 2222 |||= IRPCS is the search space such that ST . 1SSimString is a search string. T type
should be same as SimString, i.e. 1CSimString will lead to 2CT and so on. By reducing the problem with
just considering one name from 1S as SimString, we tried to keep the algorithm more general, so it could be
used by other applications such as search engines, which need to find a concept in an ontology similar to a search
text. For the sake of the simplicity, in the followings, we only refer to concepts but similar methods could be
applied to search in other parts of signatures.

In the following, we discuss the desired features for such similarity algorithm. First, the aim is to find the most
specific concept in 2O that is similar to SimString. This concept should not be more specific than SimString.
Most of the semantic similarity measures that are defined based on edge counting are not applicable here since in
such measures, concepts that have relation like sibling also receive a high similarity (due to close distance) and
the direction of the relations does not matter. In fact, this requirement means that the algorithm should first try to
find a concept very similar to SimString and if failed, should try to find a concept similar to more general
meaning of SimString. In other words, if SimStringConcept be an ideational Concept in O2 fully similar to
SimString, then always SimStringConcept ⊑ foundConcept. This feature is very important specially for aligning

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 10; 2012

42

two ontologies that expressed in different levels of granularity. Second, algorithm should not be sensitive to
minor morphological differences such as suffixes and prefixes that have no effects on the meaning. In the same
time, algorithm has to consider small none morphological changes that change the meaning totally (e.g., Flood
and Food). Third, for some search applications such as search engines, high recall has a high importance, while
for some other applications, like instance immigration between databases, more accurate results is definitely
preferable. Consequently, the search algorithm has to be flexible and address different needs of recall and
precision priority strategies. Fourth, the terminological search algorithm is the core component for most
alignments systems, so having a high efficiency would directly improve the overall performance. Fifth, the
algorithm should provide good level of stability because usually alignment algorithms are so sensitive to changes
in their thresholds.

Figure 1. Similarity search algorithm

Proposed similarity search algorithm has been expressed in pseudo-code in Figure 1. It first tries to find the
concepts in OntSearchList that are lexically very similar to SimString. This step is carried out by using a lexical
search algorithm depicted in Figure 3. FindLexicalSimilar compares SimString to the all names exist in
OntSearchList. Once it found the concept name that has the highest similarity to SimString, it compares their
similarity value to a threshold, and if the similarity surpasses the needed threshold, it will return found similar
concept. Otherwise, it will return null. For this direct comparisons, algorithm uses ISUB similarity measure

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 10; 2012

43

which, as reported (Stoilos et al., 2005), has a clear superiority in ontology name searching over other lexical
measures. Once the lexical algorithm finished, the algorithm checks the returned concept (if exists any returned
similar concept) by a semantic filtering algorithm (see Figure 4) to ensure that there is no semantic inconsistency
between it and SimString.

As aforementioned in requirements, proposed algorithm should prevent the cases that two concepts are very
similar lexically, but quite different semantically. We have added a SemanticFilteringAccepts method to fulfill
this requirement. This method calculates the semantic similarity of two concepts by JIANG measure. If the
similarity could not be determined, this method has not enough information to reject the similarity (showed in
method by -1). If the proposed similar concepts have a semantic similarity lower than a threshold, Semantic
Filtering Accepts will reject their similarity. Otherwise, the method accepts their similarity.

In the case that the algorithm fails to find a direct similar concept, it tries to find similar concepts by extending
the SimString (lines 8-14). This algorithm extracts all SimString synonyms and hypernyms from WordNet and
then creates matrix illustrated in Figure 2. Each row of this matrix represents one meaning of SimString. In fact,
this algorithm not only tries to find concepts similar to SimString, but also tries to find concepts similar to
synonyms and hypernyms of SimString as well. In each row of this matrix, all synonyms of the meaning that row
represents, come first (from left) and all their hypernyms from most specific to most general come afterwards.

Figure 2. Searching matrix structure

Each SimMatrix[i][j] from this matrix can store one candidate for search result and contains three data fields; a
NameString which algorithm tries to find most similar concept in OntSearchList to this and store it in
MostSimilarOntRes, MostSimilarOntRes stores most similar concept to NameString which has been found so far,
and finally, a SimilarityValue which shows the degree of similarity between NameString and MostSimilarOntRes.

CalculateSimilarites method (see Figure 5) compares each concept name from OntSearchList to all NameStrings
in matrix; if the concept name similarity to NameString is more than SimilarityValue, MostSimilarOntRes is
replaced by this new concept, and SimilarityValue is also updated. Once all ontology concepts were compared to
matrix candidates, each SimMatrix[i][j] would contain ontology concept that is most similar to containing
NameString. For comparing the extracted synonyms and hypernyms to ontology concepts, we simply use the
Levenshtein similarity measure since we know that ISUB has failed in previous step, and we want to use an
alternative measure.

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 10; 2012

44

Figure 3. Find lexical similar algorithm

As noted earlier, each row of matrix includes all synonyms and hypernyms of one meaning of SimString, in order
which most specific names at left to most general at right. By considering this order, a DistanceThreshold, values
between [0, 1], specifies the ratio of each row from left that algorithm is permitted to scan for finding similar
concepts. In other words, lower Distance Threshold means to consider less general hypernyms. Conversely,
higher Distance Threshold means to consider more general hypernyms. Using this parameter can provide more
flexibility which specified in requirements.

Following this, algorithm chooses at most one candidate from each row of this matrix by calling FindCandidate
(see Figure 5) and puts them in CandidateArray. In the Find Candidate one row of matrix, which represents one
meaning of SimString, is scanned from left to right to find the first candidate that has a Similarity Value higher
than SimThreshold. If found candidate is rejected by Semantic Filter Accepts method, the selected candidate is
simply ignored and scanning in the same row will be continued to find another possible candidate.

Figure 4. Semantic filtering accepts algorithm

Once the algorithm finished establishing the possible candidate list, it can return the candidate list to let the
application to choose the suitable candidate upon its preferred context. Alternatively, it can do the word sense
disambiguation (WSD) (Navigli, 2009) by itself and then return the selected candidate. In this algorithm we have
implemented a straightforward WSD technique using context knowledge which has been accumulated in
SearchMatrix. Each row of SearchMatrix contains synonyms and hypernyms of one SimString’s meaning. As
aforementioned, after calling the CalculateSimilarites method, each element of SearchMatrix is populated by the
most similar concept in addition to the similarity value. The WSD method uses average of similarity values in
each row as measure of its relatedness to the ontology. The higher row’s similarity values average, the higher
probability that the row represents the wanted meaning of SimString in ontology. The rationale behind this rule is
that having higher average shows that the row has more commonality with the ontology concept names.

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 10; 2012

45

Figure 5. Calculate similarities algorithm

Finally, the algorithm will return the selected candidates, and if the WSD fails to choose any candidate (i.e. the
selected row does not contain any candidate), the algorithm tries to select the first candidate based on their order
in the WordNet because the synsets in the WordNet are sorted by their usages’ frequencies (Fellbaum, 1998).

Figure 6. Find candidate algorithm

4. Experiments
For examining performance of implemented search function, OAEI benchmark (Euzenat et al., 2011) 101 and
205 datasets have been used to compare suggested search algorithm to different search algorithms based on
variety of syntactical and semantical similarity measures. OAEI benchmark 205 dataset has been designed to
show effectiveness of ontology matching algorithms in using string similarity. In our proposed algorithm, three
different syntactical and semantical measures have been used: the ISUB measure as the main syntactical measure,
the Levenshtein as the auxiliary syntactical measure, and the JIANG as the semantical measure for filtering
mechanism. In our test scenarios we compared results of our approach to use of these three measures separately.
In addition, to investigate performance of our algorithm more comprehensively, some other similarity measures
from different group of semantic measures have been exploited in our test scenarios. These similarity measures
include Lin, Resnik, and Pirro. It has to be noted that we cannot compare results of our algorithm, which just use
name similarity, with full ontology matching algorithms that use many various matching algorithm.

Furthermore, we carried out two extra tests that consider aggregation of these measures as well. In the first
aggregation scenario, the average of all these measures is been calculated while, in the second scenario, these
three measures are prioritized according to their order in our algorithm. We also added some more experiences in
order to investigate some other aspects of proposed algorithm such as its stability and effectiveness of features
like semantic filtering or word sense disambiguation.

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 10; 2012

46

Figure 7. F1 measures of achieved results have been compared to other search algorithms based on well-known

semantic and string similarity measures

Description: Threshold1 shows the results which has been achieved by changing the first threshold of algorithm,
and Threshold 2 shows the results for changing second threshold of algorithm.

Figure 8. Precisions of achieved results have been compared to other search algorithms based on other

well-known semantic and string similarity measures

The proposed algorithm, like most of the other matching algorithms, needs some setting parameters. First, it
needs the threshold used for the main lexical similarity search algorithm (see Figure 3) which uses the ISUB
similarity measure, so we will refer to it as ISUB threshold or sometimes simply threshold1. Second, it requires
the threshold for semantic filtering (see Figure 4) which uses the JIANG similarity measure. Third, it exploits a
threshold for finding candidates for each row (see Figure 6). Since this algorithm uses Levenshtein measure, we
refer to this threshold as Levenshtein threshold. Finally, there is also a distance threshold which put a limitation
on the percentage of hypernyms which considered in each row of the Search Matrix. We focus more on the first
and second thresholds, but we also accomplish some experiences on the effects of changing other thresholds on
the algorithm performance.

In Figure 7, Figure 8, and Figure 9, performance of proposed algorithm has been compared with the matchers
have made based on other measures in the term of F1 measure, precision, and recall respectively. For each of
these measures, we have developed a basic matcher and applied it to the data set. In each matcher, regarding
threshold was set from 0.0 to 0.99 with the step of 0.01. For our algorithm, the Thrshold 1 shows the results of
changing ISUB threshold, and the Thrshold 2 shows the effects of changing in Levenshtein threshold while
keeping the other thresholds in the fixed best values. These results show that our algorithm outperforms all other
measures when they are used separately in the term of result quality factors. These results also reveal that the
algorithm is more sensitive to changes in the first threshold other than changes in the second threshold.

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 10; 2012

47

Figure 9. Recall results of proposed method have been compared to other search algorithms based on other

well-known semantic and string similarity measures

The previous experiment has been repeated to compare the run time needed for each developed matcher.
Although the developed algorithm running time is not comparable with syntactical measures such as Levenshtein
(run time was less than 20 MS and has not been shown), the Figure 10 shows that it has a running time far better
than other semantic measures.

Figure 10. Run time comparison of proposed algorithm to other search algorithms based on well-known
semantic measures

The other concern about the using of an algorithm with numbers of thresholds is the stability of the algorithm. In
other words, algorithm has to show that its performance would not change sharply by changing its thresholds.
Figure 11 shows the changes in F1 measure of the results due to changes in both first and second thresholds.
These results demonstrate that algorithm is not so sensitive to its thresholds changes. It shows a good level of
stability because the majority area of the curve has a high F1 measure, and the curve is smooth without sharp
drops or raises.

One feature of the proposed algorithm is the using of a distance threshold to put a limit on the percentage of used
hypernyms in each line of search matrix (see Section 3). Figure 12 illustrates the effects of changing distance
threshold from 0.0 to 1.0 while all other parameters such as similarity and filtering thresholds are in their best
values. This results show that after a fluctuation, F1 measure has been increased to its highest value when the
distance threshold is 0.81 and then has been decreased again afterward. This experience shows that using more
hypernyms will improve the results, but employing very general hypernyms shows fewer impacts on the results.

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 10; 2012

48

Figure 11. Searching for best combinations of both thresholds of algorithm

Description: ISUB axis represents the values for the first threshold of algorithm and the Levenshtein axis shows
the values for the second threshold of algorithm.

Figure 12. The effect of changing distance threshold parameter on the results of algorithm in the term of F1
measure

As discussed earlier (see Section 3), this algorithm applies a filtering mechanism to eliminate the false similar
causes that the two words are lexically very similar but semantically different. Figure 13 shows the significant
improvement which has been achieved by employing this mechanism independent from the used similarity
thresholds. In this experiment, we changed the first ISUB threshold from 0.0 to 1.0. However, the runtime values
illustrated in the Figure 14 show that this mechanism has made the algorithm almost three times slower.

Figure 15 demonstrates that applying the simple proposed word sense disambiguation mechanism can improve
the results. Additionally, as illustrated in Figure 14, the word sense disambiguation due to its simplicity will not
put significant overload on the main algorithm.

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 10; 2012

49

Figure 13. The achieved results of algorithm which uses filtering mechanism compared to results achieved

without using filtering

Figure 14. The cost of using filtering mechanism has been showed by comparing run time of algorithm that uses

filtering mechanism and the run time of algorithm that does not use filtering

Figure 15. Results of algorithm which use word sense disambiguation mechanism compared to results has been

achieved without using word sense disambiguation

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 10; 2012

50

Figure 16. The cost of using WSD mechanism has been showed by comparing run time of algorithm that uses

WSD mechanism with run time of the algorithm does not use WSD

Figure 17. The results of proposed algorithm compared to other algorithms that combine different measures

Our algorithm uses three measures which are Isub, Levenshtein, and JIANG. In the last experience, it has been
tried to compare suggested algorithm (Three Threshold in Figure 17) to some other previous methods that also
combine those measures to improve the overall performance. Two conventional approaches are: comparing
average of all three different measures (Combined-Averaging in Figure 17) and using different measure with
priority (Combined-Prior in Figure 17). In using with priority case, it begins to calculate the similarity with the
first measure and then compares it to the threshold. If the similarity value is less than the threshold, it will use the
next measure. In the other hand, this method considers that two words are similar if at least one calculated
similarity is higher than the threshold. It should be noted that the aforementioned priority just has influence on
the algorithm runtime and not the results. Setting some thresholds to the best values in previous experiments can
be subject of argumentation, so it has been avoided to use any specific values for the needed thresholds in this
last experiment. In the configuration of our algorithm’s thresholds, instead of using fixed value for each
threshold, we have just used a same variable value for all needed thresholds.

Figure 17 compares the results for those three different approaches (Two Threshold results are the results
achieved by a fixed value for semantic filtering mechanism and could be used as an estimation of proposed
algorithm final results). This figure shows that in the first, the average approach demonstrates a better
performance, but with increase in the threshold this method performance has been dropped to the lowest values
such that it is not comparable to other methods. Priority based approach has also demonstrated lower F1 measure
in comparison with proposed algorithm. This experiment shows that even without taking in consideration any
threshold setting the proposed algorithm has surpassed its competing approaches.

5. Conclusions
In this paper, we proposed a novel terminological search algorithm which tries to find a concept Name (property
or individual) similar to an input Search String in a given ontology. This search algorithm is a basic building

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 10; 2012

51

block for many semantic applications such as ontology matching systems and ontology search engines. As we
showed in related works, while there exist a lot of ontology matching approaches and also many proposed
similarity measures, little attentions have been paid to develop similarity search algorithms that exploit different
similarity measures. Such algorithm can use various similarity measures to sum up their advantages and reduce
effects of their weakness.

Our suggested algorithm extends the input search string by creating a matrix from its synonym and hypernyms
which have been extracted recursively from WordNet such that each row of this matrix represents one meaning.
Each row includes synonym from left and then most specific hypernyms and finally more general hypernyms
come afterwards. The algorithm first uses the ISub measure to find similar concepts, and if failed to find any
lexically similar concept, it will continue to search the extension matrix. In both cases, algorithm uses JIANG
semantic similarity measure to detect wrong candidates which are lexically similar and semantically different.
For coping with the word polysemy problem, algorithm use a simple word sense disambiguation method based
on average relatedness of each row of the search matrix. The algorithm employs and combines different kind of
similarity measures in different situations to achieve a higher performance, accuracy, and stability compared to
previous methods which either use one similarity measure or combine them in a naive ways such as averaging.

For algorithm evaluation, we used OAEI Bench mark data set and the achieved results showed the superiority of
proposed algorithm and effectiveness of different suggested mechanism such as word sense disambiguation and
semantic filtering mechanism.

There are some potential limitations in this study. First, the proposed algorithm is not well suited for search
names that have many parts since it does not employ any tokenization method. This is an important requirement
which should be implemented before embed this algorithm in a real ontology matching system because some
major ontologies especially from medical world usually use long concept names. Nonetheless, in some
applications such as semantic search engines this search algorithm in its current implementation could be very
useful. It should be noted that in complex matching task (Ritze, Volker, Meilicke, & Sváb-Zamazal, 2010)
usually finding concepts similar to a part of a compound name is an important basic operation.

Second, this algorithm mainly relies on the WordNet to enrich the search string while ontologies are defined in
different domains and need taxonomy and background knowledge that better fit their requirements. This
algorithm also could exploit the content of each concept in implementing task such as WSD or semantic
filtering.

In future works, we will broaden our approach to use more linguistics techniques such as tokenization, stop word
reduction, and stemming to make it more suitable to cope with ontologies that have long compound names. We
would also like to generalize algorithm such that employing knowledge sources other than WordNet become
possible in different situations. Specially, employing ontologies themselves in building extension matrix could be
an interesting improvement. Another future research direction is to exploit more sophisticated and state of the art
word sense disambiguation techniques.

References
Berners-Lee, T., Hendler, T., & Lassila, J. (2001). The Semantic Web. Scientific American.

http://dx.doi.org/10.1038/scientificamerican0501-34

Castano, S., Ferrara, A., & Montanelli, S. (2006). Matching Ontologies in Open Networked Systems: Techniques
and Applications. J. Data Semantics V., 25-63.

Cross, V., & Hu, X. (2011). Using Semantic Similarity in Ontology Alignment.

Cruz, I. F., Antonelli, F. P., & Stroe, C. (2008). Efficient Selection of Mappings and Automatic Quality-driven
Combination of Matching Methods. Paper presented at the OM.

David, J., Guillet, F., & Briand, H. (2007). Association Rule Ontology Matching Approach. International
Journal of Semantic Web Information Systems, 3(2), 27-49. http://dx.doi.org/10.4018/jswis.2007040102

Department, Z. W., & Wu, Z. (1994). Verb Semantics And Lexical Selection. In Proceedings of the 32nd Annual
Meeting of the Association for Computational Linguistics, 133-138.

Euzenat, J., Meilicke, C., Stuckenschmidt, H., Shvaiko, P., & dos Santos, C. T. (2011). Ontology Alignment
Evaluation Initiative: Six Years of Experience. J. Data Semantics, 15, 158-192.

Euzenat, J., & Shvaiko, P. (2007). Ontology matching. Springer-Verlag.

Euzenat, J., & Valtchev, P. (2003). An integrative proximity measure for ontology alignment. Paper presented at

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 10; 2012

52

the The 1st Intl. Workshop on Semantic Integration.

Fellbaum, C. (1998). WordNet: An Electronic Lexical Database.

Gracia, J., Bernad, J., & Mena, E. (2011). Ontology Matching with CIDER:evaluation report for OAEI 2011.
Paper presented at the The 6th International Workshop on Ontology Matching.

Huber, J., Sztyler, T., & Noessner, J. (2011). CODI: Combinatorial Optimization for Data Integration. Paper
presented at the The 6th International Workshop on Ontology Matching.

Jaro, M. A. (1995). Probabilistic Linkage of Large Public Health Data Files. Statistics in Medicine, 14, 491-498.
http://dx.doi.org/10.1002/sim.4780140510

Jean-Mary, Y. R., Shironoshita, E. P., & Kabuka, M. R. (2009). Ontology matching with semantic verification. J.
Web Sem., 7(3), 235-251. http://dx.doi.org/10.1016/j.websem.2009.04.001

Jian, N., Hu, W., Cheng, G., & Qu, Y. (2005). FalconAO: Aligning Ontologies with Falcon. Paper presented at
the Integrating Ontologies.

Jiang, J., & Conrath, D. (1997). Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy. Paper
presented at the The International Conference Research on Computational Linguistics (ROCLING).

Jimenez-Ruiz, E., Morant, A., & Grau, B. C. (2011). LogMap results for OAEI 2011.

Leacock, C., & Chodorow, M. (1998). Combining local context and WordNet similarity for word sense
identification. Paper presented at the MIT Press.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and reversals. Paper
presented at the Soviet Physics Doklady.

Li, J., Tang, J., Li, Y., & Luo, Q. (2009). RiMOM: A Dynamic Multistrategy Ontology Alignment Framework.
IEEE Transactions on Knowledge and Data Engineering, 21, 1218-1232.

Lin, D. (1998). An Information-Theoretic Definition of Similarity. Paper presented at the ICML.

Navigli, R. (2009). Word sense disambiguation: a survey. ACM COMPUTING SURVEYS, 41(2), 1-69.
http://dx.doi.org/10.1145/1459352.1459355

Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similarities in the
amino acid sequence of two proteins. Journal of Molecular Biology, 48(3), 443-453.
http://dx.doi.org/10.1016/0022-2836(70)90057-4

Pirro, G. (2009). A semantic similarity metric combining features and intrinsic information content. Data Knowl.
Eng., 68, 1289-1308. http://dx.doi.org/10.1016/j.datak.2009.06.008

Rada, R., Mili, H., Bicknell, E., & Blettner, M. (1989). Development and application of a metric on semantic
nets. IEEE Transactions on Systems, Man, and Cybernetics, 19(1), 17-30.
http://dx.doi.org/10.1109/21.24528

Resnik, P. (1995). Using Information Content to Evaluate Semantic Similarity in a Taxonomy. Paper presented at
the In Proceedings of the 14th International Joint Conference on Artificial Intelligence.

Ritze, D., Volker, J., Meilicke, C., & Sváb-Zamazal, O. (2010). Linguistic Analysis for Complex Ontology
Matching. Paper presented at the Proceedings of the 5th International Workshop on Ontology Matching
(OM-2010), Shanghai, China, November 7, 2010.

Romero, M. M., Vázquez-Naya, J. M., Loureiro, J. P., & Ezquerra, N. (2009). Ontology Alignment Techniques
Encyclopedia of Artificial Intelligence (pp. 1290-1295): IGI Global.

Salton, G., & McGill, M. J. (1986). Introduction to Modern Information Retrieval: McGraw-Hill, Inc.

Stoilos, G., Stamou, G., & Kollias, S. (2005). A String Metric for Ontology Alignment. The Semantic Web –
ISWC 2005, 3729, 624-637.

Tversky, A. (1977). Features of Similarity. Paper presented at the Psychological Review.

Winkler, W. E. (1999). The state of record linkage and current research problems.

