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Abstract 
In this study we estimated a lodgepole pine (Pinus contorta var. latifolia Engelm.) volume-age model with and without 
taking into account serially-correlated errors arisen from permanent sample plots. The estimations were based on the 
first-order (FO) and first-order conditional expectation (FOCE) methods of the nonlinear mixed model technique. 
Among the correlated error structures considered, the spatial power structure was found to be the most appropriate. 
Model predictions were obtained and evaluated on model fitting data, as well as on independent validation data 
collected from a different ecoregion. Results showed that the model estimated with the independent and identically 
distributed (iid) error structure performed much better than the model estimated with the correlated error structure. This 
is true on both model fitting and validation data sets, and for both FO and FOCE methods. It implies that, if the main 
purpose of a study is to develop models for predictions, there is no real benefit to consider more elaborate and complex 
error structures to account for the correlated errors. The iid error structure is a sound choice for dealing with correlated 
errors under the nonlinear mixed model framework.  
Keywords: Longitudinal data, Error structure, Correlation, Model prediction, First-order (FO) method, First-order 
conditional expectation (FOCE) method, Volume-age model  
1. Introduction 
For repeatedly measured, unequally spaced and unbalanced longitudinal data collected from permanent sample plots (or 
stem analysis trees), various within- and between-plot correlations and heterogeneous variances may occur. In addition, 
the correlations can be both temporal and spatial. 
Violation of the independent and identically distributed (iid) error assumption could have important statistical 
consequences for analyses based on the least squares principle. It may invalidate hypothesis testing and interval 
estimation. The problem may be solved using the generalized least squares (GLS) method (Judge et al. 1985) or mixed 
model technique (Davidian and Giltinan 1995). Examples of GLS in forestry have been shown by many (e.g., Monserud 
1984, Gregoire 1987). One issue related to GLS is that it generally applies to equally spaced and balanced data. It may 
create other problems when used for unequally spaced and unbalanced data. Lappi and Bailey (1988) stated that 
ordinary least squares (OLS) are “deemed to be appropriate” for large samples, even though GLS could be used. 
Borders et al. (1988), West (1995), and Huang (1997) cited other studies which concluded that OLS is adequate, and it 
is unnecessary to apply more elaborate procedures when faced with correlated errors. Knowledge of the correlation 
parameter in GLS is typically ignored in predictions (Monserud 1984).  
In more recent years, more researchers have chosen the mixed model approach to deal with correlated errors and 
heterogeneous variances (e.g., Lappi 1986, Ojansuu 1987, Gregoire et al. 1995, Huang 1997, Fang and Bailey 2001, 
Schabenberger and Pierce 2002, Wang et al. 2007). This approach allows for a more flexible error covariance structure. 
More importantly, knowledge of the correlation parameter and the entire error covariance structure from the mixed 
model estimation can be used in predictions. 
In spite of the large amount of effort invested in addressing correlated errors, many questions remain. The primary 
objectives of this study are to: (1) compare a volume-age model for lodgepole pine (Pinus contorta var. latifolia 
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Engelm.) estimated using nonlinear mixed model (NLMM) technique with and without taking into account correlated 
errors; (2) evaluate the impacts of different error structures on model predictions based on model fitting data as well as 
on independent model validation data; (3) clarify some methodological confusions and miscues about the NLMM 
technique in forest modeling; and (4) recommend a sound and practical approach to use when faced with correlated 
errors. 
2. Data and base model 
The lodgepole pine data used in this study were collected by the Alberta Forest Service over the last 45 years as a part 
of the provincial Permanent Sample Plots (PSP) system. They were obtained from pine dominated forests in the upper 
foothills and lower foothills ecoregions of Alberta. The most common PSP size is 1000 m2, but it can range from 200 to 
2000 m2 depending on the density of a stand. Within each PSP, diameters (always at 1.3 m above ground) were 
measured for all trees taller than 1.3 m, and heights were measured for all trees with diameters or portions of 
representative trees (Alberta Forest Service 2000). The missing tree heights were predicted using the “bias-free” 
height-diameter models (Huang et al. 2008a). Individual tree volumes were calculated following the standard taper 
functions (Huang 1994), and were summarized to give plot volume. Plot age (at breast height) was obtained from cored 
trees within the plot or sectioned trees in the buffer areas around the plot.  
The volume-age data from the upper foothills ecoregion were used as model fitting data, and the data from the lower 
foothills ecoregion were used as model validation data. The two data sets (Figure 1) can be considered independent of 
each other because of the geographic separation. The model fitting data consist of 1,249 measurements from 288 plots 
(subjects), with a mean (minimum-maximum) volume (m3/ha) of 302.694 (13.909-642.471) and a standard deviation 
(SD) of 108.902 (m3/ha). The validation data consist of 1,011 measurements from 265 plots, with a mean volume of 
287.611 (1.748-564.329) and an SD of 108.581. Both data sets are unequally spaced and unbalanced longitudinal data. 
Based on a detailed examination of the overall and subject-specific (SS) volume-age trends exhibited by the data in 
Figure 1, two NLMMs were selected for evaluation: 
(1) iiiiii

i εAgeAgeVol ++−+= + ])ub(exp[)ub( 11
)ub(

11
22  

(2) iiiiii
i εAgeAgeVol ++−+= + ])ub(exp[)ub( 33
)ub(
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22  

where Voli and Agei are observed volumes and ages for the ith plot, b1, b2 and b3 are fixed parameters common to all 
plots, u1i, u2i and u3i are random parameters unique to the ith plot, and iε  is a normally distributed within-plot error 
term. Both (1) and (2) can be sigmoidal. They can also describe declining volumes at old ages, which were observed in 
some plots likely due to mortality exceeding growth at old ages (Figure 1). Preliminary analyses indicated that (2) failed 
to achieve convergence in some cases because of over-parameterization. Therefore, (1) was chosen in this study for 
further analyses. 
3. Error structure and parameter estimation 
Model (1) can be written as a generalized NLMM of the form: 
(3) iiii f εubxy += ),,(  
where ],...,,[ n21 iiiii yyy=y ′ is a vector of plot volumes for plot i, xi is a design matrix of the covariate age, b is a 
vector of fixed parameters, ]u,u[ 21 iii =u ′ is a vector of subject-specific random parameters, and iε  is a vector of 
within-plot errors. The ui and iε  are assumed to be uncorrelated and normally distributed with mean zero and 
variance-covariance matrices D and Ri, respectively. The D is typically assumed to be unstructured and identical for all 
subjects within the population: 
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21uuσ  are variances and covariance for random parameters u1 and u2. 

As noted earlier, for the unequally spaced and unbalanced longitudinal data collected from the PSPs, the errors may not 
be iid. Instead, they could be correlated and unequally varied. To account for these, a total of more than 20 error 
covariance structures described in SAS Institute Inc. (2004) and Littell et al. (2006) were examined. The spatial power 
error structure produced the most reasonable fit to the data. It was chosen for Ri. As an example, for a plot repeatedly 
measured five times, the Ri is defined as: 
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where σ2 is the overall error variance, Ψ  is a generalized error covariance structure, dιη is the distance between two 
measurements at times ι and η (dιη = | tι – tη |), and ρ is the correlation parameter. The spatial power error structure 
captured the unequally spaced and unbalanced nature of the volume-age data. Other error structures examined but not 
presented here, e.g., compound symmetry, heterogeneous Toeplitz, Toeplitz with different bands, unstructured 
correlation, first-order ante-dependent, and several spatial correlation structures evaluated in Yang and Huang (2008), 
were not converged or performed poorer than the SP(POW). The time-series structures such as AR(1), MA(2) and 
ARMA(1,1), which assume that the measurements are taken at equally spaced time intervals, may not be adequate 
without further adjustments, even though some of them produced seemingly reasonable results. 
For models assumed to follow an iid error structure, the Ri is simplified to: Ri Ψ2σ=  = 

in
2Iσ , where 

inI  is a ni × 
ni identity matrix of 1s. 
Different methods have been developed to estimate the generalized NLMM (3). They are described in detail in Davidian 
and Giltinan (1995), and Vonesh and Chinchilli (1997). Since the estimation of the fixed parameters is readily available 
in most statistical software packages, we focused on the estimation of subject-specific random parameters based on the 
first-order (FO) method of Beal and Sheiner (1982) and the first-order conditional expectation (FOCE) method of 
Lindstrom and Bates (1990). 
For the FO method, a first-order Taylor series expansion of (3) around zero, the expected value of the random 
parameters, is used to approximate (3). The random parameters are predicted by: 
(6) )],ˆ,([)ˆˆ(ˆˆ 1'' 0bxyRZDZZDu iiiiiii f−+= −  
where D̂  and iR̂  are estimates of D and Ri, respectively, b̂  is an estimate of the fixed parameters b, and Zi is the 
derivative matrix with respect to the random parameters, defined by 
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For the FOCE method, the first-order Taylor series expansion of model (3) is iterated around a current predictor of the 
random parameters (and a current Zi) until the convergence criterion is met. The final random parameters are obtained 
numerically through the following equation: 
(8) ]ˆ)ˆ,ˆ,([)ˆˆ(ˆˆ 1''

iiiiiiiiii f uZubxyRZDZZDu +−+= −  
where D̂ , iR̂  and b̂  are as defined above, but Zi is given by 
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Since iû  appears on both sides of (8), for the FOCE method, iû  must be solved iteratively. This is the fundamental 
concept innate to the FOCE method (Schabenberger 1994, Vonesh and Chinchilli 1997, Huang 2008, Temesgen et al. 
2008, Meng et al. 2008, Meng and Huang 2009). Unfortunately, many forest modelers used (6) from the FO method to 
predict iû  while implementing the FOCE method, without realizing that this could seriously bias the outcome. The 
methodological mixing should be avoided in future studies as it may lead to erroneous conclusions. 
All model fittings were carried out using the SAS macro %NLINMIX, with expand = ZERO for the FO method and 
expand = EBLUP for the FOCE method (Littell et al. 2006). The default fittings assume iid error structure (i.e., Ri 
=

in
2Iσ ). For the spatial power error structure illustrated in (5), the fittings must be implemented using the keyword 

TYPE = SP(POW)(age) within the REPEATED statement.  
4. Predictions 
Once the b̂  and iû  are estimated, subject-specific volume predictions for plot i can be made: 
(10) iiii f uZ0bxy ˆ),ˆ,(ˆ +=  (FO method) 
(11) )ˆ,ˆ,(ˆ iii f ubxy =   (FOCE method) 
where Zi for FO is defined in (7), and xi is the x matrix for new or old (modeling) observations. Note the sˆ iy  for FO 
and FOCE are different (Vonesh and Chinchilli 1997). Mixing them will likely result in biased predictions (Huang 2008, 
Meng and Huang 2009). It is possible that, following Judge et al. (1985)’s descriptions on prediction, we can also derive 
the following alternatives to obtain the adjusted predictions from the use of SP(POW) or any other generalized error 
covariance structure: 
(10a) ]ˆ),ˆ,([ˆ'ˆˆ),ˆ,(ˆ 1

iiiiiiii fVf uZ0bxyΨuZ0bxy 00 −−++= −  (FO method) 
(11a) )]ˆ,ˆ,([ˆ'ˆ)ˆ,ˆ,(ˆ 1

iiiiii fVf ubxyΨubxy 00 −+= −    (FOCE method) 
where x0i is a known x matrix of new observations for plot i, i0ŷ  corresponds to x0i, xi is an x matrix from the old 
(existing) data, V̂ is the estimated covariances between elements of old and new errors, and Ψ̂  is the estimated 
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generalized within-plot error covariance structure. For the SP(POW) structure, for instance, more explicit prediction 
equations can be derived following Judge et al. (1985) (detailed derivations are omitted here. Interested readers may 
contact the senior author to obtain a copy): 
(10b) ]ˆ),ˆ,([ˆ),ˆ,(ˆ 1)κ(1

κ,κ,κ, iiii
d

iiii ff uZ0bxyuZ0bxy −−++= +ρ   (FO method) 
(11b) )]ˆ,ˆ,([)ˆ,ˆ,(ˆ 1)κ(1

κ,κ, iii
d

iii ff ubxyubxy −+= +ρ     (FOCE method) 
where κ is the number of projection intervals (or periods), (κ+1) is the number of measurements, xi,κ and Zi,κ are the xi 
and Zi values κ intervals ahead, and d1(κ+1) is the distance (or time) between the first and (κ+1)th measurements (e.g., 
d1(κ+1) = d15 for the 4th projection period of the SP(POW) structure given in (5)). For a simpler structure such as AR(1), 
the above equations reduce to: 
(10c) ]ˆ),ˆ,([ˆ),ˆ,(ˆ κ

κ,κ,κ, iiiiiiii ff uZ0bxyuZ0bxy −−++= ρ   (FO method) 
(11c) )]ˆ,ˆ,([)ˆ,ˆ,(ˆ κ

κ,κ, iiiiii ff ubxyubxy −+= ρ     (FOCE method) 
For the reasons discussed at the end of Section 5, however, we opted not to implement the alternative equations in the 
present study before further assessment and simulations are conducted. 
There are different ways to compare the differences between the observed and predicted volumes, and various statistics 
exist for reporting the goodness-of-fit of NLMMs (Vonesh and Chinchilli 1997). Here, we are mostly interested in the 
criteria to evaluate the prediction errors (residuals), their average and variations. Thus, the following statistics were 
computed: 
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where e  is the overall mean bias, ijy  and ijŷ  are the jth observed and predicted values for subject i, m is the 
number of subjects, N is the total number of observations from m subjects (N = ∑ =

m
i i1n ), SD is standard deviation, δ is 

an overall accuracy measure combining the bias ( e ) and precision (SD) of the errors (Cochran 1977), %e  is percent 
bias, and y  is the arithmetic mean of the observed values. 
Because the predominant interest of a NLMM is in subject-specific predictions, it is more important that we also 
compute the above statistics by subject: 
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where all variables are as defined before, except that they apply to subject i, not the entire population.  
For a population of m subjects, the frequency distribution for any one of the SS measures expressed in (16)-(19) can be 
constructed, and the percentage of subjects that fall below or above certain thresholds such as the 5th or the 95th 
percentile, can be determined. As will be shown later, examination of such frequency distributions is exceedingly useful 
in helping modelers obtaining a realistic understanding of the goodness-of-fit a NLMM when it is used for 
subject-specific predictions. More importantly, it also helps revealing the differences between the models estimated with 
different error structures. 
It is worthwhile to note here that many forest modelers have used the fixed parameters estimated as a part of a NLMM 
to predict the population-averaged (PA) responses, i.e., by setting iû = 0 and using ),ˆ,(ˆ 0bxy ii f= . This is likely a 
result of some misunderstanding. The fixed parameters estimated as a part of a NLMM do not fully characterize the 
mean responses of the population, especially when the inter-subject variability is large (Davidian and Giltinan 2003, 
Fitzmaurice et al. 2004). Consequently, they generally provide a biased partial representation of the true population 
mean responses. It is very important to recognize that the predictions obtained from the fixed parameters estimated as a 
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part of a NLMM generally do not represent the “unbiased” PA responses (Huang 2008). 
5. Results and discussion 
Results of the estimated parameters for model (1) with iid and spatial power error structures are shown in Table 1. The 
Akaike’s information criterion (AIC) is computed by (Littell et al. 2006): 
(20) 2p2LLAIC +−=  
where -2LL is -2 times the log-likelihood function, and p is the total number of estimated parameters. 
Studentized residual plots were obtained from the FO and FOCE methods using the iid and correlated (spatial power) 
error structures. Only those from the FOCE method are shown here (Figure 2), as those from the FO method display 
similar patterns. The differences in the studentized residual plots between the iid errors and the correlated errors are 
easy to detect. The studentized residuals from the iid errors are scattered evenly around the zero line, whereas the 
studentized residuals from the correlated errors are not. This suggests that judged by visual means, the iid error structure 
is more satisfactory. 
To facilitate the discussion of the upcoming results, and to help readers grasp the essences of the issues, we first 
demonstrate the computations involved in predicting the random parameters and in deriving the predicted volumes for a 
“new” plot measured five times (j = 5) from the validation data (Table 2a), based on the FOCE method with the 
SP(POW) error structure. Actual computation algorithms for this demonstration are provided in Appendix 1, and were 
explained in detail in Huang (2008), Meng et al. (2008), and Meng and Huang (2009). The computations for the iid 
errors and for the FO method are relatively simpler and can be derived directly from the algorithms given in Appendix 1 
(Huang 2008). 
For the FOCE method, the derivatives of model (1) with respect to the two random parameters are: 
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Therefore, for the ith subject with j measurements, the estimated Zi matrix is constructed as follows: 
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where der_u11, …, der_u1j are given by (21) and der_u21, …, der_u2j are given by (22), and j = 5. The estimated D 
matrix for any subject i is (from eq. (4) and Table 1): 
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The estimated Ri matrix for the example subject is (from eq. (5) and Tables 1 and 2a): 
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For the FOCE method, there is no simple algebraic solution for iû  from (8). An iterative procedure involving the 
following computation steps is used to numerically solve for iû : 
Step 1: Obtain an initial estimate, termed 0,ˆ iu , of the random parameters. A reasonable first guess of this estimate is 

0,ˆ iu = E( iu ) = 0, the expected value of the random parameters for the FO method. Thus, 0,ˆ iu  can be computed 
directly using eq. (6) for the FO method, as follows: 
(26) )],ˆ,([)ˆˆ(ˆˆ 1'

0,0,
'

0,0, 0bxyRZDZZDu iiiiiii f−+= −  
where 0,iZ  is a first estimate of the Zi matrix (equivalent to the Zi in (7) for the FO method): 



Vol. 3, No. 5                                                                  Modern Applied Science 

 8 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−
=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂

∂

∂

∂

∂

∂

∂
∂

=
)ln()ˆexp(ˆ)ˆexp()ˆ1(

)ln()ˆexp(ˆ)ˆexp()ˆ1(

),,(),,(

),,(),,(

22

22

ˆ
1111

ˆ

1
ˆ
11111111

ˆ
1

21

21

1

0,

ij
b
ijijijij

b
ij

i
b
iiii

b
i

ijij

iji

i

AgeAgeAgebbAgebAgebAge

AgeAgeAgebbAgebAgebAge

u
xf

u
xf

u
xf

u
xf

MMMM
0b0b

0b0b

Z  

Step 2: Once the 0,ˆ iu  is calculated, the next estimation of iû , termed 1,ˆ iu , is obtained based on (8), with iû  on the 
right-hand side replaced by 0,ˆ iu  from Step 1:  
(27) ]ˆ)ˆ,ˆ,([)ˆˆ(ˆˆ 0,1,0,
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where 1,iZ  is the Zi expressed in (23) evaluated at 0,ˆ iu , with its elements given by: 
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Step 3: Having the calculated 1,ˆ iu  from (27), the new estimation for iû , termed 2,ˆ iu , is computed using (8) again, 
with the iû  on the right-hand side replaced by the updated 1,ˆ iu  from Step 2: 
(30) ]ˆ)ˆ,ˆ,([)ˆˆ(ˆˆ 1,2,1,
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where 2,iZ  is evaluated at 1,ˆ iu , with its elements defined in eqs. (28)-(29) updated using 1,ˆ iu . 
This process is iterated k times until a desired precision, e.g., 0000001.0ˆˆ )1,(, <− −kiki uu , is achieved. The predicted 
final random parameters for subject i is: kii ,ˆˆ uu = .  
For the example plot shown in Table 2a, the predicted final random parameters for the FOCE–pow are: u1 = 
-0.00338906 and u2 = -0.059555. The final elements (der_u1 and der_u2) of the Zi matrix are listed in Table 2a, along 
with the Zi matrices for the other error structure and the FO method. 
Once the iû  are known, the predicted volumes for the FOCE method are obtained directly using (11). Results are 
shown in Table 2a. For the FO method, the predicted volumes are obtained differently using (10). Results are also 
shown in Table 2a. Once the prediction errors and their SD are known, various intervals can be constructed (Hahn and 
Meeker 1991). Some common ones are: 
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where z is the standard normal distribution (and α = 0.05 throughout this study). 
Table 2b lists the normality test results and the calculated intervals for the example plot. All four tests conducted 
following Yang et al. (2004) showed that normality was met. However, it must be noted that since the sample size for 
this example plot is small, the interval calculations serve only as illustrations. The “preferred” calculations in fact 
require that the sample size should not be smaller than 8 (Hahn and Meeker 1991). In the cases where the normality 
assumption is not met, distribution-free intervals could be constructed (Hahn and Meeker 1991). One could also use a 
10% trimmed mean as an estimate of ie  and a jackknifed standard deviation expressed in (35) as an estimate of SD to 
construct approximated intervals (Efron and Tibshirani 1986, Hahn and Meeker 1991): 

(35) ∑ −
−

=
=
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i
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i

i
jack ee

n
n

SD
1

2
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1   

where )( jie  is the sample average of the data set without the jth point. It is straightforward to infer that (31)-(35) can 
also be applied to the entire population of N observations (N = ∑ =

m
i i1n ). 

A fundamental difference between the FOCE and FO methods is that, the random parameters for the FOCE method 
must be solved numerically, whereas they can be obtained directly from (6) for the FO method. This fundamental 
difference appeared to have largely been neglected in previous applications of NLMMs in forestry. It is essential to 
recognize that when implementing the FOCE method, the iû  calculated by (6) is just a first initial “guesstimate” (and 
sometimes an inappropriate guesstimate) in the search of a true empirical best linear unbiased predictor of iu . 
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Table 3 lists the overall prediction errors (eij) on both model fitting and validation data sets. For both FO and FOCE 
methods, the prediction errors (absolute values) and their variations from the correlated error structure are much larger 
than their counterparts from the iid error structure. For example, for the FO method on the model fitting data, the δ and 

%e  values for the iid error structure are 107.965 and 0.226%, respectively, whereas for the spatial power error 
structure, they are 4696.876 and 10.906%, respectively. The differences between the values from the iid and correlated 
error structures are striking. They are also consistent across the methods and data sets. All these suggest that the iid 
error structure produced much more accurate and precise predictions than the correlated error structure. 
For the more important SS predictions, the statistics calculated according to (16)-(19) by different error structures and 
data sets are summarized in Table 4. The number of plots where the percent bias ( %ei ) exceeded ±2.5% of the 
observed mean were identified and listed separately in Table 4. The frequency distributions of the mean biases, percent 
biases and standard deviations from all 288 plots of the model fitting data and 265 plots of the model validation data 
were obtained. For the sake of brevity, only the frequency distributions for %ei  from different error structures and 
data sets are shown (Figure 3). 
Judging from the results shown in Table 4, the contrasts between the iid and power error structures are remarkable. The 
power error structure produced much larger biases, SDs and δs. More specifically, for instance, for the FO method, 
among the 288 plots of the modeling data, only two plots produced biases exceeding ±2.5% of the observed means 
when the iid error structure was used. But when the power error structure was used, 272 plots produced biases 
exceeding ±2.5% of the observed means. Similar results are also apparent on the validation data, and for the FOCE 
method. The frequencies of poorer predictions from the power error structure are much greater than those from the iid 
error structure. 
The poorer performance of the power error structure is more readily seen in Figure 3, where the percent biases from 
different plots are centered around zero but those from the power error structure are spread out much more than those 
from the iid error structure, indicating lower accuracies and larger variations from the power error structure. This is true 
on both model fitting and validation data sets, and for both FO and FOCE methods. 
Figure 4 shows the observed volumes against the volumes predicted from different methods with iid and power error 
structures. We only show the plots from the validation data because the plots from the modeling data are similar. More 
importantly, it is more telling on validation data than on modeling data because the validation data are “new” 
independent data that a fitted model is most likely to be applied to make predictions in real-world applications. The 
poorer performance of the power error structure is rather apparent in Figure 4. It is consistent for both FO and FOCE 
methods. 
An examination of the "spaghetti” or “chow-mein” plots (Figure 5) of the prediction trajectories of the validation data 
indicates that the prediction trajectories from the iid error structure closely mimic the observed trajectories shown in 
Figure 1(b), whereas the prediction trajectories from the power error structure “compress” the observed trajectories. 
This is again consistent for both FO and FOCE, even though the degree of the compression varies slightly. 
Since much of the data collected for forest modeling is unequally spaced and unbalanced longitudinal data, where 
repeated measurements are taken on the same experimental units, the lack of independence of such data is inborn. The 
correlated nature of the data could violate an important assumption required by certain statistical techniques, mostly 
notably the least squares principle, for “optimal” performance and inference. Forest modelers have studied for many 
years, and have used the old and new techniques brought to light by statisticians, to address the dependence problem, 
believing in many cases, that the successful removal of the correlation would result in a “better” model. 
However, contrary to the common belief, the results obtained in this study from the NLMM methods showed that 
although accounting for the serial correlation appeared to have produced better fits when judged by the AIC values in 
Table 1 (a smaller AIC value is said to mean a better fit), it produced much worse predictions on both the model fitting 
and validation data sets. The predictions obtained with the iid error structure had consistently much smaller and better 
distributed biases than those obtained with the correlated (spatial power) error structure. This created a dilemma, as the 
successful accounting of the correlated errors produced much poorer predictions, while ignoring the correlated errors 
produced much better predictions but could potentially invalid hypothesis testing and interval estimation. It also asked 
for the question of whether the common practice of using AIC (and its modified forms) to select a preferred model 
and/or a preferred error covariance structure is correct. 
While there is no “best” answer to the apparent contradiction, and opinions may understandably vary depending on the 
focus of a study or a particular researcher, we believe in general that, because the vast majority of forestry models are 
developed to be used as predictive tools once the parameters have been estimated, and because much of the practical, 
real-world emphasis of forest modeling has been on the predictive capabilities and biases from the applications of the 
models, the prediction results, preferably obtained on independent validation data, should be given the predominant 
consideration. They should be used as the deciding factor in determining the appropriateness of a fitted model, and in 
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comparing alternative models and/or error structures. 
We also believe that, there may be some debatable issues and misconceptions about hypothesis testing and interval 
estimation in forest modeling. We understand that, in the presence of correlated (and/or heteroscedastic) errors, the 
ordinary estimators of coefficients ignoring the correlation are still unbiased. However, the standard errors of the 
coefficients are biased and inconsistent, and the estimators are not efficient (Judge et al. 1985). When a correct error 
covariance structure has been identified and a consistent estimator of this error covariance structure is obtained, it can 
be used to obtain a consistent estimator of the standard errors of the estimated coefficients that are also efficient. The 
question though is that, for a forest model developed as predictive tools, model users are (arguably) not really concerned 
much about the hypothesis testing and interval estimation on the coefficients that have been estimated in an unbiased 
manner. Instead, they are generally more concerned about the hypothesis testing and interval estimation on the 
predictions illustrated in eqs. (31)-(35) and Table 2b, which have little to do with the standard errors of the coefficients 
obtained on the modeling data. To ward off some potential statistical traps, forest modelers should be aware of and be 
mindful of some common miscues when conducting hypothesis testing and interval estimation under normal or 
non-normal error assumption, on different data sets (i.e., modeling vs validation/application), at different levels (i.e., 
population average vs SS), and for different purposes (e.g., model coefficients vs model predictions). 
For the vast majority of forest models built on repeated measurement data and to be used as predictive tools on new data 
or data ranges beyond those used in modeling, one needs to understand the pertinent prediction scenario first before 
making any prediction and judging the goodness of the prediction. As illustrated in Figure 6, various prediction 
scenarios exist, and different evaluation measures can be used to judge the goodness of predictions. We examined the 
scenarios and conducted simulations based on the fitted volume-age model, and found that accurate local predictions 
could be achieved from 2, 3 or more prior observations. We also found that, under the NLMM framework, with or 
without adjusting the predictions from the use of SP(POW) produced varied outcome, dependent on the ‘best’ 
covariance structure chosen, the direction of the predictions, the length and number of the prediction intervals, the level 
on which the predictions are made, the estimation technique (FO vs FOCE) used, the evaluation measures selected, and 
more importantly, the number of prior observations available for predicting the SS random parameters (we used all 
available prior observations in our analyses). In general, however, when SS random parameters are obtained from 2 or 
more prior observations, adjusting the predictions degenerated the predictions for our data. While the results from our 
study are obvious, we recognize that this is just one such study to demonstrate that the iid error structure is a sound 
choice for dealing with correlated data under the NLMM framework, if prediction is the primary focus of the study. We 
realize the potential options and variations in making predictions (as illustrated in Figure 6), and plan to conduct 
additional studies to further test this phenomenon on larger data sets, and for other tree species and other types of 
models. 
6. Conclusions 
Based on the FO and FOCE methods, we evaluated the volume-age model for lodgepole pine estimated with and 
without taking into account the serially-correlated errors. We found that the model estimated with the iid error structure 
outperformed the model estimated with the correlated (spatial power) error structure by a large margin. This observation 
was consistent for both FO and FOCE methods, and on both model fitting and validation data sets. It means that a 
NLMM estimated with the iid error structure is better in predictions than the model estimated with the correlated error 
structure. The result of this study can have some important practical implications, as a better model can be estimated 
using a simpler analysis without the need to account for the correlated error structure. In fact, accounting for the 
correlated error structure within the NLMM context not only did not improve model predictions, it actually degenerated 
the predictions substantially. Unless the main objective of modeling is not to develop models for prediction purposes, 
we believe that there is little or no concrete benefit to consider more elaborate error structures that account for the 
correlated errors. The iid error structure is simply a better choice for the lodgepole pine model, and for a similar model 
for black spruce (Picea mariana) (Huang et al. 2008b). Future studies should be conducted to see if the conclusions 
reached in this study still hold for other types of models and species, particularly on independent validation data sets. 
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Appendix 1. A generalized SAS program for predicting random parameters based on the FOCE method with the 
serially-correlated (spatial power) error structure 
-This program applies to unequally spaced and unbalanced longitudinal data for any number of plots. 
-The spatial power error structure is illustrated in (5) for a plot (subject) measured five times. 
*Input the data, where variable ‘measure’ refers to the measurement number; 
data tt1; 
input plotid measure age vol; 
cards; 
38001 1 53.234 155.057 
38001 2 60.234 163.343 
38001 3 74.234 226.229 
38001 4 84.234 268.278 
38001 5 94.234 290.151 
more datalines…; 
run; 
proc sort data=tt1; by plotid;  
run; 
 
data wed3; 
set tt1; 
by plotid; 
j+1; 
if first.plotid then do; i+1; j=1; end; 
run; 
proc means data=wed3; var i j;  
run; 
 
*Input the estimated parameters (from Table 1), and execute the proc iml; 
proc iml; 
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use wed3; 
read all var {j} into tobs; read all var {i age} into age; read all var {vol} into vol; 
covar={0.000030, 0.000385, 0.007794, 0.9977, 6361.73}; 
fixp={0.02396 2.5972}; 
d=j(2,2,.); 
d[1,1]=covar[1]; d[1,2]=covar[2]; d[2,1]=covar[2]; d[2,2]=covar[3]; 
s=covar[5]; cor=covar[4]; bb=fixp[1,]; b=bb`; 
tn=max(age[,1]);/*number of plots*/  
q=2; /*number of parameters*/ 
bx={1 1}; /*number of random effect parameters*/ 
nn=nrow(vol); u=j(tn,q,0); mc=max(tobs); 
start sm1 (tn,age,s,nn,cor,cov,mc); 
cov=j(nn,mc,0); start=j(nn,1,.); 
do i=1 to tn; 
c=0; start[,1]=.;  
do j=1 to nn; if age[j,1]=i then;  
do; 
start[j]=j; c=c+1; 
end; end; 
st=min(start); 
do h=1 to c;  
do k=1 to c; 
a=st+h-1; b=st+k-1; 
cv=s*cor**(abs(age[a,2]-age[b,2]));  
cov[a,k]=cv; 
end; end;  
end; 
finish sm1; 
run sm1 (tn,age,s,nn,cor,cov,mc); 
start sm (tn,bx,q,u,z,b,s,d,age,vol,nn,res,uv,cov); 
z=j(nn,q,0); res=j(nn,1,0); uv=j(tn,q,0); xx=1; 
do k=1 to tn; 
z[1:nn,]=.; res[1:nn,]=.; 
do j=1 to nn;  if age[j,1]=k then; 
 do;  
u1=u[k,1];  u2=u[k,2];  
agem=age[j,2]; volm=vol[j,1]; 
 zb1 = agem**(b[2]+u2)*(1-(b[1]+u1)*agem)*exp(-(b[1]+u1)*agem); 
 z[j,1]=zb1;  
 zb2 = (b[1]+u1)*exp(-(b[1]+u1)*agem)*log(agem)*agem**(b[2]+u2); 
 z[j,2]=zb2; 
 re=volm-(b[1]+u1)*agem**(b[2]+u2)*exp(-(b[1]+u1)*agem)+zb1*u1+zb2*u2; 
 res[j]=re; 
end; end; 
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r1=z;  
r2=r1[loc(r1[,1]^=.),]#bx; 
w1=res; w2=w1[loc(w1[,1]^=.),]; 
mm=nrow(w2); yy=xx+mm-1;  
rr=cov[xx:yy,1:mm]; xx=mm+xx; 
uu=d*r2`*INV(r2*d*r2`+rr)*w2; uk=uu`; 
uv[k,]=uk;  
end; 
finish sm; 
 
diff=j(tn,q,0); diff1=1; diff2=1; 
eps=1E-7; 
do iter=1 to 200 until (diff1<eps & diff2<eps); 
run sm (tn,bx,q,u,z,b,s,d,age,vol,nn,res,uv,cov); 
diff=abs(uv-u);  
diff1=max(diff[,1]);  
diff2=max(diff[,2]); 
u=uv; 
end; 
 
*u is the predicted random parameters; 
ubu=u; 
bf=j(tn,q,0); 
do i=1 to tn; 
bf[i,1]=b[1];  
bf[i,2]=b[2]; 
end; 
ub=ubu||bf; cnm={ub1i,ub2i,b1,b2};  
create rpm from ub[colname=cnm]; 
append from ub; 
quit; 
 
*predicting the volumes for all plots;  
data rpm1; 
set rpm; 
i=_n_; 
run; 
proc sort data=wed3;by i;run; 
proc sort data=rpm1;by i;run; 
 
*y_pred and y_res are predicted volume and residual from the FOCE method with spatial power errors;  
data allx ; 
 merge wed3 rpm1; 
 by i ; 
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y_pred = (b1+ub1i)*age**(b2+ub2i)*exp(-(b1+ub1i)*age); 
y_res= vol - y_pred; 
run; 
 
Table 1. Parameter estimates and fit statistics for model (1) based on the first-order (FO) and first-order conditional 
expectation (FOCE) methods assuming iid or correlated (spatial power) error structures. 

Method b1 b2  2
u1

σ   
21uuσ  2

u2
σ   ρ 2σ  AIC 

FO-iid 0.02758 2.6258 0.000149 0.001766 0.02693 188.62 12448.0 

FO-pow 0.02329 2.5799 0.000028 0.000364 0.008311 0.9980 6952.33 11890.9 

FOCE-iid 0.02691 2.6261 0.000098 0.001176 0.01947 171.97 12367.2 

FOCE-pow 0.02396 2.5972 0.000030 0.000385 0.007794 0.9977 6361.73 11913.6 

Note: iid refers to independent and identically distributed error structure, power refers to spatial power error structure, 
b1 and b2 are fixed parameters, 2

u1
σ  and 2

u2
σ  are variances for random parameters u1 and u2, respectively, and 

21uuσ  
is the covariance between u1 and u2, ρ is correlation parameter, σ2 is residual variance, and AIC is Akaike’s information 
criterion (defined in eq. (20)). 
Table 2a. Example computations of prediction errors for a plot (subject) measured five times. 

Method Age Vol_o der_u1 der_u2 Vol_p Res ie    SD 

FO-iid 53.234 155.057 -3676.41 860.79 144.299 10.759 0.021 8.434 

 60.234 163.343 -5921.11 1012.11 174.680 -11.337   

 74.234 226.229 -11034.88 1251.58 230.671 -4.442   

 84.234 268.278 -14744.17 1362.55 263.790 4.488   

 94.234 290.151 -18154.98 1423.50 289.511 0.640   

FO-pow 53.234 155.057 -1973.51 761.18 155.821 -0.764 -7.351 9.475 

 60.234 163.343 -3872.25 917.03 185.356 -22.013   

 74.234 226.229 -8668.21 1192.64 238.085 -11.856   

 84.234 268.278 -12553.09 1347.42 268.531 -0.253   

 94.234 290.151 -16498.20 1461.78 292.020 -1.869   

FOCE-iid 53.234 155.057 302.23 579.59 145.821 9.236 -0.144 8.116 

 60.234 163.343 -862.75 717.57 175.093 -11.750   

 74.234 226.229 -4343.18 988.36 229.466 -3.237   

 84.234 268.278 -7603.33 1165.34 262.842 5.436   

 94.234 290.151 -11310.55 1320.80 290.555 -0.404   

FOCE-pow 53.234 155.057 -763.71 656.79 165.244 -10.187 -18.020 9.564 

 60.234 163.343 -2275.16 802.30 195.767 -32.424   

 74.234 226.229 -6391.37 1074.44 249.451 -23.222   

 84.234 268.278 -9968.73 1240.74 279.850 -11.572   

 94.234 290.151 -13816.33 1376.67 302.845 -12.694   

Note: the methods are defined in Table 1, Vol_o and Vol_p are observed and predicted volumes (m3/ha), der_u1 and 
der_u2 are derivatives with respect to random parameters u1 and u2, respectively, Res is residual, ie  is the arithmetic 
mean of the residuals, and SD is the standard deviation of the residuals. The algorithms given in Appendix 1 show the 
computations for the FOCE-pow method. 
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Table 2b. Lower and upper limits of confidence intervals for the example plot shown in Table 2a. 

Normality test Prediction Tolerance CL for ie  CL for SD 
Md.  

W KS W2 A2 lower upper lower upper lower upper lower upper 
1 0.997 0.129 0.018 0.135 -25.63 25.67 -43.12 43.16 -10.45 10.49 5.05 24.24 
2 0.818 0.319 0.086 0.492 -36.17 21.47 -55.81 41.11 -19.12 4.41 5.68 27.23 
3 0.977 0.154 0.024 0.171 -24.83 24.54 -41.65 41.37 -10.22 9.93 4.86 23.32 
4 0.846 0.311 0.076 0.437 -47.11 11.07 -66.94 30.90 -29.90 -6.15 5.73 27.48 

Note: Md. (method) is defined in Table 1, W, KS, W2 and A2 are Shapiro-Wilk, Kolmogorov-Smirnov, Cramér-von Mises and 
Anderson-Darling statistics, respectively, for testing normality. Prediction intervals, tolerance intervals, and confidence limits 
(CL) containing the mean ( ie ) and the standard deviation (SD) are computed according to eqs. (31)-(34), respectively. 
 
Table 3. A summary of overall prediction errors from different methods and error structures. 

Data  Method N Mean Min. Max. SD δ e % 

Modelling FO-iid 1249 0.685 -45.859 50.767 10.368 107.965 0.226 

  FO-pow 1249 33.012 -119.206 195.721 60.059 4696.876 10.906 

  FOCE-iid 1249 0.288 -50.877 42.649 9.922 98.529 0.095 

  FOCE-pow 1249 16.243 -168.589 166.271 61.505 4046.700 5.366 

Validation FO-iid 1011 0.333 -38.308 38.004 8.157 66.648 0.116 

  FO-pow  1011 12.438 -90.274 134.873 42.618 1970.998 4.325 

  FOCE-iid  1011 -0.003 -38.336 35.250 7.769 60.357 -0.001 

  FOCE-pow  1011 -2.211 -124.540 120.759 43.656 1910.735 -0.769 

Note: the methods are defined in Table 1, N is the total number of observations, min., max. and SD are minimum, 
maximum and standard deviation, δ is an overall accuracy measure calculated by eq. (14), and e % is the percent bias 
calculated by eq. (15). 
 
Table 4. A summary of subject-specific prediction errors from different methods and error structures. 

Data Method m Mean Min. Max. SD δ 
Freq. of 

| %ei |>2.5 

Modelling FO-iid 288 0.250 -1.410 25.603 1.574 2.54 2 

  FO-pow 288 6.181 -106.839 53.433 23.357 583.754 272 

  FOCE-iid 288 0.085 -2.659 25.864 1.615 2.615 3 

  FOCE-pow 288 -0.540 -145.735 50.470 28.404 807.079 260 

Validation FO-iid 265 -0.090 -16.637 5.187 1.549 2.408  12 

  FO-pow 265 -0.364 -86.454 66.863 20.288 411.735  228 

  FOCE-iid 265 -0.289 -20.144 3.256 1.820 3.396  13 

  FOCE-pow 265 -6.627 -119.641 60.429 24.014 620.589  226 

Note: the methods are defined in Table 1, m is the number of subjects (plots), min., max. and SD are minimum, 
maximum and standard deviation, δi is the subject-specific accuracy measure calculated by eq. (18), and ie % is the 
subject-specific percent bias calculated by eq. (19). The frequency (freq.) of | %ei |>2.5 refers to the number of plots 
whose %ei  exceeded ±2.5 (the 2.5 threshold was chosen by dividing the one-sided 5% significance level commonly 
used in statistical inference into two-sides). 
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Figure 1. Model fitting (a) and validation (b) data sets. The model fitting data are from the upper foothills ecoregion. 
The model validation data are from the lower foothills ecoregion. 
 

 
Figure 2. Studentized residual plots from the first-order conditional expectation (FOCE) method with the iid error 
structure (a, b), or correlated (spatial power) error structure (c, d). The right-hand side graphs connect the scatter points 
of the left-hand side graphs by subject.  
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Figure 3. Frequency distributions of subject-specific percent biases ( %ei s) for the model fitting data (a, b, c, d) and 
model validation data (e, f, g, h), based on the first-order (FO) and first-order conditional expectation (FOCE) methods: 
(a) and (e) – FO with iid errors; (b) and (f) - FO with correlated (spatial power) errors; (c) and (g) – FOCE with iid 
errors; and (d) and (h) - FOCE with spatial power errors. 
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Figure 4. Observed versus predicted volumes for the validation data: (a) – first-order (FO) method with iid errors; (b) - 
FO method with spatial power errors; (c) – first-order conditional expectation (FOCE) method with iid errors; and (d) - 
FOCE method with spatial power errors. The line represents equality. 

 

 
Figure 5. Predicted volume-age trajectories for the validation data: (a) – FO with iid errors; (b) – FO with spatial power 
errors; (c) – FOCE with iid errors; and (d) - FOCE with spatial power errors. 
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Figure 6. An illustration of selected prediction scenarios, where ‘●’ represents an observed value and ‘○’ represents a 
predicted value: (a) – predicting a y based on an observed x (equivalent to an overall population mean prediction); (b) – 
predicting a new (future) y based on the last y-x pair of an observed trajectory; (c) – predicting ys based on the first 
observed y-x pair; (d) – predicting previous ys based on the last observed y-x pair; (e) – predicting ys based on an 
observed y-x pair in the middle of a trajectory; and (f) – predicting a y or ys based on two observed y-x pairs. Note that 
(b), (c), (d) and (e) correspond to SS predictions based on one prior observation, and (f) corresponds to the predictions 
based on two prior observations. Depending on the number of observations available from an observed trajectory, 
forward and backward predictions can also be made using 3, 4,…, k observations randomly selected from the trajectory. 
In our analyses, using (c) to illustrate, we used all 3 observations to get the random parameters. We then made 
predictions using (10) or (11) (we also examined the adjusted predictions, starting with the 1st observation and taking 
into account the spatial power structure when predicting the 2nd and 3rd observations through (10b) or (11b)).  
 
 


