
www.ccsenet.org/mas                     Modern Applied Science                    Vol. 6, No. 3; March 2012 

Published by Canadian Center of Science and Education 91

Bayesian Simple Step–Stress Acceleration Life Testing Plan under 
Progressive Type-I Right Censoring for Exponential Life Distribution 

Saleem Z. Ramadan (Corresponding author) 

Department of Mechanical and Industrial Engineering 

Applied Science University 

Shafa Badran 11931, Amman, Jordan 

E-mail: s_ramadan@asu.edu.jo 

 

Khaled Z. Ramadan 

Department of Civil Engineering 

Applied Science University 

Shafa Badran 11931, Amman, Jordan  

 

Received: February 1, 2012     Accepted: February 9, 2012     Published: March 1, 2012 

doi:10.5539/mas.v6n3p91          URL: http://dx.doi.org/10.5539/mas.v6n3p91  

 

Abstract 

This paper discusses the design of the optimal SSALT plan using Bayesian approach and progressive Type-I 
right censoring for an exponential life distribution under large sample size and small censoring proportion. The 
cumulative exposure model and the exponential life distribution in both steps are assumed. The progressive 
Type-I right censoring can reduce the cost of the test. This reduction, unfortunately, comes on the expense of 
reducing the precision of the test. The optimal test parameters, the stress changing time and the first step stress, 
are obtained by minimizing the expected variance of the life for the pth percentile using Bayesian approach. A 
comparison between conventional Type-I and progressive Type-I right censoring is also provided. The results 
showed that progressive Type-I right censoring is recommended when strong prior information for the model 
parameters is used as the test precision becomes less sensitive to the censoring proportion. 

Keywords: Reliability, Accelerated life testing, Cumulative exposure model, Bayesian estimation, Progressive 
Type-I censoring  

1. Introduction 

Traditional life tests are conducted to evaluate product reliability. In general, certain number of samples is tested 
under normal operating conditions to infer the parameters of the life distribution for the product. Because most 
products have high reliability these days, traditional life tests will have long durations which renders them of no 
practical use. One way to overcome this problem is by using accelerated life tests (ALTs) in which the failures 
are induced in the samples by subjecting them to operating conditions that are more severe than normal. 
Interested readers can refer to Meeker and Escobar (1998) and Nelson (1990).  

Accelerated step-stress life testing are considered as an extension for ALT in which some samples may be 
subjected to more than one stress level, and consequently, this increases the flexibility and adjustability of the 
test (Balakrishnan N. & Han D., 2009). For an accelerated simple step-stress life testing (ASSLT) the samples 
are subjected (usually) to a higher-than-normal stress for a pre-specified time, then the stress is elevated to a new 
stress (on those samples that did not fail in the first step) until the total time of the test is elapsed. The time of 
failures for failed samples are collected and analyzed.  

Different censoring criteria for accelerated life testing are used in literature. Under Type-I censoring the test is 
allowed to run for a pre-specified time during which the failure times for the samples are recorded. Under Type-II 
censoring the test is allowed to run until a pre-specified number of failures are observed and the failure times 
recorded. A hybrid censoring criterion is also used in literature with accelerated step-life testing. Progressive 
Type-I right censoring is used to reduce the cost of the experimentation. In this censoring criterion a pre-specified 
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number or proportion of test units are removed before their failure at each test step. Readers may refer to Gouno 
and Balakrishnan (2001) for more information in this area. 

The optimal plan for accelerated step-stress life testing has gained great attention in the last three decades as the 
test provides more flexibility and adjustability than ALT. Nelson (1980) proposed the cumulative exposure model 
for step-stress ALT. He suggested that the failure distribution of the specimens in a step-stress test must be a 
collection of segments of the life distribution of each step. Bai and Kim (1993) designed a simple step-stress 
accelerated life test using Weibull life distribution and a log-linear relationship between the stress and the scale 
parameter using MLE approach. Escobar and Meeker (1995) developed a general plan for constant-stress ALT 
with multi experimental factors. Dorp et al. (1996) developed a Baye’s approach for accelerated step-stress 
testing plan considering ramping. Khamis and Higgins (1998) proposed Khamis-Higgins model as a new 
Cumulative exposure model for accelerated step-stress testing. Abdulla and Shie (2002) extended the work done 
by Khamis and Higgins in 1998. The authors applied Khamis-Higgins model to the case of finding the optimal 
stress changing time for the simple step-stress ALT plan when the shape parameter is unknown. Gouno et al. (2004) 
discussed optimal accelerated step-stress life test under progressive type-I censoring under large sample size and 
small original sample size censoring proportion. Balakrishnan and Han (2008) proposed a simple step-stress model 
under type-II censoring with independent exponential life distribution for different risk factors using MLE. 
Balakrishnan and Han (2009) made a practical modification for the model discussed in Gunno et al. (2004) where 
small to medium sample size and survivals censoring proportion were used instead of original sample size 
censoring proportion under the assumption of equal step duration.  

This paper discusses the design of the optimal ASSLT plan using Bayesian approach when large sample size and 
small censoring proportion are considered. An exponential life distribution and progressive Type-I right 
censoring are considered. Unlike Gouno et al. (2004) and Balakrishnan and Han (2009), the durations of the 
steps are not considered equal and the uncertainty in the model parameters will be considered through Bayesian 
statistics opposed to Gouno (2004) and Balakrishnan and Han (2009) where they used classical statistics under 
which the model parameters were considered fixed-unknown values. The Bayesian statistics will be used for the 
analysis as it incorporates the prior knowledge about the model parameters in the inference process while in the 
classical statistics prior knowledge about the model parameters cannot be used even if it available. The data 
collected under the accelerated conditions will be used to extrapolate the pth percentile of the life under normal 
operating conditions. The decision variables will be optimized using the expected variance for the pth percentile 
of the life under normal operating conditions as the objective function. The censoring proportion should be small 
enough to guarantee that the expected number of samples censored from the original sample size is less than the 
survival samples at the end of the first step. 

2. Model Description and Assumptions 

Tests under Type-I progressive censoring utilizes test resources more efficiently than traditional Type-I 
censoring as it allows for the removal of some samples during the test before their failure. Those samples can be 
used in other tests or even somewhere else in the facility. This means that the actual testing cost can be reduced 
significantly by using this censoring method. Utilizing progressive Type-I censoring with large sample size and 
small original sample censoring proportion, the ASSLT can be described as follows: n samples are placed in the 
test under x1 stress level (above normal stress level) for certain time, τ, during which n1 failures will be observed. 
At τ, c live samples will be removed from the test and the stress level will be elevated to a new value, x2, on the 
remaining samples until the end of the test at total testing time tt. Here, c = n × π, where π is the censoring 
proportion. 

2.1 Assumptions  

1. Two stress levels are used  

2. Exponential life distribution is assumed in each steps 

3. The mean time to failure (MTTF) is assumes to have a log-linear function with the stress level xi such that  

                                    i iln(MTTF ) a bx                                    (1) 

where a and b are two unknown parameters that depend on the product tested and the test method used. 

4. The cumulative exposure model is assumed in which the remaining life of the samples depends only on the 
present amount of cumulative exposure. 

5. Progressive Type-I right censoring will be used in which π proportion of the original sample size will be 
removed at time τ. 
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6. The sample size, n, is large enough to guarantee that the number of survival samples in the first step is more 
than the number of progressively censored samples in that step.  

3. Simple Step Accelerated Life Test 

Applying the cumulative exposure model and the exponential life assumptions, the cumulative distribution 
function for the model can be given as: 
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where   and tt  are the stress changing time and the total test duration respectively. 
The corresponding probability distribution function can be given as: 
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Moreover, the reliability function at tt can be given as: 
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and the reliability function, for the censored data, at   can be given as: 

                                 
1

R( ) exp
MTTF

    
 

                                    (5) 

3.1 Bayesian Plan 

The fundamental differences between Bayesian approach and MLE approach are in the nature of the unobserved 
quantities. While in Bayesian approach the unobserved quantities are considered random variables with certain 
probability density (mass) function, in MLE approach they are considered fixed unknown quantities. In addition, 
the Bayesian approach permits the experimenter to integrate the prior knowledge about the unobserved quantities 
that are often used in the designing process while in the MLE approach the experimenter cannot use such prior 
knowledge even if it is very useful.  

To start developing the Bayesian plan, let MTTFH be the MTTF at stress level xH, which can be given by  

                              MTTFH = exp (a + bxH)                                       (6) 

and let MTTFL  be the MTTF  at stress level xL which can be given by  

                              MTTFL = exp (a + bxL)                                       (7) 

where XH and XL are stress levels applied on step 2 and step 1, respectively. 

Joint prior distribution on MTTFH and MTTFL will be assigned instead of assigning joint prior distribution directly 
to a and b as little information about the values of a and b are usually available, while more information about the 
values of MTTFH and MTTFL are usually available and might be taken from previous experience. Hence, if the 
experimenter wants to specify a joint prior distribution directly to a and b, a very non-informative priors for them 
should be used (since little information is available about a and b which in turn introduces a lot of unwanted noises 
in the simulation process and eliminates the purpose of using Bayesian method. Once the joint prior distribution on 
MTTFH and MTTFL are specified, bivariate random variables transformation can be applied to get the joint prior 
distribution of a and b. 

Employing Baye’s theorem, the posterior distribution of the model parameters can be derived given the data t as 
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f (t a, b)f (a,b)

f (a,b t)
f (t)

                                          (8) 

where f (t a, b)  is the likelihood of the data and f (t) f (t a, b)f (a,b)dadb    is the preposterior marginal 

distribution of t. Using bivariate random variables transformation f(a, b) can be derived from the joint priors 
distributions of MTTFH and MTTFL. The joint prior distribution of a and b can be expressed by  

   H L H Lf a, b  f (a(MTTF ,MTTF ),b MTTF ,MTTF abs J           (9) 

Where H La(MTTF , MTTF )  and  H Lb MTTF ,MTTF  given by 

H L H Ha(MTTF , MTTF ) ln(MTTF ) bX                         (10) 
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And J is the Jacoubian matrix given by 
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         (12) 

By substituting equations (10), (11), and (12) into equation (9), the joint prior distribution of a and b as a function 
of MTTFH and MTTFL can be given by  

      
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    (13) 

Given the data t, the posterior inference on a model parameter such as a, b or a function of the model parameters 
such as p 0t (x )  is based on its marginal posterior distribution.  

The mean and variance of p 0t (x )  at given t can be calculated, respectively, as follows 

                            p 0 p 0E(t (x ) t) t (x ) f (a, b t)dadb                              (14) 

and 

                       2
p 0 p 0 p 0Var t (x ) t t (x ) E(t (x ) t) f (a, b t)dadb                                (15) 

Hence, the pre-posterior variance of p 0t (x )  can be calculated as  

                              t p 0 p 0
0

E Var t (x ) t Var t (x ) t f (t)dt


                                 (16) 

The pre-posterior variance given by equation (16) can be used as the objective function for optimizing the test as it 
doesn't depend on t. 

The solution will utilize the Gibbs Sampling that is built in WINBUGS (A stand-alone program to allow practical 
MCMC methods available to applied statisticians) (Spiegelhalter D., Thomas A., Best N., & Lunn, D., 2003). At 
each iteration of the Gibbs sampling a value for MTTFH and MTTFL is drawn from their joint prior distribution 
and a value of a and b will be calculated using equations (10) and (11) respectively. Based on the calculated values 
of a and b a value for p 0t (x )  is computed by 

 p 0ln(t ) ln(ln(1 p) a bx )                              (17) 

As the number of sampled points increases, the distribution for the calculated points for p 0t (x )  can be regarded as 

an approximation for the distribution of p 0t (x ) . The variance of p 0t (x )  distribution, p 0Var t (x ) t   , can be 

approximated simply by calculating the variance of p 0t (x ) . If the above process is repeated many times and the 

average of p 0Var t (x ) t   is taken, which is p 0Et Var t (x ) t     this average can be regarded as an estimation for the 

expected variance of p 0t (x )  which is p 0Et Var t (x ) t     that is given by equation (16).  

Because the model consists of two steps and two censoring times, the horizon for the likelihood function will be 
split into four parts, the likelihood function can be given by:  
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i

1

MTTF
   for i = 1, 2 corresponding to the first and the second steps respectively. 

Substituting ii exp( a bx )     into equation (18), the likelihood function given the model parameters, a and b, 

can be written as: 
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The likelihood function of the model for one data point can be written by: 

 
 

 

1 2 3 1 1 1 2 3 1

2 1 2 2 2 1

2 2 t 2 1

L I I (1 I ) exp( a bx )exp( exp( a bx )t) I I I exp( exp( a bx ) )

I (1 I ) exp( a bx )exp( exp( a bx )t) (exp( a bx ) exp( a bx )))

(1 I ) exp( exp( a bx )t (exp( a bx ) exp( a bx )))

          

            

          

 

Where I1, I2 and I3 given by 

1

t
2

t

3

1 if t
I

0 if t

1 if t t
I and

0 if t t

1 if t
I

0 if t

 
   


  

 
   

 

respectively. 

Based on the above analysis, the model can be given as 
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where  1E n  is the expected number of failures at step 1, which can be calculated as 

                     1 1E n n F ( a, b)f (a,b)dadb                                 (20) 

and  2E n  is the expected number of failures at step 2. It can be calculated as:  

                       2 1 2 tE n n(1 ) E n F (t a, b)f (a,b)dadb                       (21) 

The constraint  1 n( )E n 1   ensures that the assumption number 6 is guaranteed. 

4. Numerical Examples and Analysis 

Two examples will be given, in each example two cases will be illustrated, case 1 will use informative priors and 
case 2 will use less informative priors for MTTFH and MTTFL. In each case three different censoring proportions 

will be considered, 0,0.05,0.1  , =0 represents the conventional Type-I censoring scenario. The other 

two values of   represent progressive Type-I right censoring. 
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4.1 Example 1 

The following assumptions and values are used in this example: 

1) Total testing time tt 900000  seconds 

2) Normal stress level 0x 1.5  volts 

3) High stress level 2x 6.5  volts 

4) Sample size n 500  samples 

5) Discretize the sample space of the decision variables,   and 1x  into 40 points each to form 1600 

combination of decision variables. Discretizing the sample space helps in reducing the sample space 
size into a manageable size that can be used in exhaustive search method optimization.  

1. MTTFH and MTTFL are considered independent with uniform prior distributions given in Table 1. 

4.1.1 Case 1 

The informative priors will be used in this case. Table 2, shows the optimal solutions found by the model for the 
three different values of π. For π =0, the optimal solution found was τ = 808430.7 seconds and x1 = 5.2 volts 

with t p 0E Var t (x ) t     = 2.50E15 second2. Apparently, from the table, as π increases the t p 0E Var t (x ) t      

increases and, consequently, the precision for the test decreases.  

Let %EVar  be the percentage change in t p 0E Var t (x ) t     due to the change in censoring proportion π, 

%EVar  can be calculated as  

t p 0 t p 00 i

i
t p 0 0

E Var t (x ) t , E Var t (x ) t ,
%EVar 100%

E Var t (x ) t ,

                
     

 

where i= 1, 2 corresponds to π =0.05 and π = 0.1 respectively. It is obvious from Table 3 that as π increases the 
%EVar  increases. The increase in π reduces the number of samples available for the second step. The test 
responded to this reduction by decreasing τ and increasing the time available for the second step, t2.  

The decrease in τ increases t2, which in turns, forces the test to have more failures in the second step (low quality 
failures) and less failures in the first step (high quality failures). Failures in the second step contain small amount 
of information about tp as they need high degree of extrapolation between the high stress level in step 2 and the 
normal operating stress level x0, therefore, they can be seen as a low quality failures while failures happened in 
the first step can be seen as a high quality failures relative to the failures happened in the second step as they 
need less extrapolation. Using equations (2) and (3), the expected numbers of failures for the first and second 
steps can be given as shown in Table 4. It is clear that as π increases  1E n reduces,  2E n increases, and the 

expected total failures in the test increases. The reduction in  1E n and the increase in  2E n force 

t p 0E Var t (x ) t     to increase. 

4.1.2 Case 2 

The non-informative priors were used in this case, Table 5 shows the results for this case. The same trend found 

in the first case also found in this case. The t p 0E Var t (x ) t     increases as π increases and, consequently, the 

precision of the test decreases.  

Table 6 shows the same trend found in Table 3, the %EVar and t2 both increase with increasing the value of π. 

Table 7 shows the same trend found in Table 4, as π increases  1E n decreases,  2E n increases and the expected 

total failures in the test increase. It is clear also here that the reduction in  1E n and the increase in  2E n force 

t p 0E Var t (x ) t     to increase. 

One interesting observation in this table is that even though the  2E n for π = 0.05 is 7.4 less than the  2E n for π 

= 0.1 and the  1E n for π = 0.05 is 0.3 more than the  1E n for π = 0.1, the t p 0E Var t (x ) t     for π = 0.05 is about 

4.2% less than the t p 0E Var t (x ) t     for π = 0.1. This indicates that a failure in the first step contains more 

information about tp(xo) than a failure in the second step. This is so because the failure at the first step happens 
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on a lower stress level than a failure on the second step and the extrapolation from the low stress to the normal 

stress condition is more precise than the extrapolation from the high stress, therefore, the t p 0E Var t (x ) t      

increased for π = 0.1.  

Comparing the results for case 1 and case 2, one can see that %EVar was always higher in case 2 than in case 1 
for the different values of π, therefore, the effect of progressive censoring in reducing the test precision was more 
obvious in case 2. To understand this, one should remember that the information about tp(xo) comes from two 
sources, which are the information contained in the priors and the information contained in the data. In case 2, 
the information contained in the priors about tp(xo) is negligible compared to the information contained in the 
data since weak priors were used. In case 1, the information contained in the data is negligible compared to the 
information contained in the priors since strong priors were used. This means that the data (mainly failures in 
first step as was discussed in the previous paragraph) is more important when the priors are non- informative 
than when the priors are informative. But when comparing tables (4) and (7) it is obvious that  1E n for case 2 is 

always less than  1E n for case 1,consequently, the value of %EVar is always higher in case 2 than in case 1. 

This means that tests with weak priors are affected more by progressive censoring than tests with strong priors. 

4.2 Example 2  

The following assumptions and values are used in this example: 

1) Total testing time tt 1900  seconds. 

2) Normal stress level 0x 1.5  volts. 

3) High stress level 2x 7  volts. 

4) Sample size n 500  samples. 

5) Discretize the sample space of the decision variables,   and 1x into 40 points each to form 1600 
combination of decision variables.  

6) MTTFH and MTTFL are considered independent with uniform prior distributions given by Table 8. 

Table 9 summarizes the results for the two cases in this example. The same trend found in example 1 is also 

found in this example. The t p 0E Var t (x ) t     , %EVar ,  2E n , and total expected number of failures are all 

increase as π increases while  1E n decreases as π increases . Also the effect of progressive censoring is more 

obvious in case 2 than in case 1 as the %EVar is higher in case 2 than in case 1 for this example too.  

5. Conclusions 

Example 1 and example 2 showed consistent results. Based on those examples it is obvious that at the same 
censoring proportion, as the priors become more informative, the precision of the test increases. This is expected 
because as the priors become more informative the amount of information contained in those priors about the 
model parameters increases and thus the variance of tp decreases.  

The results showed that for the same priors, the smaller the censoring proportion, the higher the precision of the 
test is. This is true since for smaller censoring proportions there will be more samples available in the second 
step as the progressively censored-samples will be less. 

As the stress level increases, the information contained in the failed sample about tp decreases as more 
extrapolation will be needed between the stress level used and the normal stress level at which tp will be 
evaluated. Therefore, a failure in the first step can be seen as a higher quality failure than a failure in the second 
step. 

The effect of using informative priors was obvious in the results, it is clear that as the priors become more 
informative, the effect of progressive censoring on the test precision becomes less apparent as most of the 
information about tp comes from the priors not from the data (failures). Therefore, reducing number of samples 
used in the second step as results of progressive censoring will have minor effect on the test precision. This 
means that the test becomes less sensitive to the censoring proportion as the priors become more informative. 

6. Recommendations 

Using the progressive censoring is recommended in the case of available strong priors. In this case the test 
precision will not be affected significantly, and at the same time, the cost of the test will be reduced. 
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Table1. Prior distributions used in example 1 

Prior H HMTTF (x 7)  L LMTTF (x 3)  

Informative U(59800,59948)  U(178482000,178482602)  
Less informative U(59000.60674)  U(178400000,178564602)  

 
Table2. Optimal plans for case 1 

π τ x t p 0E Var t (x ) t      

0 808430.7 5.199359 2.5032E+15 
0.05 785538.4 5.071795 2.54308E+15 
0.1 762646.1 5.071795 2.568E+15 

 
Table 3. Optimal plans along with the %EVar  for case 1 

π τ x t p 0E Var t (x ) t      %EVar t2 

0.00 808430.7 5.199359 2.5032E+15 - 91569.25321 
0.05 785538.4 5.071795 2.54308E+15 1.57% 114461.5603 
0.10 762646.1 5.071795 2.568E+15 2.52% 137353.8673 
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Table 4. Expected number of failures in the first step and in the second step for case 1 
π τ x t p 0E Var t (x ) t       1E n  2E n Expected total failures 

0 808430.7 5.199359 2.5032E+15 23.7 64.8 88.5 

0.05 785538.4 5.071795 2.54308E+15 14.7 76.4 91.1 

0.1 762646.1 5.071795 2.568E+15 13.9 86.2 100.1 

 
 
Table 5. Optimal plans for case 2 

π τ x t p 0E Var t (x ) t      

0 762646.1 5.071795 2.3345E+16 

0.05 739753.8 4.816667 2.46599E+16 

0.1 716861.5 4.816667 2.56998E+16 

 
 
Table 6. Optimal plans along with the %EVar  for case 2 

π τ x t p 0E Var t (x ) t      %EVar t2 

0 762646.1 5.071795 2.3345E+16 - 137353.8673 

0.05 739753.8 4.816667 2.46599E+16 5.33% 160246.1744 

0.1 716861.5 4.816667 2.56998E+16 9.16% 183138.4814 

 
 
Table 7. Expected number of failures in the first step and in the second step for case 2 

π τ x t p 0E Var t (x ) t       1E n  2E n Expected total failures 

0 762646.1 5.071795 2.3345E+16 13.9 96.0 110.0 

0.05 739753.8 4.816667 2.46599E+16 5.3 103.9 109.1 

0.1 716861.5 4.816667 2.56998E+16 5.0 111.3 116.3 

 
 
Table 8. Prior distributions used in example 2  

Prior H HMTTF (x 7)  L LMTTF (x 3)  

Informative U(140.8,156.8)  U(8093,8113)  

Less informative U(100,196.8)  U(7900,8303)  

 
 
Table 9. Summary of results for example 2 

Prior π τ x t p 0E Var t (x ) t      1E n  2E n  
Total 

expected 
failures 

%EVar

Informative 

0.00 1803.3 3.605769 146359 28.0 74.2 102.2 - 

0.05 1755.0 3.605769 148898 26.8 101.0 127.8 1.71% 

0.10 1706.7 3.465385 151050 20.3 122.0 142.3 3.11% 

Non-informative 

0.00 1658.3 3.465385 259603 19.3 158.4 177.7 - 

0.05 1610.0 3.32500 275698 14.5 170.1 184.6 5.84% 

0.10 1561.7 3.184615 289483 10.7 176.0 186.7 10.32%

 


