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Abstract 
In this paper we propose the average of weights of all links adjacent to each stock as a centrality measure. This 
measure, besides the traditional centrality measures such as degree centrality, betwenness centrality, closeness 
centrality and eigenvector centrality will be helpful in interpreting the network topology of stocks markets. A 
case study of 90 stocks market traded at Bursa Malaysia will be presented and discussed to illustrate the 
advantage of the proposed measure. 

Keywords: correlation matrix, distance matrix, Kruskal algorithm, minimum spanning tree, sub-dominant 
ultrametric 

1. Introduction 
The stock market has become an increasingly significant subject of the economy and is used by tens of 
thousands of companies to access equity capital, and tens of millions of investors to pursue opportunities around 
the world. The behaviour of stock prices is a subject of enduring interest to the investors, policymakers, and 
economists, and it is widely believed to be the predictor of economic activity (Peek & Rosengren, 1988; 
Muradoglu et al., 2000). Now days, the researchers from various disciplines i.e. mathematics, financial analysis 
(Daly & Fayyad, 2011; Da Costa et al., 2005; Zhang et al., 2009) and theoretical physics (Eom et al., 2009; Eom 
et al., 2010) are given their attention on analyzing the stock behaviour. In general, the behaviour of a stock 
market will be influenced by the behaviour of others stocks traded in that market. Mathematically, the 
interrelationships among stocks are customarily represented by the correlations among the logarithm of stock 
returns. The correlation structure, together with the corresponding stocks, constitutes a complex system in the form 
of a network. Recently, the network topology of stocks has been introduced in the field of econophysics to 
understand the interaction among the stocks. Mantegna (1999) presents the complicated relationship between 
stocks in a topological space by using a visualization mechanism, specifically minimum spanning tree. Since the 
work of Mantegna, subsequently many studies have confirmed the various properties of stock networks 
constructed. 

To the aid of interpretation, centrality measure can help us to have a better understanding about the information 
contained in the network as well as to enrich the economic interpretation. The role of importance of each 
particular stock can be express by the use of centrality measure such as degree centrality, closeness centrality 
between centrality and eigenvector centrality. However, the problem with those measures is that they take into 
account only the number of direct and indirect links between two stocks. For that reason, we acknowledge the 
weight between two different stocks to propose a new measure of centrality which represents the “power” of 
stock. Later on, to illustrate the role of the propose measure, in this paper we conduct a study on the daily stock 
price data of 90 stocks traded at Bursa Malaysia from January 1, 2007 until December 31, 2009. For that purpose, 
those stocks will be viewed as a complex system consisting of 90 stocks as nodes connected by [90-1] 
*[90]/2=4005 links each of which corresponds to the correlation coefficient between two different nodes.  

The nodes and links will be considered as a network or, more specifically, a weighted undirected graph 
(Jayawant & Glavin, 2009). This point of view is useful in order to visualize, simplify, and summarize the most 
important information contained in that complex system. The rest of paper is organized as follows. In Section 2 
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we discuss the analysis of that complex system by using the propose centrality measure as well as the current 
existing measures. To illustrate the advantage of the proposed measure, a case study on stock market will be 
presented and discussed in Section 3. At the end of this paper, we will draw attention to a conclusion. 

2. Proposed Centrality Measure 
In this section we discuss the analysis of a complex system by using network topology approach. This allows us 
to visualize and simplify a complex system, and to summarize the information contained therein. We show that 
the centrality measures usually used as the principal tools to summarize the information are not sufficient. This 
motivates us to propose another measure. 

2.1 Network Topology 

The essence of a network is its nodes (stocks) and the way how they are linked. Network analysis was originally 
developed in computer science (De Nooy et al., 2004). Nowadays, it has been used in various fields of study. See, 
for example, Krichel and Bakkalbasi (2006) in sociology, Mantegna (1999) and Miccichè et al. (2003) in finance, 
and Park and Yilmaz (2010) in transportation. 

In financial industry, network analysis starts with correlation matrix followed by transforming it into a distance 
matrix (Mantegna & Stanley, 2000). From this matrix we construct a minimum spanning tree (MST) and the 
corresponding sub-dominant ultrametric (SDU) distance matrix. For this purpose we use Kruskal algorithm 
(Kruskal, 1956) as suggested in Mantegna and Stanley (2000) and Jayawant and Glavin (2009). MST will then 
be used to construct network topology of stocks.  

The Kruskal algorithm is a graph without a cycle that connects all nodes with links. The correlation coefficient 
can vary between ij1 1    whereas the distance can vary between 0 2ijd  . Here, small values of the 
distance imply strong correlations between stocks. This is a simplification of the complex system of stocks and 
their correlation structure which will be used to summarize the most important information.  

The visualization of MST can be made possible by using the open source called ‘Pajek’ (Batagelj & Mrvar, 2003; 
Batagelj & Mrvar, 2011; De Nooy et al., 2004). Furthermore, to interpret the MST we use the standard tools, i.e., 
centrality measures. To make the network topology more attractive and easy to interpret, we use the Kamada 
Kawai procedure provided in Pajek (Kamada & Kawai, 1989).  

2.1.1 Correlation Matrix  

The stock network visually displays the significant p-1 links among all possible links, (p-1)* p/2. This is based 
on the correlation matrix between stocks, using the MST method. The MST, a theoretical concept in graph 
theory (West, 2000), is also known as the single linkage method of cluster analysis in multivariate statistics 
(Gower & Ross, 1969; Everitt, 1980).  

Let ( )iP t  be the stock price of a stock i and ( )iR t be the logarithm of daily stock return at day t in a given 
period, defined as:  

( ) ln ( 1) ln ( )i i iR t P t P t   .                                  (1) 

for all i = 1, 2, … , 90. Equation (1) defines a complex system among stocks in the form of stock networks. To 
filter the information contained therein, we construct a correlation matrix among those stocks, is a symmetric 
matrix of size 90 90 where the element in the i-th row and j-th column is, 

ij 
  222 2

i j i j

i i j j

R R R R

R R R R



 
                          (2) 

representing the correlation coefficient between i-th and j-th stocks (Mantegna & Stanley, 2000). That 
correlation coefficient quantifies the degree of linear relationship between i-th and j-th stocks. By definition, 

1ii   for all i and ij  can vary from – 1 to 1 for all i j  where, 

  1  means perfectly positive linear relationship

  0  means no linear relationship

1  means perfectly negative linear relationship
ij


 


 
2.1.2 Distance Matrix 

To analyze the network, we transform the correlation matrix into a distance matrix by using the following 
formula (Mantegna & Stanley, 2000). 
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2(1 )ij ijd                                        (3) 

This ijd  is a distance between the i-th and j-th stocks since it satisfies the following three properties; (i) ijd    
0 and 0ij i jd X X   , (ii) ij jid d , and (iii) ij ik kjd d d  . The first property tells us that two stocks that are 
perfectly correlated (either positive or negative), | | 1ij  , will be represented by a single point in Euclidean 
space ( 0ijd  ). Moreover, 0 2ijd  .  

The second property is symmetric property; the distance between the i-th and j-th stocks is equal to the distance 
between the j-th and i-th stocks. In other words, the correlation between the i-th and j-th stocks is equal to the 
correlation between the j-th and i-th stocks ( ij ji    ij jid d ).  

The last property is well known as triangular property. From (2), we conclude that, in general, the higher the 
correlation coefficient the smaller the distance. 

By using Equation (3), we obtain a distance matrix D of size 90  90  with ijd  as the element in the i-th row 
and j-th column. It is this matrix that we analyze in the rest of the paper. 

2.1.3 Kruskal’s Algorithm 

A spanning tree is a subset of a graph which has no cycles and includes all of the nodes of the original graph, but 
usually not all the links. A minimum spanning tree is a spanning tree that has smaller (i.e minimum) sum of the 
weights of its links than any other spanning tree. When the links are weighted where their weights in this paper is 
representing by the distance, the problem is to find the tree that has minimal distance. In this case, Kruskal’s 
algorithm can help to solve the problem to find the tree that has minimal distance. This is a simple algorithm 
since the links are selected and included to the tree in increasing order of their weights. But, we have to stop it 
when it create a cycle or looping.  

2.1.4 Information Summarization 

To visualize, simplify and summarize the important information contained in the network represented by D, we 
use the notion MST as discussed in Mantegna and Stanley (2000). Then, we determine MST by using Kruskal 
algorithm (Kruskal, 1956).  

2.2 Centrality Measures 

From network analysis view point, the role or degree of importance of each particular node can be analyzed by 
using its centrality measures such as degree, betweenness, and closeness centralities. These will help us to find 
the most important nodes in the network structure (Xu et al., 2009; Abbasi & Altmann, 2010; Monárrez-Espino 
& Caballero-Hoyos, 2010).  

Degree centrality indicates the connectivity of nodes. It provides information on how many other nodes are 
connected with a particular node. On the other hand, betweenness centrality is reflects the extent to which a node 
lies in relative position with respect to the others (Freeman, 1977). This measure indicates the potentiality of 
node to influence the others. Closeness centrality measures how close a node is to all other nodes in terms of 
correlations. Closeness can also be regarded as a measure of how long the information is to spread from a given 
node to other reachable nodes. Nevertheless, eigenvector centrality, a point centrality measure introduce by 
Bonacich in 1972. The key idea is to express that an important node is connected to important neighbours (other 
nodes). 

Those measures are computed based on the MST as follows (Borgatti, 1995; Sieczka & Holyst, 2009; Park & 
Yilmaz, 2010): 

(i) Degree centrality of node i is id =
1

n

ij
j

a

 where ija = 1 if the i-th and j-th nodes are linked and 0 otherwise. 

(ii) Betweenness centrality of node i, ib , is the ratio of the number of path passing through i between two 
different nodes and the number of all possible paths from j to k for all j and k where j  i and k  i. 

(iii) Closeness centrality of node i, ic , is the ratio of the number of links in the MST, which is equal to (n-1), 
and the number of links in the path from i to j for all j  i.  

(iv) Eigenvector centrality of node i is, iev = 1

1

n

ij j
j

a e


  where  1 2, ,...,

t

ne e e  is the eigenvector of A that 

corresponds to the largest eigenvalue  . 
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Degree centrality is the simplest of the node centrality measures by using the local structure around nodes only. 
In order to identify the role of importance, degree centrality is no longer appropriate to be the best measure. The 
higher the degree centrality does not reflect to the strength of each particular node. 

Due to that limitation of degree centrality, in this subsection we introduce “average of weights” as another 
measure. It is the average of weights of all links adjacent to each node. This measure reflects the strength of 
influence of a particular node to the others. Thus, the larger the scores represent the powerful of that particular 
stock. In all measures, the node that has larger scores is considered to be more central in terms of it influence to 
the others.  

3. A Case Study 
We utilized 90 stocks that were traded on the stock market at Bursa Malaysia. The individual stocks that posted 
daily prices for the last 3 years from January 1, 2007 to December 31, 2009. The 1096 daily data can be retrived 
from Bloomberg Professional®. Based on the MST issued from Matlab version 7.8.0 (R2009a), we present the 
top 15 scores of centrality measure discussed previously in Table 1 and Table 2. 

 

Table 1. The top 15 scores of degree and betweeness centrality 

Top Degree Betweeness 

1 Genting Bhd 7 Wah Seong Corp 0.708 

2 Wah Seong Corp 6 Genting Bhd 0.594 

3 MMC Corp Bhd 5 YTL Cement Bhd 0.495 

4 Kuala Lumpur Kep 4 MMC Corp Bhd 0.415 

5 Genting Plantation 4 Parkson Holding 0.357 

6 IJM Land Bhd 4 WCT Bhd 0.335 

7 Malaysian Res Co 4 CIMB Group Banking 0.331 

8 WCT Bhd 4 AMMB Holding Bhd 0.308 

9 DRB-HICOM Bhd 4 IOI Corp Bhd 0.287 

10 Supermax Corp 4 IJM Corp Bhd 0.261 

11 CIMB Group Banking 3 Genting Plantation 0.260 

12 IOI Corp Bhd 3 Supermax Corp 0.241 

13 AMMB Holding Bhd 3 RHB Capital Bhd 0.204 

14 RHB Capital Bhd 3 Kuala Lumpur Kep 0.188 

15 IJM Corp Bhd 3 Hong Leong Bank 0.184 

 

Table 2. The top 15 scores of closeness and eigenvector centrality 

Top Closeness  Eigenvector 

1 Wah Seong Corp 0.200 Wah Seong Corp 0.500 

2 YTL Cement Bhd 0.190 Genting Bhd 0.427 

3 Genting Bhd 0.184 MMC Corp Bhd 0.296 

4 MMC Corp Bhd 0.179 Genting Bhd 0.292 

5 RHB Capital Bhd 0.170 RHB Capital Bhd 0.211 

6 Sunway City Bhd 0.169 IJM Corp Bhd 0.208 

7 CIMB Group Banking 0.166 CIMB Group Banking 0.198 

8 Tanjong PLC 0.164 Sunway City Bhd 0.181 

9 Dialog Group Bhd 0.164 Dialog Group Bhd 0.167 

10 IJM Corp Bhd 0.163 Tanjong PLC 0.167 
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11 Parkson Holding 0.163 EON Capital Bhd 0.143 

12 EON Capital Bhd 0.156 Multi-Purpose 0.143 

13 AFFIN Holding 0.156 UNISEM(M) Bhd 0.143 

14 Multi-Purpose 0.156 AFFIN Holding 0.143 

15 UNISEM(M) Bhd 0.156 Parkson Holding 0.141 

 

However, by using Pajek, we can visualize the interrelationship among 90 stocks with more attractively. 
Therefore, in Figure 1 - Figure 4 we present their network topology with respect to their centrality measure. The 
size and colour of the node represent the score of centrality measure and the rank of importance for degree 
centrality, betwenness centrality, closeness centrality, eigenvector centrality and average of weight centrality. 

From Figure 1, degree centrality measure, we learn that, the highest number of links in the network belongs to 
7-Genting Bhd (red point). It is followed by 83-Wah Seong Corp (blue point) and 25-MMC Corp Bhd (yellow 
point) are 6 and 5 links, respectively. Each of the fololowing has 4 links: 12-Kuala Lumpur Kep, 34-Genting 
Plantation, 61-IJM Land Bhd, 64-Malaysian Res Co, 66-WCT Bhd, 67-DRB-HICOM Bhd, 72-Supermax Corp 
(green points). The rests are of 1, 2 and 3 links only. The higher the number of links is the higher the influence of 
that particular stock to the others. 

According to the betweenness centrality, see Figure 2, the most important nodes is 83-Wah Seong Corp (red 
point). It has an excellent position compared to the others where the information flow in the network can easily 
reach others in the network followed by, in order of importance: 7-Genting Bhd (blue point or the second most 
important), 73-YTL Cement Bhd and 25-MMC Corp Bhd (yellow points or the third most important). This means 
that those stocks strongly dominance the other stocks, especially the neighbour which is closely to their corner. As 
example, if come out any shift in the price of 7-Genting Bhd, the price of the following stocks: 73-YTL Cement Bhd, 
39-Affin Holding, 38-EON Capital Bhd, 2-CIMB Group Bhd, 28-IJM Corp Bhd, 65-Multi-Purpose, and 
89-UNISEM(M) Bhd will directly get the impact. 

  
Figure 1. Degree centrality                       Figure 2. Betwenness centrality 

 

In Figure 3, we present the closeness centrality. The key player in this analysis is represented by 83-Wah Seong 
Corp (red point). It plays the most important role in the network and this node is the closest node to the others. 
The second closest nodes to the others are 7-Genting Bhd, 73-YTL Cement Bhd and 25-MMC Corp Bhd (blue 
points). The third closest is yellow points; 18-RHB Capital Bhd, 78-Sunway City Bhd, -CIMB Group Banking, 
24-Tanjong PLC, 70-Dialog Group Bhd, 28-IJM Corp Bhd, 32-Parkson Holding, 38-EON Capital Bhd, 
39-AFFIN Holding, 65-Multi-Purpose, 89-UNISEM(M) Bhd, 13-Genting Malaysia, 57-Star Publication, 
85-Lingkaran Trans, 15-AMMB Holding Bhd. 

Based on eigenvector centrality, see Figure 4, 83-Wah Seong Corp (red point) has the highest scores of centrality 
measure in the network. This result is similar to betwenness centrality and closeness centrality. The blue points 
or the second most important are represented by 7-Genting Bhd followed by third most important stocks; 73-YTL 
Cement Bhd, 25-MMC Corp Bhd, 18-RHB Capital Bhd, and 28-IJM Corp Bhd (yellow points). 
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Figure 3. Closeness centrality                   Figure 4. Eigenvector centrality 

 

Average of weight centrality can be used to indicate the average correlations between a particular node and the 
other nodes adjacent to it. In terms of degree, 7-Genting Bhd are the most dominance stocks while in terms of 
average of weights (see Table 3 and Figure 5) the most influential is 20-Telekom (red point), followed by 19-Brit 
Amer Tobacc (blue point) as the second important, and 90-JT International (yellow point) as the third important. 
The fourth important stock is 68-KFC Holdings (green point) followed by the orange points; 33-Berjaya Sports, 
35-Berjaya Land, 37- & Neave, 10-DIGI.com, 57-Star Publication, 31-Malaysian Airport, 11-Plus Expressway, 
79-NCB Holdings, 50-SHELL Refining, and 14-YTL Power. The rest are having small average of weights (pink 
points). 

 

Table 3. The top 15 scores of average of weights centrality 

Top Average of Weights 

1 Telekom 1.065 

2 Brit Amer Tobacc 1.026 

3 JT International 0.925 

4 KFC Holdings 0.815 

5 Berjaya Sports 0.790 

6 Berjaya Land 0.739 

7 Fraser & Neave 0.701 

8 DIGI.com 0.662 

9 Star Publication 0.658 

10 Malaysian Aiport 0.651 

11 Plus Expressway 0.646 

12 NCB Holdings 0.618 

13 SHELL Refining 0.607 

14 YTL Power 0.600 

15 Boustead Holding 0.595 
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Figure 5. Average of weights centrality 

 

Figure 1 and Figure 5, represent an MST with degree centrality and average of weights, respectively. If degree 
centrality refer to the number of links adjacent to a node, average of weights is the sum of those links’ weight 
divided by the number of links. The latter measure represent the average influence given by a node to the others 
adjacent to it. From Table 1, we see its advantage compared to the former and learn that those measures are 
different. 

4. Conclusion 
We have introduced “average of weights” as a new centrality measure. The advantage of proposed centrality 
measure is by considering the weight instead of number of links only. Its advantage is illustrated by using 90 
stocks market traded at Bursa Malaysia, together with the other established centrality measures, and could help 
to enrich the economic interpretation of network topology.  

According to the five centrality measures, after using the Pareto analysis based on the top 15 stocks of highest 
scores in each centrality measures (Table 1), the following six stocks are the most in influencing stocks market; 
CIMB Group Banking, Genting Bhd, RHB Capital Bhd, Wah Seong Corp, MMC Corp Bhd and IJM Corp Bhd. 
These six stocks should be paid more attention by the investors in order to make the investment. 

For further research, we render two potential researches. First, we can perform a comparison study on the 
proposed measure by using difference algorithm for constructing a minimum spanning tree. Furthermore, its 
applicability to other networks can be performed. Second, we can investigate its mean evolution distribution as 
well as its variance when involving more than one correlation structure. Many more research idea can be carried 
out to enrich this topic. 
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