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Abstract 

This paper presents a comparative study on the fatigue strength of resistance spot-welded unequal and equal 
sheet thickness austenitic stainless steel. Lap joints of 3.0-1.0 mm and 1.0-1.0 mm thick austenitic stainless steel 
were made using the same resistance spot welding schedule with current, weld time and electrode force of 4.7 
kA, 20 cycles and 6 kN respectively. The sinusoidal wave form with a constant stress amplitude was selected in 
the fatigue tests whereas the stress ratio and frequency used were 0.1 and 8 Hz respectively. Fatigue strength and 
tensile-shear load bearing capacity of 3.0-1.0 mm joint were higher than that of 1.0-1.0 mm joint, although its 
nugget diameter was smaller. The joint stiffness was the controlling factor of the fatigue strength of resistance 
spot-welded unequal sheet thickness austenitic stainless steel. 
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1. Introduction 

Austenitic stainless steels are used for a very broad range of applications especially in automotive, railway 
vehicle, ship body, and airplane structures when an excellent combination of strength and corrosion resistance in 
aqueous solutions at ambient temperature is required. Stiffened thin plate construction where the thinner plate is 
reinforced by thicker plate called a frame, is generally applied to the structures. Gean et al. (1999) have claimed 
that it is a cost-effective way of achieving a high-performance vehicle structure because it remains suited to 
low-volume manufacture. This structure is typically joined by the resistance spot welding (RSW) process. The 
advantages of using RSW are that it is a quicker joining technique, suitable for automation, no filler material is 
required, and that the low heat input implies less risk for altered dimensions during welding.  

Many standards and recommendations are developed by individual companies, such as Ford Motor Company 
and General Motors. Professional organizations such as the American Welding Society (AWS), Society of 
Automotive Engineering (SAE), the American National Standards Institute (ANSI), and International 
Organization for Standardization (ISO) also contribute to a significant portion of the standards. Because of the 
drastic differences in design, understanding and perception of weld quality, automobile manufacturers and others 
tend to have very different requirements on weld quality. Zhang and Hongyan (2006) have concluded that in 
general, spot weld size is enveloped between 3√  and 6√  (t is the thickness of the sheets in millimeters). This 
recommendation is very useful in finding good weld schedules for equal sheet thickness welding. However, in 
automotive body application, the majority of welds are between two dissimilar thicknesses. In this case, 
schedules for welding unequal sheet thickness are generally developed by and practiced within individual 
manufacturers. Some researchers also have proposed the spot welding unequal sheet thickness researches to 
evaluate these recommendations. The joint of unequal thickness of the same metal may produce a strength 
problem due to the heat unbalance (Hasanbasoglu & Kacar, 2007) and have the unique failure mechanism 
(Pouranvari & Marashi, 2010).   

Despite various applications of spot welded unequal thickness in automotive body, reports in the literature 
dealing with its mechanical behaviors, especially the fatigue behaviors are limited. In fact, Gean et al. (1999) 
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Given SEM views in Figure 13 and Figure 14 are the comparison of the last fracture surfaces of the 3.0-1.0 mm 
and 1.0-1.0 mm joint specimens which were subjected to same load of 3.4 kN. As seen in Figure 13(a), crack of 
3.0-1.0 mm joint initiated on the inside of thin sheet. On the more half of thickness, it propagated slowly due to 
low peel stress and induced ductile fracture characterized by intergranular cracking. Ductile fracture changed to 
brittle fracture characterized by transgranular cracking on the remaining thickness due to increased peel stress. 
The embrittlement of stainless steel was attributed to strain-induced martensite forming during the fatigue tests 
(Vural et al., 2006). Different view was given by fracture surface of 1.0-1.0 mm joint specimen as shown in 
Figure 13(b). It displayed brittle fracture characterized by transgranular cracking on the entire thickness due to 
high peel stress. 

 

     (a)            (b) 
Figure 13. Initial crack of fatigue test samples: (a) 3.0-1.0 mm joint (b) 1.0-1.0 mm joint 

 

 

     (a)         (b) 
Figure 14. Crack propagation zone: (a) 3.0-1.0 mm joint (b) 1.0-1.0 mm joint 

 

On the crack propagation zone, brittle fracture characterized by transgranular cracking was observed on both 
3.0-1.0 mm and 1.0-1.0 mm joint specimens. They displayed wave of plastic deformation as shown in Figure 14. 
However, plastic deformation intensity of 1.0-1.0 mm joint was higher than that of 3.0-1.0 mm joint. It was 
indicated by the number of waves in the same observation area as seen in Figure 14.  

4. Conclusions 

Fatigue of resistance spot welded unequal sheet thickness austenitic stainless steel has been studied. Due to 
significant thickness difference, the asymmetric weld nugget, high microhardness on the edge of nugget and 
tearing fatigue fracture mode were observed. The fatigue strength of 3.0-1.0 mm joint was higher than that of 
1.0-1.0 mm joint, although its nugget diameter was smaller. The endurance limit of 3.0-1.0 mm and 1.0-1.0 mm 
joint were 2.9 kN and 0.7 kN respectively. Ductile and brittle fractures were observed on 3.0-1.0 mm fatigue 
specimens whereas 1.0-1.0 mm fatigue specimens failed to fully brittle fracture mode. The joint stiffness was the 
controlling factor of the fatigue strength of resistance spot-welded unequal sheet thickness austenitic stainless 
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steel. 

5. Acknowledgments 

The authors would like to express their sincere gratitude for the financial support of the Ministry of Research and 
Technology of Indonesia and Indonesian Railway Industry.  

References 

American Welding Society. (1982). Metals and their weldabilty, Welding handbook(7th ed.), 4. United States of 
America. 

Gean, A., Westgate, S. A., Kucza, J. C., & Ehrstrom, J. C. (1999). Static and Fatigue Behavior of Spot Welded 
5182-0 Aluminium Alloy Sheet. Welding Journal, 78(3), 80s-86s.  

Hasanbasoglu, A., & Kacar, R. (2007). Resistance Spot Weldability of Dissimilar Materials (AISI 316L-DIN EN 
10130-99 Steels). Material and Design, 28, 1794-1800. http://dx.doi.org/10.1016/j.matdes.2006.05.013 

Long, X., & Khanna, S. K. (2007). Fatigue properties and failure characterization of spot welded high strength 
steel sheet. International Journal of Fatigue, 29, 879-886. http://dx.doi.org/10.1016/j.ijfatigue.2006.08.003 

Nordberg, H. (2006). Fatigue Properties of Stainless Steel Lap Joints. SAE Transactions: Journal of Materials & 
Manufacturing, 114, 675s-690s. 

Ozyurek, D. (2008). An effect of weld current and weld atmosphere on the resistance spot weldability of 304L 
austenitic stainless steel. Materials and Design, 29, 597-603. 
http://dx.doi.org/10.1016/j.matdes.2007.03.008 

Pouranvari, M., & Marashi, P. (2010). Resistance Spot Welding of Unequal Thickness Low Carbon Steel Sheet. 
Advanced Materials Research, 83, 1205-1211. 
http://dx.doi.org/10.4028/www.scientific.net/AMR.83-86.1205 

Vural, M., & Akkus, A. (2004). On the resistance spot weldability of galvanized interstitial free steel sheets with 
austenitic stainless steel sheets. J. Mater. Proc. Technol., 153-154, 1-6. 
http://dx.doi.org/10.1016/j.jmatprotec.2004.04.063 

Vural, M., Akkuş A., & Eryürek, B. (2006). Effect of Welding Nugget Diameter on The Fatigue Strength of The 
Resistance Spot Welded Joints of Different Steel Sheets. J. Mater. Proc. Technol., 176(1-3), 127-132. 
http://dx.doi.org/10.1016/j.jmatprotec.2006.02.026 

Wang, Y., Zhang, P., Wu Y., & Hou, Z. (2010). Analysis of the Welding Deformation of Resistance Spot Welding 
for Sheet Metal with Unequal Thickness. Journal of Solid Mechanics and Material Engineering, 4, 
1214-1222. http://dx.doi.org/10.1299/jmmp.4.1214 

Zhang, H. Y., & Senkara, J. (2006). Resistance welding: fundamentals and applications. Boca Raton: Taylor & 
Francis Group. 

  


