
Modern Applied Science; Vol. 6, No. 9; 2012
ISSN 1913-1844 E-ISSN 1913-1852

Published by Canadian Center of Science and Education

42

WSDATool: A Novel Web Service Developer Assistance Tool Using a
New Complementary Service Publishing Method

Fardin Abdali Mohammadi1, Naser Nematbakhsh1 & Mohammad Ali Nematbakhsh1
1 Department of Computer Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran

Correspondence: Fardin Abdali Mohammadi, Department of Computer Engineering, University of Isfahan,
HezarJarib Street, 81746-73441, Isfahan, Iran. Tel: 98-912-605-2405. E-mail: ebdalimo@ce.sharif.edu

Received: July 27, 2012 Accepted: August 20, 2012 Online Published: August 24, 2012

doi:10.5539/mas.v6n9p42 URL: http://dx.doi.org/10.5539/mas.v6n9p42

Abstract

Web service technology (WST) is a service-oriented architecture implementation framework that makes
designing component-based internet applications possible. At present, many providers offer their services as web
services. Current WST suffers from the lack of an integrated tool to assist web service developers. In WST, the
services are published publicly, and their descriptions are stored in service directories. These descriptions contain
valuable information about the work of different software teams throughout the world. However, with the
increasing number of web services, searching for services is difficult and time-consuming. Furthermore, in
current service directories, there is a little knowledge about the services, and extraction of useful information to
be utilised by developers is not easy. In this paper, in order to increase the knowledge of what is available in
service directories, a structure is presented by interlinking WST entities by using some defined semantic
relations. The proposed structure provides a framework and a tool named WSDATool to develop new web
services using information from published services or to refine current published web service descriptions. In
experiments, services designed with the assistance of the WSDATool are more coherent and well designed.

Keywords: developer assistant, semantic relation, software development, web service

1. Introduction

Software systems are currently very dependent on software components. Service-oriented architecture is one of
the best practical architectures for component-based systems. In this architecture, service providers present some
services to be utilised by users and applications. Web service technology (WST) is one of the solutions provided
by this architecture. A web service is a software component that presents an API accessible via the web.

Hoffmann et al. (2007) by investigating 15 million programmer queries from the MSN search engine, showed
that 34.2 percent of programmers' queries involved finding suitable application program interfaces (APIs). By
the same way, web service developers search the Internet to find the information they need. Anyway, one of the
main problems with developing web services is the lack of an assistance tool to help developers create coherent
and easy-to-discover web services.

Furthermore, most service descriptions are provided by integrated development environment IDE tools
automatically. The generated service description are full of anti-patterns and bad coding practices (Crasso,
Mateos, Zunino, & Campo, 2010; Crasso, Rodriguez, Zunino, & Campo, 2010; Juan Manuel, Marco, Alejandro,
& Marcelo, 2010; Juan Manuel Rodriguez, Zunino, & Campo, 2010; Lu et al., 2010; Mateos, Crasso, Zunino, &
Campo, 2010; Rodriguez, Crasso, Zunino, & Campo, 2009, 2010; Sneed, 2010) that reduce the chance of a
service being discovered correctly (Juan Manuel et al., 2010). This situation motivated the current study in which
a tool for overcoming this problem is proposed. The idea is to utilise current published web services to assist
web service developers. The published services stored in service directories contain valuable information that
can be used to help developers develop more powerful and coherent web services. This information is the result
of work done by different software teams throughout the world.

However, extracting useful information from service directories is a difficult and time-consuming process. With
the increasing number of web services, searching for services is difficult and time-consuming. For example, at
the time this paper was being written, Seekda (a web service crawler available at http://webservices.seekda.com/)
had indexed 28,606 working web services from 7,739 providers. Furthermore, service directories only offer the

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 9; 2012

43

simple similarity searching operation. Even the enhanced similarity matching operation is very time-consuming,
and in the best situation, it returns services that are similar to the user’s request.

To assist developers, we need to extract more information from service directories and organise them in a
knowledge database. By querying these knowledge based service directories, developers can extract required
information. Extraction of information cannot be accomplished using the simple searching APIs provided by
traditional service directories or enhanced similarity matching operations. To date, efforts to enhance service
directory search operations have mainly concentrated on the precision of the similarity matching operation.
Examples include semantic descriptions of web services (Iqbal, Sbodio, Peristeras, & Giuliani, 2008), similarity
matching algorithms based on semantic descriptions (Plebani & Pernici, 2009), and similarity calculation
algorithms based on ontology (Klusch & Kapahnke, 2009). These efforts have not increased the knowledge
about the contents of service directories and cannot assist web service developers.

In this paper, a method of publishing web services by interlinking web service entities based on the concept of
semantic relations is introduced. Some semantic relations are defined and an interlinked graph of web service
entities is constructed. A software tool is developed on top of this structure to assist web service developers and
named WSDATool. Services designed with the assistance of the proposed system are more coherent, and free
from anti-patterns. WSDATool can also be used to refine current service descriptions.

The main contributions of our work are as follows:

 We present a structure for increasing the knowledge about the contents of service directories. In this
structure, the WST entities are interlinked based on semantic relations that may exist between them. This part is
an extension to our previous work in (Fardin, Naser, & Ali, 2012).

 We present a method to extract knowledge from interlinked structure and an expert agent to assist
developers using tis knowledge.

 We present a novel tool to assist web service developers based on the presented structure.

The presented system is capable of presenting usable information at a lower cost to system developers, and it
helps them develop web services. By lower cost, we mean that the speed of performing high-level queries can be
increased by using the presented structure and that these queries are described by a user-friendly language. In
this paper, real services were used for expressing the definitions and examples.

1.2 Related Work

Several researches (Crasso, Mateos, et al., 2010; Crasso, Rodriguez, et al., 2010; Juan Manuel Rodriguez et al.,
2010; Lu et al., 2010; Mateos et al., 2010; Rodriguez et al., 2009, 2010; Sneed, 2010) are investigated the
problems of current registered web service descriptions and the effect of these problems on service discovery and
usability. The results of these researches are mainly list of anti-patterns that should be removed in order to
improve service usability.

Several tools have been developed to assist in the annotation of web services. Dietze et al. (Dietze, Yu, Pedrinaci,
Liu, & Domingue, 2011) created an editor to edit and search for linked-data based services. Linked-data based
services are a method of describing web services by connection service descriptions to linked-data (Bizer, Heath,
& Berners-Lee, 2009) cloud entities. Maleshkova et al. (2009) proposed an editor named SWEET to annotate
semantic web services. This editor is useful for annotating web services, and it creates an HTML description of
the service.

Birukou et al. (2007) presented a method to assist system developers. In this method, for each user request, the
invocation and performance of relevant services are monitored. By monitoring the performance of services, QoS
can be achieved in the proposed system. At first, operational data are modelled. Then, by using the semantic
similarity between the user request and the registered activities, the system makes recommendations.

Recommender systems have been attracting the attention of software researchers. Several methods based on
recommender systems are presented for extracting information and for helping service developers. Robillard et al.
(2010) provide an overview of available recommender systems that assist application developers. These methods
can be divided into the following two types:

1) Recommender systems (Bhaskar, Claudia, Avare, Claudio, & J., 2004; Birukou et al., 2007; Blake &
Nowlan, 2007; Ichii, Hayase, Yokomori, Yamamoto, & Inoue, 2009; Sellami, Tata, Maamar, & Defude,
2009; Shripad & V., 2005; Zheng, Ma, Lyu, & King, 2009): These systems try to discover the most
likely web services based on the behaviour of other users and by preserving the system history.

2) Search engines (Dong, Halevy, Madhavan, Nemes, & Zhang, 2004; Vu, Hauswirth, Porto, & Aberer,

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 9; 2012

44

2006): These systems try to discover the best web service candidate based on the similarity of a user
query to registered web services and the aid of a ranking algorithm.

The output of both methods is the most similar service corresponding to the user request. Although these
methods were designed to assist service consumers, they can also be used by service developers.

These systems can be used by web service developers to create better services. Ichii et al. (2009) present a
recommender system based on collaborative filtering to propose software components. However, Zheng et al.
(2009) propose a collaborative filtering system for web service recommendations based on QoS. Both presented
methods in (Ichii et al., 2009; Zheng et al., 2009) utilise the history of user activity and present a method for
expressing the similarity between users. Blake and Nowlan (2007) present a method for web service discovery
and candidate recommendation based on syntactical matching. For this purpose, search algorithms, service
ranking and syntactical similarity matching are used.

Fardin et al. (2012) construct an interlinked graph of WST entities named Semantic Interlinked Graph in the
service directories in order to augment service directories with knowledge. In this graph, entities are interlinked
using some sort of semantic relationships that may exist between them. They shows how these relations can be
formally defined using ontology, implemented using RDF, and extracted using the SPARQL language.
Furthermore, they show how some limitations of the current service directories such as service versioning and
registering composition plans can be resolved.

Calculation of similarity between WST entities are one of the important task in service discovery operations.
Plebani and Pernici (2009) presented a method to measure the similarity between two web services. This method
is used for the replacement of services in case of failure. They propose a formula in which the similarities
between web service operations are calculated based on the similarity between arguments name and their data
types. Also they extend their method calculate the similarity between semantic web services too. Crasso et al.
(2008) present a method to calculate similarity of user query and web services as the angle between two vectors
of words.

2. Structures, Methods and Tool

The core element of this work is a Semantic interlinked graph (SIG) of WST entities. In this structure, a graph of
web service entities is constructed based on some semantic relation between them. SIG is developed in previous
work in (Fardin et al., 2012) and we enhance it in this paper make it usable for developers assistance tool. This
structure is a complementary facility for service directories that increases the knowledge about the contents of
service directories. By using this structure, high-level queries are possible. The following section presents the
construction of SIG; its features are described in the following subsections.

2.1 Extraction of WST Entities

The first step in using the information stored in service directories is to present a way to extract, represent, and
manage the knowledge in it. To assist service developers, the system must determine which web services are
related to currently under developing web service and how other service providers develop, enrich and document
their web services.

For this reason, this paper presents a structure that stores this type of knowledge by interlinking web service
entities based on semantic relations that may exist between them. Therefore, we must first formally identify the
involved entities. Second, the semantic relations between these entities must be defined and formulated. Third,
the instances of these relations in service directories must be discovered, and a method of representation must be
presented.

Each service description involves a brief piece of documentation about its related web service and specifies the
operations that the web service offers. Web services present one or more functions that are called operations.
Operations may take some input from the user, create some process based on these input data, and produce some
results as output. So, Four type of entities can be distinguished, namely, Web Service, Operation, InputArgument,
and OutputArgument in web service descriptions. The ERD diagram of Figure 1 shows the relationships and
cardinality between these entities.

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 9; 2012

45

Figure 1. Entity-Relationship Diagram of WST Entities

A naming Schema is designed to name each entity based on its URL and the entity name. The following, show
the designed identifiers for each of the entities described in Figure 1.

 Service URI: URL/Service Name

 Operation URI: URL/Service Name #Operation Name

 OutputArgument URI: URL/Service Name #Operation Name > Argument

 InputArgument URI: URL/Service Name #Operation Name < Argument

2.2 Constructing the SIG

In the previous section, the related entities were identified, and a unique identifier was defined for them to
prevent ambiguity. In this section, an extension of the semantic relations introduced in (Fardin et al., 2012) are
defined. By “semantic relation”, we mean a relationship that is defined formally by using semantic technology.

Based on the ERD diagram in Figure 1, Table 1 present the semantic relations between four entities, namely,
Service, Operation, InputArgument and OutputArgument. The set of X shows the possible semantic relations
between these entities. This set is given by:

, , , { } , { }present hasInput hasOutput presentedBy isInputof isOutputOf   (1)

and is shown as the union of two sets to clear the reversal of each semantic relation.

Table 1 shows a graphical representation, a short explanation and a real-world example for each of the defined
semantic relations. All of the real-world examples were extracted from Seekda, a web service crawler available
at http://webservices.seekda.com/.

Table 1. Relation between WST entities

Real world ExampleExplanationNotationRelation

WebserviceX.net /globalweather.asmx →

GetCitiesByCountry

the service si presents
the operation oj

si→oj present

WebserviceX.net/globalweather.asmx#GetCitiesByCountry

→

 CountryName

the operation oi has an
input argument named
aj

oi→aj hasInput

WebserviceX.net/globalweather.asmx#GetCitiesByCountry

→ GetCitiesByCountryResponse

the operation oi has an
output argument
named aj

oi→aj hasOutput

Some sort of semantic relations may exist between the instances of each entity. For example, the semantic
relations that may exist between web services are introduced in (Fardin et al., 2012) by some real examples.

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 9; 2012

46

Based on the findings in (Fardin et al., 2012), by investigating real-world web services, the set of  shows the
possible semantic relations between web services, and is given by:

 ={is Similar To, is New Version Of, is Richer Than, is Composed Of }

{is Similar To, is Old Version Of, is Weaker Than, is In Plan Of}

 
 (2)

Furthermore, each service presents one or more operations. Operations may have some sort of semantic
relationship between them. Based on the findings in (Fardin et al., 2012), by investigating real-world web
services, the set of shows the possible semantic relations between operations. We extend this set with two
more relations shown in Table 2, and is given by:

={is Similar To, has Same Result As, has Same Input As, is Richer Than,

can Be Linked To, can Assist, complement} {is Similar To, has Same Result As,

has Same Input As, is Weaker Than, can Get Input F

 


rom, can Used By, complemented By}

 (3)

Finally, each operation may have some input and at least one output argument. The extracted semantic relations
between arguments are shown in Table 3.

The set of  showing the possible semantic relations between arguments of service operations is described in
Table 3 and is given by:

={is Similar To, is Replacement Of, is Related To, is Richer Than}

{is Similar To, is Replacement Of, is Related To, is Richer Than}




 (4)

Table 2. Extension of semantic relations between operations

Real-World Example Explanation Relation

webservicex.com/USZip.asmx#GetInfoByCity →

flash-db.com/LocationByZipService.asmx#getDistanceByZip

An operation can help another

operation, e.g., by providing

needed arguments or converting

arguments to the desired format

canAssist

WebserviceX.net/ConvertTemperature.asmx#ConvertTemp

→ ws.cdyne.com/WeatherWS/Weather.asmx#

GetCityWeatherByZIP

An operation provides a

value-added feature to another

operation.

complement

Table 3. Relations between operation arguments

Real-world Example Explanation Relation

webservicex.com/USZip.asmx#globalweather #

GetCitiesByCountry <CountryName →

webservicex.com/USZip.asmx#globalweather

#GetWeather<CountryName

Two arguments indicate

exactly the same concept
isSimilarTo

webservicex.com/USZip.asmx#GetInfoByCity< USCity →

www.riptrails.com/ Weather # Get_Weather< zip

Two arguments

interchangeably indicate the

same concept or thing and can

be converted into one another

isReplacementOf

webservicex.com/globalweather#

GetCitiesByCountry<CountryName →

webservicex.com/USZip.asmx#GetInfoByCity< USCity

Two arguments are in the

same domain
isRelatedTo

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 9; 2012

47

webservicex.com/Weather#GetWeather>

GetWeatherResult →

deeptraining.com/Weather#GetWeather>GetWeatherResult

The argument has more

information than other

arguments

isRicherThan

SIG is constructed using the defined semantic relations. Figure 2 shows an instance of this graph. For the sake of
simplicity, all of the entities and relations are not shown in this figure. All entities in Figure 2 are real-world
examples extracted from current service directories.

Weather

WeatherService

globalweather

isSimilarTo

hasSameResultAs

canAssist

WeatherForecast
Is Richer than

provide

provide

provide

WebserviceX.net

asyncpostback

provide

cdyne

provide

USZip

Service OperationService Provider Web Service

Figure 2. Graphic view of the semantic relations

2.3 Assistant System Architecture

Suppose some web services have been published in the network. The description of these services is preserved in
the service directory. In order to create, preserve and use the SIG, certain processes have been created in the
service directory. Figure 3 shows the general architecture of the system. The components of the assistant system
are Ontology, Inference Engine, SPARQL Endpoint, RDF Repository, Monitoring Service, Matching Service,
and service descriptions. The assistant unit is the access point for developers and helps them develop new web
services.

Figure 3. Architecture of the Assistant System

Each component of the system has been explained individually below:

Ontology: First, the semantic relations are defined formally by means of an ontology. With the aid of the

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 9; 2012

48

ontology, the entities or concepts, the semantic relations, the cardinality constraints and the mutual exclusiveness
of the semantic relations are defined. The following are examples of a cardinality constraint: “An Operation is
presented by only one Service” or “A Service may present one or more Operation”. For an example of a
mutually exclusive constraint, isSimilarTo and isRicherThan cannot be established between two operations at the
same time. For this porpose, we extend OWLS-SD (Fardin et al., 2012) and develop it with new relations
introduced in this paper. OWLS-SD is a semantic language based on RDF. The goal of OWLS-SD is to create
machine-readable ontologies.

Matching Service: finding the similarity between arguments, operations and services in order to extract relevant
information in the service directory, is the responsibility of this service. This process extracts the semantic
relations between WST entities. This service is implemented as described in (Plebani & Pernici, 2009). The
matching service returns the degree of similarity between two entities as a number in the interval [0,1].

RDF Repository: The relations founded by Matching Service are stored in RDF Repository. Similar to our
previous work in (Fardin et al., 2012), this paper selects the RDF language as the language used to implement
the SIG. RDF triples are simple but strong and efficient tools for encoding knowledge in semantic environments.
Each RDF triple connects two entities by specifying the relationship between them. The relationships between
entities are semantic relations that are defined by the constructed OWLS-SD ontology. By using RDF triples, the
SIG is implemented in this RDF store.

Monitoring Process: Providers publish their services and register the service descriptions in the directory. To
make these newly added services usable by the assistant unit; they must be added to the semantic interlinked
graph. Discovering new registered services and joining these services to the graph is the responsibility of this
process.

SPARQL Endpoint: In order to use constructed SIG in the presented tool and extract useful knowledge to assist
developers, some functions should be defined and implemented in the proposed system. In these functions the
RDF repository must be queried. A good choice to use for querying the RDF repository is the SPARQL language.
SPARQL is a protocol and also a language to query RDF databases through the internet. In addition, SPARQL
queries are human readable, and users can provide high-level queries in SPARQL to extract knowledge stored in
the RDF repository. So in the SPARQL Endpoint, we define and implement the required functions as follows.

First, a mathematical relation is defined that retrieves a set of services for a given service and a semantic relation.
This relation can be defined as follows:

: { }f S S  (5)

where S={s1,s2,s3,…} is the set of published web services in the network. By considering the semantic relation
  and a service s S , the relation f returns a set of services that have a semantic relation  with s. For
example, the statement ' ' (, ' ')Weatherservive f isSimilarTo Weather declares that a service called ' 'Weather
has the is Similar To relation with a service called ' 'Weatherservive . A graphical representation of this statement
is illustrated in Figure 4.

Figure 4. Graphical representation of ' ' (, ' ')Weatherservive f isSimilarTo Weather

Furthermore, such mathematical relations are defined to extract information about operations and arguments.
For this purpose, the following mathematical relation is defined to extract information about a given
operation and semantic relation:

: { }g O O  (6)

where 1 2{ , ,..., }i i i inO o o o is the finite set of operations presented by the service and iO O  is the set
of all operations presented in the network. For example, by considering   and an operation o O , the
relation g returns a set of operations that have a semantic relation  with o.

As an example, the statemen ' ' (, ' ')GetWeatherData g isSimilarTo GetCityForecastByZip declares that an
operation called ' 'GetWeatherData has the isSimilarTo relation with an operation called

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 9; 2012

49

' 'GetCityForecastByZip . Figure 5 shows the graph representation of this instance.

Figure 5. Graphical representation of ' ' (, ' ')GetWeatherData g isSimilarTo GetCityForecastByZip

Finally, 1 2{ , ,..., }ij lI in in in and 1 2{ , ,..., }ij lR out out out are the finite set of input and output/result arguments,
respectively, of operation jo presented by service is , and { } { }ij ijA I R    is the set of the arguments of all
the operations. The mathematical relation h is defined to extract information about a given argument and
semantic relation:

: { }h A A  (7)

Inference Engine: This process is responsible for checking the constraints of the system based on the extended
OWLS-SD ontology. Also, it tries to discover and establish new semantic relations based on the properties of
them.

Assistant Unit: This component implements the procedures assisting developers by extracting and presenting
useful information from the SIG. The assistant unit receives input from service developers by providing a
web-based user interface.

The general activity of service directory is described in Algorithm 1 as follow:

The start-up of the system and initialization of it is performed by this algorithm too.

2.4 WSDATool and Process of Assisting

The architecture of Assistant unit is depicted in figure 6. In general, Assistant unit mine the RDF repository to
extract useful patterns and assist developers, based on these patterns and some guidance rules.

Figure 6. The WSDATool processes

In the following, the components of assistant unit are described:

Miner: this process mine the RDF triples stored in the RDF Repository to extract useful patterns of web service

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 9; 2012

50

designing. Rules that generated by this unit store in the Knowledge DB.

Knowledge DB: design patterns generated by Mine process are stored in this database. An example of such
pattern is: most weather services get city name as input, most airport services get 3 digit airport codes as input.

Expert Agent: This process utilise Knowledge DB to assist web service developers using some guidance rules.
These rules answer to the following questions:

 Which operations consume these defined inputs, and what is the output of these operations?

 Which operations generate these defined outputs, and what is the input of these operations?

 Which operations can be linked to this defined operation to make a composition plan?

 Which operations are similar to the developed operation?

For an example of using the semantic relations, the operations that have isRicherThan relations with a
user-defined operation can be used to improve and enrich the written service. The canBeLinkedTo services can
also be used to improve a being developed service to make it more contributable in composition plans.

GUI Agent: Service developers communicate to the GUI agent by means of a web-based GUI. This GUI
consists of several tabs. In each tab, the developer obtains assistance from the assistant unit. In the proposed
system, the process of assisting begins simultaneously with the process of developing a web service. There is no
need to have an initial web service description file or documentation. Developers can start to write a new web
service using the tool.

The assisting process for the developer takes place according to the following Algorithm and the sequence of
operations is shown in Figure 7.

In each step, developers can see similar or richer entities extracted from SIG and are categorised by the tool in
order to redefine them if necessary. Beside recommendation derived from SIG, the tool assist developers in some
areas as follow:

Clear Naming: Defining the arguments of a web service in an easy-to-understand way is very important to
service discovery. For example, in [1], it was shown that 35.9 percent of users querying the MSN search engine
to find APIs used queries based on the name of the APIs, the methods and the data types. Therefore, the naming
strategy and API design can improve the discovery of services. In (Juan Manuel et al., 2010), investigating some
published services showed that approximately 82 percent of services suffer from name ambiguity.

Documentation: Furthermore, Good documentation can facilitate better discovery of provided services. In (Juan
Manuel et al., 2010), the effect of good documentation in better service discovery has been shown. This work, by
investigating some published services, shows that approximately 68 percent of them are not well documented.

Failure: Defining suitable error message to handle failures helps service consumers understand the source of the
error in case of any failures and improves data quality.

Furthermore, users can use the annotating tools, such as Maleshkova et al. (2009) or Dietze et al. (2011), to
construct a semantic annotating description for their being developed services. Making a composition plan is
another feature of the tool. The user can construct a composition plan by specifying the input parameters and the
output parameters. If possible, the tool tries to find a chain of one or more web services consuming input
parameters and producing output parameters. For each step in which the tool cannot proceed, it asks the

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 9; 2012

51

developer to resolve the problem, if possible. The tool can also be used to assist service consumers in making
queries. The output of the system can be used as a query to describe the consumer’s needs. Table 4 shows aspects
that the tool can assist developers.

Figure 7. Overall process of the tool

Table 4. Categories that system recommends the developers

Assisting Aspect Explanation

Naming Unambiguous naming of inputs arguments, outputs arguments, and

operators

Documentation Adding documentation to service, arguments and port types

Adding new operations to the

service

Adding value-added operations to the developing service

Enriching the service operations Making service results more usable by producing more useful outputs

Detecting design defects Handling redundant port-types and messages

Considering composition Changing input or output arguments to high composition adaptability

Resolving complexity Dividing a complex operation or argument into smaller one, make data

types and messages simpler

3. Results and Discussion

In this section, some aspects of the implemented tool were examined through experimentation. To experiment
with the tool, 558 web services were selected from Seekda. Services are chosen so that there exist some
similarity between them in order to be able to construct a dense SIG graph. These services are divided into two
sets named Directory_set, consisting of 538 services, and Experimental_set, consisting of the remainder of the
services. Then, a semantic interlinked graph was constructed using Directory_set. To construct the framework,
jUDDI is used as the service directory (downloadable at http://juddi.apache.org/) and Sesame as the SPARQL
endpoint (downloadable at http://www.openrdf.org/), both with some modifications.

The monitoring process and the inference process were developed as a system process using the .Net framework.
The monitoring process is an event-based process and is activated upon service insertion.

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 9; 2012

52

To experiment with the tool, the services in Experimental_set are redesigned using .Net web service developing
IDE without considering the description of them. The service descriptions for the written services were gathered
in a set called Re IDEsult . At the next step, the services are rewrite using the assistant tool. The service
descriptions of the written services from this step were gathered in a second set called Re Toolsult . Therefore, we
created three sets of service descriptions, as follows:

1 2 20 1 2 20 1 2 20Re { , ,... }, Re { , ,... }, { , ,... }IDE Tool Setsult sri sri sri sult srt srt srt Experimental ses ses ses  

We inspected different aspects of the usefulness of the tool: the size of the service description file, the amount of
documentation included, the number of port types, and the number of failure-handling messages. More failure
error handling messages, more documentation, a low number of port types, and a smaller size for the description
file are desired for services. This is because these parameters influence service discovery precision and speed
and also influence the readability of services. For each service, we calculated how the tool enhanced these
parameters. Let us define the following measures:

 CalculateSize(s): Get a service description file and return the size in bytes.

 DocumentationNumbers(s): Return the amount of documentation in the service description normalised by
the number of defined entities inside the service according to the ERD diagram of Figure 1.

 PortNumbers(s): Return the number of defined port types of the service s.

 FailureMessages(s): Return the number of defined failure-handling messages of the service s.

The enhancement made by using the tool for a service sesi could be normalised by the following formula:

Description size enhancement:

   
 

100i i

i

CalculateSize ses CalculateSize srt

CalculateSize ses


 (8)

Documentation enhancement:

   

 
100i i

i

DocumentationNumbers srt DocumentationNumbers ses

DocumentationNumbers ses


 (9)

Ports enhancement:

   
 

100i i

i

PortNumbers ses PortNumbers srt

PortNumbers ses


 (10)

Failure-handling enhancement:

   
 

100i i

i

FailureMessages ses FailureMessages srt

FailureMessages ses


 (11)

The number of port types, amount of documentation, and failure-handling messages are calculated in this way,
and the results of using the tool are depicted in Figure 8. Each figure represents the enhancement made by the
tool with respect to a given aspect. In each figure, the enhancements for all 20 web services are shown. The
horizontal axes are web services and the vertical axes are the normalised values of the performance parameter.

As shown in Figure 8, in all aspects investigated, the tool was shown to be useful. In failure message
enhancements, a zero value means that appropriate failure messages are embedded by the provider of the service.
A zero value in port-type enhancements means the provider used the minimum required port-types, so
developers could not minimise it.

We constructed several queries using the tool to evaluate the effect of the system on service discovery. For this
purpose, the refined services in the Re Toolsult set were returned to the original data set that was collected from
Seekda. The experiment shows that the degree of similarity between created queries and services in Re Toolsult is
greater than the degree of similarity between created queries and services in SetExperimental .

Finally, in the worst case in which no similar arguments, operations or services exist for our being developed
services, the system can be useful in developing a more unambiguous, well-documented, compact and

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 9; 2012

53

anti-pattern–free web service.

Figure 8. Normalised enhancements of the tool for the description file size, amount of documentations, number
of failure messages, and number of port types

4. Future Works

In this paper, a graph of WST entities is constructed. These entities are interlinked based on the semantic
relations that are defined between them. This graph of entities is implemented by RDF triples that make it
possible to interlink all WST entities around the world. The heart of the system is the ontology, which makes it
possible for all processes to have the same understanding of the network. RDF triples use this ontology to
express the relation between entities.

Using the presented knowledge and the provided method of knowledge management, an assistant system for web
service developers was designed and implemented. By using this system, developers can use patterns that have
previously been developed by providers from around the world to develop powerful and easy-to-discover
services. Our experiments showed that the presented tool can help service and software developers enrich their
work. By using this system, the developed services will have a high-quality description, and this will make it
easier to discover them.

Although different description languages are presented so far such as SAWSDL (Iqbal et al., 2008),
OWLS(Klusch & Kapahnke, 2009; Matthias, Benedikt, & Katia 2009), and WSMO (Maleshkova et al., 2009),
and some methods that try to presents unified methods of presenting web services (Cardoso, Barros, May, &
Kylau, 2010; Loutas, Peristeras, & Tarabanis, 2011; Pilioura & Tsalgatidou, 2009), we present our method by
using WSDL 1.1 description language. But, our method can be applying to other description languages as well
by slights modifications to implemented codes. WSDL 1.1 is selected because current web services developing
IDE use this description language.

Automatic or semi-automatic integration with service repositories are main necessary feature that must be
considered in future works.

References

Bhaskar, M., Claudia, N., Avare, S., Claudio, M., & J., N. E. (2004). An Architecture for Recommendation Based

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 9; 2012

54

Service Mediation. Semantics of a Networked World, LNCS, 3226, 250-262.

Birukou, A., Blanzieri, E., D’Andrea ,V., Giorgini, P., & Kokash, N. (2007). Improving Web Service Discovery
with Usage Data. IEEE Software, 24(6), 47-54. http://dx.doi.org/10.1109/MS.2007.169

Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked Data - The Story So Far. International Journal on
Semantic Web and Information Systems (IJSWIS), 5(3), 1-22. http://dx.doi.org/10.4018/jswis.2009081901

Blake, M. B., & Nowlan, M. F. (2007). A Web Service Recommender System Using Enhanced Syntactical
Matching. Paper presented at the IEEE International Conference on Web Services (ICWS 2007), Salt Lake
City, Utah, USA. http://dx.doi.org/10.1109/ICWS.2007.28

Cardoso, J., Barros, A., May, N., & Kylau, U. (2010). Towards a Unified Service Description Language for the
Internet of Services: Requirements and First Developments.

Crasso, M., Mateos, C., Zunino, A., & Campo, M. (2010). EasySOC: Making Web Service Outsourcing Easier.
Information Sciences, in press. http://dx.doi.org/10.1016/j.ins.2010.01.013

Crasso, M., Rodriguez, J. M., Zunino, A., & Campo, M. (2010). Revising WSDL documents: Why and How.
IEEE Internet Computing, in press. http://dx.doi.org/10.1109/MIC.2010.81

Crasso, M., Zunino, A., & Campo, M. (2008). Easy web service discovery: A query-by-example approach. Sci.
Comput. Program., 71(2), 144-164. http://dx.doi.org/10.1016/j.scico.2008.02.002

Dietze, S., Yu, H. Q., Pedrinaci, C., Liu, D., & Domingue, J. (2011). SmartLink: a Web-based editor and search
environment for Linked Services. Paper presented at the 8th Extended Semantic Web Conference (ESWC
2011), Heraklion, Greece.

Dong, X., Halevy, A., Madhavan, J., Nemes, E., & Zhang, J. (2004). Similarity search for web services. Paper
presented at the Thirtieth international conference on Very large data bases, Toronto, Canada.

Fardin, A. M., Naser, N. B., & Ali, N. M. (2012). Empower service directories with knowledge. Know.-Based
Syst., 30, 172-184. http://dx.doi.org/10.1016/j.knosys.2012.01.010

Hoffmann, R., Fogarty, J., & Weld, D. S. (2007). Assieme: finding and leveraging implicit references in a web
search interface for programmers. Paper presented at the 20th annual ACM symposium on User interface
software and technology.

Ichii, M., Hayase, Y., Yokomori, R., Yamamoto, T., & Inoue, K. (2009). Software component recommendation
using collaborative filtering. Paper presented at the ICSE Workshop on Search-Driven Development-Users,
Infrastructure, Tools and Evaluation, Vancouver, BC. http://dx.doi.org/10.1109/SUITE.2009.5070014

Iqbal, K., Sbodio, M. L., Peristeras, V., & Giuliani, G. (2008, December 03-December 05). Semantic Service
Discovery using SAWSDL and SPARQL. Paper presented at the Fourth International Conference on
Semantics, Knowledge and Grid. http://dx.doi.org/10.1109/SKG.2008.87

Juan Manuel, R., Marco, C., Alejandro, Z., & Marcelo, C. (2010). Improving Web Service descriptions for
effective service discovery. Science of Computer Programming, 75(11), 1001-1021.
http://dx.doi.org/10.1016/j.scico.2010.01.002

Juan Manuel Rodriguez, M. C., Zunino, A., & Campo, M. (2010). Improving Web Service Descriptions for
effective service discovery. Science of Computer Programming, in press.

Klusch, M., & Kapahnke, P. (2009). OWLS-MX3: An Adaptive Hybrid Semantic Service Matchmaker for OWL-S.
Paper presented at the International Workshop on Service Matchmaking and Resource Retrieval in the
Semantic Web (SMR2-2009), Washington D.C., United States.

Loutas, N., Peristeras, V., & Tarabanis, K. (2011). Towards a reference service model for the Web of Services.
Data & Knowledge Engineering, 70(9), 753-774. http://dx.doi.org/10.1016/j.datak.2011.05.001

Lu, X., Lin, J., Zou, Y., Peng, J., Liu, X., & Zha, L. (2010). Investigating, Modeling, and Ranking Interface
Complexity of Web Services on the World Wide Web. Paper presented at the Proceedings of the 2 010 6 th
World Congress on Services. http://dx.doi.org/10.1109/SERVICES.2010.58

Maleshkova, M., Pedrinaci, C., & Domingue, J. (2009). Supporting the creation of semantic RESTful service
descriptions. Paper presented at the 8th International Semantic Web Conference (ISWC 2009), Washington
D.C., USA.

Mateos, C., Crasso, M., Zunino, A., & Campo, M. (2010). An Evaluation on Developer's Acceptance of
EasySOC:A Development Model for Service-Oriented Computing Proceedings of the 11th Argentine

www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 9; 2012

55

Symposium on Software Engineering Simposio Argentino de Ingenieria de Software (ASSE2010) - 39th
JAIIO.

Matthias, K., Benedikt, F., & Katia, S. (2009). OWLS-MX: A hybrid SemanticWeb service matchmaker for
OWL-S services. Web Semantics: Science, Services and Agents on theWorldWideWeb, 7, 121-133.

Pilioura, T., & Tsalgatidou, A. (2009). Unified publication and discovery of semantic Web services. ACM Trans.
Web, 3(3), 1-44. http://dx.doi.org/10.1145/1541822.1541826

Plebani, P., & Pernici, B. (2009). URBE: Web Service Retrieval Based on Similarity Evaluation. IEEE
Transaction on Knowledge and Data Enginering, 21(11), 1629-1643.
http://dx.doi.org/10.1109/TKDE.2009.35

Robillard, M. P., Walker, R. J., & Zimmermann, T. (2010). Recommendation Systems for Software Engineering.
Software, IEEE, 27(4), 80 - 86. http://dx.doi.org/10.1109/MS.2009.161

Rodriguez, J. M., Crasso, M., Zunino, A., & Campo, M. (2009). Discoverability anti-patterns: frequent ways of
making undiscoverable Web Service descriptions Proceedings of the 10th Argentine Symposium on
Software Engineering (ASSE2009) - 38th JAIIO (pp. 1-15). Mar del Plata, Argentina.

Rodriguez, J. M., Crasso, M., Zunino, A., & Campo, M. (2010). Automatically detecting opportunities for Web
Service descriptions improvement Proccedings of the 10th IFIP Conference on e-Business, e-Services, and
e-Society (I3C 2010).

Sellami, M., Tata, S., Maamar, Z., & Defude, B. (2009). A Recommender System forWeb Services Discovery in a
Distributed Registry Environment. Paper presented at the Fourth International Conference on Internet and
Web Applications and Services, Venice/Mestre, Italy.

Shripad, M. U., & V., P. T. (2005). Dynamic Selection ofWeb Services with Recommendation System. Paper
presented at the International Conference on Next Generation Web Services Practices, Seoul, Korea.

Sneed, H. M. (2010). Measuring web service interfaces. Paper presented at the WSE.

Vu, L.-H., Hauswirth, M., Porto, F., & Aberer, K. (2006). A search engine for QoS-enabled discovery of
semantic web services. International Journal of Business Process Integration and Management, 1(4),
244-255. http://dx.doi.org/10.1504/IJBPIM.2006.012623

Zheng, Z., Ma, H., Lyu, M. R., & King, a. I. (2009). WSRec: A Collaborative Filtering Based Web Service
Recommender System. Paper presented at the IEEE International Conference on Web Services, Los Angeles,
CA. http://dx.doi.org/10.1109/ICWS.2009.30

