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Abstract 
The cross sections and the man free path of 3He↑ atoms in HeII background are calculated. The 
Ramsauer-Townsend effect in the cross sections is found in these mixtures at low temperatures. In the low 
energy limit the cross sections are dominated by the S-wave scattering. The influence of S-scattering decreases 
with increasing magnetic field. With increasing k, S-wave scattering tends to decrease; whereas the contribution 
of the higher angular-momentum waves (especially P-wave) to the scattering increases. Our results of the mean 
free path exhibit the 3He↑ atoms propagate through the HeII background with an exceedingly long mean free path 
and without friction.  

Keywords: spin-polarized 3He-HeII mixture, total, diffusion and viscosity cross sections, mean free path, 
Ramsauer-Townsend effect 
1. Introduction 
Spin-polarized 3He-HeII mixture is an interesting quantum many-body. Theoretically, this system provides us 
with testing ground for the underlying quantum physics. Experimentally, it possesses completely new specific 
properties uncharacteristic of pure isotopes of helium, such as giant viscosity (Akimoto et al., 2007).  

In this paper, we shall study the effect of the magnetic field on the scattering properties of this system. We shall 
apply the Lippmann-Schwinger (LS) formalism to our system so as to calculate the cross section using the 
highly-acclaimed interatomic helium potential HFDHE2 (Aziz et al., 1979; Jazan & Aziz, 1995) as an input. 

Spin-polarized 3He-HeII mixture has been studied theoretically from various perspectives. A variational method 
has been used to determine the viscosity and thermal conductivity of the dilute spin-polarized 3He-HeII mixture 
(Hampson et al., 1988). The viscosity has been found to depend on the polarization. The magnetokinetic effects 
have been investigated at arbitrary temperatures, impurity concentrations and magnetic fields (Meyerovich, 
1978). In strong magnetic fields, the kinetic coefficients have been found to increase exponentially with the field.  
Experimentally, a polarization greater than 99% has been obtained in 3He-HeII mixture at B ≤ 14.8 T and T ≥ 1.5 
mK (Akimoto et al., 2007). A giant viscosity enhancement is observed using a composite vibrating wire 
viscometer for a fully spin-polarized 3He-HeII mixture. This large growth of the viscosity with spin polarization 
is in agreement with the theoretical predictions (Hampson et al., 1988; Bashkin & Meyerovich, 1977; 1978). As 
a consequence, a large mean free path of 3He↑ atoms in HeII background is found by Akimoto et al. (2007). 
Another objective of this work is to study the dependence of the mean free path of 3He↑ on the magnetic field.  

The rest of the paper is organized as follows. The underlying theoretical framework is presented in Section 2. 
The results are summarized and discussed in Section 3. Finally, in Section 4, the paper closes with some 
concluding remarks. 

2. Cross Sections of 3He↑-3He↑ Scattering in HeII 
The probability for a particle to cross, or to pass through, a unit area surrounding a stationary particle is called 
the differential cross section. If the force causing the scattering is central, the differential cross section for 
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spin-polarized fermions with spin S is defined by (Hirschfelder et al., 1954; Passel & Schermer, 1966; 
Al-Maaitah et al., 2011): 
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 f   being the scattering amplitude. Where fn and fN being the incident and target polarizations. In our system 
fn = fN = f. Here  f   is defined by (Landau, 1996): 
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 P cos  being the first-kind Lengendre polynomial of order  , and  ,  is the relative phase shift. And 

  denotes the spin of the particle ( or ). 

The polarization f  can be calculated as 
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where ( ) F F
k k

 
is the Fermi momentum for the spin-up (spin-down) subsystem and are given by  
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The Fermi momenta Fk , 
F

k  and 
F

k   are 
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The number density of 3He particles in 3He-HeII mixtures 3 is given by Bradley (1997) 
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From Eqs. (6) and (7) Fk  can be calculated at different values of x.  

A general expression for integral cross sections is  
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where n = 1 corresponds to the diffusion cross section D ;   is the center-of-mass scattering angle. 

Substituting n = 1 in Eq. (8), we have 
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In arriving at Eq. (9), we have used the fact that the first integral is even, whereas the second is odd and therefore 
finishes   
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Finally, the viscosity cross section   is obtained by substituting n = 2 in Eq. (8)  
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For 3He where 
2

1S  and fn = fN = f, Eqs. (10) and (11) become 
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The starting point in computing the 3He-3He cross sections in spin-polarized 3He-HeII mixtures is the 

determination of the relative phase shifts  , . This can be done by solving the Lippmann-Schwinger (LS) 

integral equation using a matrix-inversion technique (Bishop et al., 1977). We shall treat (LS) formalism 

briefly—just for reference purposes and for defining the quantities involved, since this theory is well described 

elsewhere (Sandouqa et al., 2006; Sandouqa et al., 2010; Joudeh et al., 2010; Joudeh, 2011). 

The basic input is the Campbell effective interaction potential (Campbell, 1967; Sandouqa et al., 2006). For 
calculating the Campbell potential, we have used the highly-acclaimed interatomic helium potential, HFDHE2 
(Aziz et al., 1979; Jazan & Aziz, 1995) which is generally regarded as the most reliable He-He potential. 

In case of spin-polarized systems, the t-matrix can be generalized to incorporate the interaction between the 
magnetic moments of the fermions with an external magnetic field B


as follows:   
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The chemical potential   is given by Bm .  B , where Bm  is the magnetic moment of 3He. This 
represents the total energy of the interacting pair in the center-of-mass frame, including the magnetic energy, 
where 0P  is the kinetic energy of the pair (Sandouqa et al., 2006).   

The phase shifts can be determined by parametrizing the on-energy-shell t-matrix,    l lt p, p;s ,P t p;P 
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as follows (Sandouq et al., 2006; Al-Maaitah et al., 2011):  
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 lImt p;P;   and  lRe t p;P;   denoting, respectively, the imaginary and real parts of  lt p;P;  . 

3. Results and Discussion 

Our results are summarized in Figures 1-7 and Tables 1-7. The principal physical quantities here are the total (= 

diffusion) and viscosity cross sections for 3He↑-3He↑ scattering in HeII. It was found necessary to include partial 

waves up to 14  so as to obtain results accurate to better than ~ 0.5%. In our figures, the velocity (upper 

scale) represents the corresponding velocity v1 [m/s] of a projectile atom 1 * *
3 3

k 420.86 k[ ]
v

m m
  -1Å

 on a 

stationary target atom (v2=0) as a function of k [Å-1]. 

Figures 1 and 2 display T  as functions of k at different values B for x = 150 ppm and x = 626 ppm, 
respectively. T  depends on the concentration and magnetic field. It is noted that T  tends to decrease with 
increasing magnetic field in the zero-energy limit; this because of Pauli’s principle which forbids atoms to come 
close enough to have significant interactions. Tables 1 and 2 show  0T  at different values of B for x = 150 
ppm and x = 626 ppm, respectively. From these figures, we have observed a minimum and a peak structure in 
the total cross section. The minimum appears as a result of a delicate balance between attractive short-range and 
repulsive zero-range interactions. The physical observation is that, at a particular value of the 3He↑ collision 
energy, the total scattering cross section is anomalously small. This is indicative of the Ramsauer-Townsend (RT) 
effect. Our results for RT are summarized in Tables 3 and 4. These tables show the relative momentum k [Å-1] 
and the total cross section T  [Å2] at which RT occurs. Further, T  has a peak at a particular value of k 
[Å-1], as shown in Tables 5 and 6. Judging from previous experience, this peak may be interpreted as an indicator 
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of superfluidity or a quasi-bound state (Bohm, 1979; Alm et al., 1994). Undulations due to the quantum statistics 
have been resolved for k > 1 Å-1. These Undulations in the momentum (energy) dependence of T originate from 
the indistinguishability of 3He atoms (Cantini et al., 1972; Feltgen et al., 1982). The amplitude of the undulations 
decreases in the first approximation as the inverse of the relative velocity of the colliding atoms. This undulatory 
behavior was first noticed by Bernstein (1962; 1963) who also pointed out that the number of undulations was 
related (semiclassically) to the number of bound states of the potential. 

 
Figure 1. The total cross section T [Å2] for 3He↑-3He↑ scattering in HeII as a function of  k [Å-1] at x = 150 

ppm and different values of B. The upper scale [m/s] represents the corresponding velocity v of a projectile atom 
on a stationary target atom 

 

 

Figure 2. The same as Figure 1; but for x = 626 ppm 
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Table 1.  T 0  [Å2] for 3He↑-3He↑ scattering in HeII for x = 150 ppm at different values of B 

B [T]  0T [Å2] 

0 58140.6 

3 48893.9 

6 27327 

9 6636.3 

10.9 11.6 

 

Table 2.  T 0  [Å2] for 3He↑-3He↑ scattering in HeII for x = 626 ppm at different values of B 

B [T]  0T [Å2] 

0 58205.5 

6 52535.9 

12 37889 

15 26946.7 

28.3 0.091 

 

Table 3. The Ramsauer-Townsend total cross section T  [Å2] for 3He↑-3He↑ in HeII at x = 150 ppm for 
different values of B 

B [T] k [Å-1] T  [Å2] 

0 0.234 139 

3 0.217 118.8 

6 0.2 85.6 

9 0.166 36.6 

10.9 0.062 0.61 

 

Table 4. The Ramsauer-Townsend total cross section T  [Å2] for 3He↑-3He↑ in HeII for x = 626 ppm at 
different values of B 

B [T] k [Å] T  [Å2]

0 0.234 138.9 

6 0.237 122.9 

12 0.218 102.1 

15 0.2 88.7 

 

Table 5. The peak in the total cross section T  [Å2] for 3He↑-3He↑ in HeII for x = 150 ppm at different values of 
B 

B [T] k [Å] T  [Å2]

0 0.343 173.4 

3 0.366 169.6 

6 0.366 165.4 

9 0.366 161.5 

10.9 0.366 160.3 
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Table 6. The peak in the total cross section T  [Å2] for 3He↑-3He↑ in HeII for x = 626 ppm at different values of 
B 

B [T] k [Å] T  [Å2]

0 0.342 173.4 

6 0.366 170.05 

12 0.366 167.2 

15 0.366 165.6 

28.3 0.366 160.2 

 

Figure 3 shows T  as a function of k at B = 6T for x = 150 ppm and x = 626 ppm. It is noted that the 
high-concentration total cross sections are less than the corresponding low-concentration cross sections as k  0 
because of the overall less attraction of the Veff due to the overall repulsion of medium effects. For high k, these 
cross sections are independent of concentration. This is because the kinetic energy part is much larger than the 
interaction part; therefore the medium effects become negligible, i.e., one can define a free-atom cross section 
appropriate for the energy range where the cross section is a constant. 

 
Figure 3. The total cross section T [Å2] for 3He↑-3He↑ scattering in HeII as a function of k [Å-1] at B = 6T for x 

= 150 ppm and x = 626 ppm, respectively 

 
Figure 4 shows the behavior of the total cross section T and the wave-  cross section    ( 0  - 3 ) for 
3He↑-3He↑ scattering in HeII as functions of k at x = 150 ppm and B = 6 T. For k  0.5 Å-1, the S-wave cross 
section is dominant. With increasing k, S-wave scattering tends to decrease; whereas the contribution of the 
higher angular-momentum waves, especially P-wave, to the scattering increases. Although many relative partial 
waves contribute to T , the undulations arise from odd-  scattering. For k 3 -1Å , the total cross section is 
nearly constant. The presence of a potential centrifugal barrier that arises from the orbital angular momentum 

1  of the collision leads to the existence of quasi-bound states which manifest themselves as a 
resonance-like behavior.  

Figures 5 and 6 exhibit   as functions of k at different values B for x = 150 ppm and x = 626 ppm, 
respectively.   has the same behavior as the total cross section. It is found the high-polarization viscosity 
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cross sections, for k  3.5 Å-1, approach the corresponding low-polarization cross sections. Therefore, for k  
3.5Å-1, there are no strong quantum effects manifesting themselves because of the relatively small scattering 
length for the 3He↑-3He↑scattering in 3He-HeII mixtures (Bishop et al., 1977).  

Figure 7 shows   as a function of k at B = 6T for x = 150 ppm and x = 626 ppm. It is noted that the effect of 
concentration is similar to that of a magnetic field. The RT minimum decreases by increasing the concentration 
due to increasing the repulsive many body effect.  

 

 

Figure 4. The  -wave effective cross sections   [Å2], 0 - 3 and the total cross section T  [Å2] for 
3He↑-3He↑ scattering in HeII as functions of k [Å-1] at B = 6T for x = 150 ppm. The upper scale [m/s] represents 

the corresponding velocity v of a projectile atom on a stationary target atom 
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Figure 5. The viscosity cross section  [Å2] for 3He↑-3He↑ scattering in HeII as a function of k [Å-1] at x = 150 

ppm and different values of B. The upper scale [m/s] represents the corresponding velocity v of a projectile atom 
on a stationary target atom 

 
Figure 6. The same as Figure 4; but for x = 626 ppm 

 



www.ccsenet.org/mas Modern Applied Science Vol. 6, No. 8; 2012 

41 
 

 
Figure 7. The viscosity cross section  [Å2] for 3He↑-3He↑ scattering in HeII as a function of k [Å-1] at B = 6T 

for x = 150 ppm and x = 626 ppm, respectively 

 
In polarized system, there are two relaxation times, one for spin-up (  ) and the other for spin-down (  ). 
Meyerovich (1982) found the following expressions for relaxation times for polarized system. The relaxation 
time for the spin-up subsystem  is given by Meyerovich (1982): 

              
 

3

3 2 2
T 3 B 3

5 1

0 m k T
5 3


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
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
 

   
 


;                          (18) 

The relaxation time for the spin-down subsystem  is given by Meyerovich (1982): 
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3

3 2
T 3 B

5

2 0 m k T
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
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
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
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.                               (19) 

In the low-temperature limit   2
T o

k 0
k 2 a 


 . 

Multiplying these relaxation times by the Fermi velocities gives the mean free paths for spin-up subsystem 
and spin-down subsystem  . For the spin-up subsystem  is given by 

F F
v    ; 

          
 

4
F

2 3 2 2
T 3 B 3

k5

0 m k T
5 3


 



 
 







 

   
 

 .                         (20) 

And the spin-down subsystem  is given by 

F F
v    ; 
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where Fv and Fv being the Fermi velocities for spin-up subsystem and spin-down subsystems, respectively 

and given by 

                        F
F

3

k
v

m


 


.                                    (22) 

Our results for  and   at x = 150 ppm for different values of B are summarized in Table 7. It is found that 
the mean free path increases by increasing B. It is generally anticipated that the mean free path would increase 
because the polarization is expected to decrease the number of collisions. The spin-up mean free path  ~ 2 cm 
at B = 10.3 T in agreement with (Bashkin & Meyerovich, 1981; Akimoto et al., 2007). Bashkin and Meyerovich 
(1981) predicted that the mean free path reaches tens of centimeters at sufficiently low temperatures and high 
magnetic field. Akimoto et al. (2007) calculated the mean free path of 3He↑ atoms in HeII background from 
experimental measurements of the viscosity. They found a large   under extremely high magnetic field (  ≈ 3 
mm). Thus, 3He↑ atoms propagate through the medium as essentially free, unscattered particles. This result 
indicates the existence of a state known as a supermobility state - characterized by the 3He↑ atoms moving in the 
4He-background with an exceedingly long mean free path and without friction. This state is predicted in dilute 
3He-HeII mixtures at very low temperature (Cohen, 1961; Bardeen et al., 1967; Landau et al., 1970; Hoffberg, 
1972). 

 
Table 7.  and   at x = 150 ppm for different values of B 

B [T]   [Å]   [Å] 

0 5.12 5.12 

3 9.7 5.19 

6 41.7 7.31 

9 845.6 18.9 

10.9 2.1×108 1505.5 

 
4. Conclusion 
In this paper, the cross sections and the man free path of 3He↑ atoms in HeII background are calculated. In the 
low energy limit, the cross sections are dominated by the S-wave scattering. The influence of S-scattering 
decreases with increasing magnetic field; whereas the contribution of the P-wave scattering increases. The 
achievements are: (1) the prediction of the Ramsauer-Townsend effect in this mixture. (2) the prediction of a 
phase transition due to resonance-like behavior in the total cross section and (3) studying the dependence of the 
mean free path of 3He↑ on the magnetic field.  

In conclusion, our results present a theoretical evidence for the pervious prediction that at high magnetic field 
and low temperature 3He↑ atoms propagate through the HeII background with an exceedingly long mean free 
path and without friction.  
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