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Abstract

In this letter, the alternating-direction-implicit (ADI) technique is applied to Symplectic finite-difference
time-domain (SFDTD) method, the curl operator is endued with two different styles when doing computation
from the (s —1)th progression to s th progression. It holds the advantages of both ADI-FDTD and SFDTD,
not only eliminating the restriction of the Courant-Friedrich-Levy (CFL), but also holding the inner
characteristics of Maxwell’s equations. The analytical accuracy and efficiency of the proposed method is verified
good.
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1. Introduction

FDTD method is a very useful numerical simulation technique for solving electromagnetic questions. As we
know, the traditional FDTD method is based on the explicit finite-difference algorithm, hence, it is limited by
Courant-Friedrich-Levy (CFL) stability condition. In order to eliminate the Courant—Friedrich—-Levy (CFL)
condition restraint, Unconditionally sTable algorithm ADL-FDTD( the alternating-direction-implicit technique
finite difference time domain) has been proposed. But in the common ADI-FDTD method, the choice of large
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time intervals leads to substantial dispersion errors that degrade its performance (A. P. Zhao, 2000; F. Zheng et
al., 2000; Huang Z X et al., 2007).

Effective studies (M Kusaf et al., 2005; Ruth F D, 1983) revealed that Maxwell’s equations can be viewed as an
infinite dimension Hamilton system. FDTD and ADI-FDTD destroy Maxwell’s equations’ Symplectic structure,
so they are not good algorithms for Maxwell’s equations’ numerical simulation. A good algorithm must hold
Maxwell’s equations’ Symplectic structure.

In this paper a novel algorithm that bases on SFDTD (symplectic finite difference time domain) and ADI has
been proposed. We transform Maxwell’s equations to Hamilton’s equations, and use symplectic propagation
technique disperse Hamilton’s equations in time domain, and use the ADI technique to discredited Hamilton’s
equations’ curl operator R in spatial domain, then, we discuss the ADI-SFDTD algorithm’s stability and
numerical dispersion systemically, finally we validate the proposed ADI-SFDTD formulation by a numerical
example.

2. ADI-SFDTD method
2.1 Hamilton transform of Maxwell’s equations

In a linear, homogeneous, and isotropic medium, Maxwell’s equations can be written as (J. W. Thomas, 1995):

B _ _yxE (1a)
ot
D veH-J (1b)
ot
D=¢E,B=uH (1c)

Where, & is medium’s permittivity and g is medium’s permeability. In the Hamilton system, Maxwell’s
equations can be written as

oB SH(B,D)
5 _ [03 _13 j OB Q)
oD | \I, o0, )| 5H(B,D)

o 5D

Where, Hamilton function H (B, D) is defined as
H(B.D)=~(LB.-VxB+1D.VxD)-J-B 3)
2 u &

o
The 9B is defined as

T
6H(B,D) [ 6H oH S6H @)
OB 5B, 6B, 5B,
Where 5;] (@ =x,y,z) isdefined as
9
d oH
—H(B, + o= |——@dV 5
sz (B, pco)}uo ngg(p (5)
In the equation (5), ¢ is the inspection function.
2.2 ADI-SFDTD method
Studies revealed that Hamilton’s equations can be transformed into (6), written as
-1
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Where, L, = 33 80 L, = “3R I,R= o, 2
Lo, /'R0, oz ox
_2 9
oy Ox

In time domain, from time ¢ =0 to time# = 7, the results of (6) can be written as

B = L,+L B 0 7
o | @ =, L)) o ™)

For exponential operator can’t be used to compute, the exponential operator is approximate to (8) by using
symplectic propagation technique.

exp[r(L,+L,)]= ﬁ exp(d,rL,)exp(c,zL )+ O(z"™") 3

s=1

Where, m, p(m > p) are symplectic propagation’s progression and order. According to (J. W. Thomas, 1995),
choose the suiTable propagation sub coefficients {c, }and{d.}, it can preserve Maxwell’s equations’ inner
characters. In this paper, we use the optimized 5 progression and 4 order propagation sub coefficients.

For (Lu)[ =0,(u=A4,B,£=23,-), the exponential operators exp(rL,) and exp(rL,) can be explicitly
expressed as

exp(rL,) =1, +7L, %a)

exp(rL,) =1, +7L, (9b)

There is curl operator R in Factors L, andL,, so in order to get the numerical results of Maxwell’s equations,
we must discredited the equations in spatial domain again.

Introducing the plane wave’ propagation equation, written as:

fop,z,t)= 1, exp(—]'(iAxkx + jAVk, +zAzk_ —wnAr)) (10)
In the spherical coordinate system: k_=k,sinfcos¢,k, =k,sinfsing, k. =k, cost.
The positive direction of ¢ is that of the right-handed rotation from Xxto ) about Zz axis, the positive
direction of € is from the positive z axis towards the negative z axis, ;= J-1 and ko is the numerical
wave number.

s
n+—

Sy = fUAx, jAy, kAz;(n+7,)Ar) indicates the § th progression approximate solution of function f s
closed-form solution at discretization point (iAx, jAy,kAz) inthe 7 th time step. There, Every time step need
m progression to simulate and the time increment of the § th progression to s+1 th progressionis 7 Af.

Applying the ADI principle into R , we define two different curl operators aboutR , marked as R, and R, in

following. InR (v =1,2) , the [ indicates implicit form and £ indicates explicit form.

0 0
0 AN
| = l & |
0 0
R, = o |1 0 |E _ax |1 (11a)
0 0
- — 0
s le > l |
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0 0
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0 0
R, =| — 0 - 11b
= 2l 0l o (11b)
0 0
_a_|1 _|E 0|1
y Ox

At s th progression of 7 th time step, in x-direction, the implicit form is defined in equation (12a) and the
explicit form is defined in (12b).

n+(x+ ) p n+(s+ ) p
s f 1 r f 1 ik S
n+p _ z+ T I*Ej - 6 r1+p 0 sz (123)
R:,.'fi,/,k = Ax ~ xf[,/',k + 1( )
n+s/p _ pn+s/p
n+s 1+%j k i—lj 2
R, Sk = T ~0 f, ! +0,(Ax) (12b)

s
n+

n+7 s
In the same way, y-direction’s implicit form isR, - f; 7 and explicit form is R, -f, /7, z-direction’s implicit

i,

l1+7

formisg,, - fln:k; and explicit formis R,, - f;; /. Substituting (10) into (12a) and (12b), we can get

Joexp{=jlG+ %)Axlﬁ + AV, + kAzk, = w(n+ )z, 1} - f, exp{-jli— E)Axkx + Ak, + KAk, ~w(n+ )z}

o h P N s
n+(s+— )/p n+(s+ )/p nis/ nis/
LS S _f 1 JI ! _f. T p s s
n o t+5,/,k 175 L]k i+—, ]k 175,/,1\ ~ W n n+ 13b
RSk = ~ = exp(/ —)T =exp(J Z)RE Sk =R Sk (13b)

Where, & = exp(j ),
2p

- Avk - Axk
exp(/ TX) —exp(—Jj Tx) . s1n(kXAxé )

= 14a
In the same way we can get
- Ayk,
exp(] i ) exp(—j —— 5 s1n( k, }/)
n,= =
Ay
/ (14b)
) exp(F sin(sz% ) ;
n. = Az e (14c)
Substituting (13a) and (13b) into (11a) and (11b), we get
R, +R, =(h+])R (15)

Equation (7) can be written as
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[ﬁ](r)

B
=exp[z(L, + LB)][DJ(O)

L L L L B 0 (16)
=Pl I L)+ (L + B,>]}[Dj<>

T B
= exp[m([‘m +L52)]exp[(h 1)( at Bl)][Dj(O)

cexpl— 2 (L, +Lexpl—— S, + L, 0
(h+1) 2 AZ BZ (h 1) 2 Al Bl D

2 T T
= CXP[ﬁE(LAz ‘*’ng)](DJ(E)
So the computation from the (s—1)th progression to s th progression is broken up into two sub-steps: the first

1 1
steps—1— S—E and the second steps—5—>s.

For D, component, we take

by wegk) 4u(h+1) Fes

1
z,(f+§,j,k) ’ Vs (r+ JJk)

Dn+(s 2)/p _ Dn+(s /p " Tad\ . |:R/'/ .B'H(H)/p _ Bn+(s I/ p :| (17a2)

as the fist step and

1 1 1
n+(s—=)/p Z' d n+(s—=)/p n+(s—=)/ p
D™ =D 24— _x|g B 2 -R B > (17b)
i) b Au(h+ 1) (27K o4, K)
as the second step.
For B_ we can get
1
Bn+(5*5)/l7 _ n+(s=1)/p + TSCS x| B ‘Dn+(s—1)/p _ Dn+(s 1)/p (183)
x,(i,j+%,k+%) x,(i,j+%,k+%) 4g(h+1) 1k y,(i,j+%,k+%) R, =0, j+1 et )
as the fist step and
B’H'S/P _ BVIJr(S*%)/p ’Z'SCS Dn+(sfé)/p Dn+(57%)/p 18b
ety T Cnady T de(h+1) X Fee ) iy TP i, (150)
) I ) I ) T2

d Tc
d_ % b_ s _ .
As the second step, where 7y = R Ty = 42 heD (0 = (x,y,z)) .For other components, the equations can be

obtained in the same way.
In (172) and (17b), both sides contain the unknown field components on the right hand side, so the iterative
calculation can’t be done directly. Substituting (13b) into (17a) and (17b), we can get (19a) and (19b).

Dnm 12)/p _ Dnmll) » +Td Bn+(a Dp _ R, Bnm /p Dn+(a )/ p +Td h/? Bn+(s;l)/p -R., Bnm )/ p (193)
\’(H— k) (0450 K) z(r+ k) ’ )(H— Lj k) x(:+ Ljk) 24, K) ’ ‘(z+ 1K)
1 1 1 LN 1
n+(s—=)/p n+(s—=)/p n+(s—=)/p n+(s—— n+(s——=)/p n+(:——)/p
pr =p "2 yrip B —r B2 |=D +T'\R.,-B" > ~hR,-B (19b)
1 E -/ o1 1.k o1 1 1 Ek 1
r(x+ L Jk) x,(w?j.k) Z,(1+E,j,k) y,(x+z,/,k) \(1+ L J.k) (HE'/'k) ‘MHE'/'A)

3. Analysis of stability and numerical dispersion

3.1 Stability analysis

According to (16), growth matrix G can be presented as the product of the first procedure growth matrix G,

and the second procedure G, , written as:
G =G,G, (20a)
L,) (20b)

m

G _exp[i(LA]-'—LBI)] Hexp( IA B
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d,T C,y T
h.-%—lLBZ)eXp(h+1LA2) (ZOC)

G, = exp[ﬁ(LAZ +Lp)]= l;llexp(
g indicates the growth factor of the total procedure, & indicates growth factor of the first procedure and 2
g p g p

indicates growth factor of the second procedure. According to the principle of the matrix growth, we obtain that

q satisfies equation (21a) and & satisfies equation (21b):
flz_tr(cl)fl‘{'lzo (21a)
& —tr(G,)E +1=0 (21b)

Where,

O S U/ /B /)

r(G,)=2+ i 22a
(G) ;gs[ i +1)} ] (22a)
o T+ R )
r(G,) =2+ g [—— 5T 22b
(G,) ;&[ ht1) ] (22b)
&= Z C[I d/l v .C‘] d./‘\ + Z d[\ C/l a 'd[\ c,/} (22C)
1<i <jy <<ig < jo<m 1<i <jy <<ig < jo<m
By solving (21a) and (21b), the growth factor of the first procedure & is
tr(G)) £ j\J4-tr(G,)’
Sl = 2 (23a)

and the second procedure & is
1r(G,) £ j\r(G,)’ —4
S = (23b)
2
Finally, d and & yields 4 , which indicates the growth factor of the total procedure as follows:

£ =]£&)] <1 (24)

Equation (24) is always satisfied, so that the ADI-STDTD algorithm is unconditionally sTable in any case.

3.2 Numerical dispersion

Now we assume &1 = 52 =% of (21a) and (21b)[9]. By adding (21a) and (21b) we then get

287 —(tr(G)) +1r(G,))E, +2=0 (25)
Equation (25) can be written as follows:
208, +&)-[tr(G) +1r(G,)]1=0 (26)

Making use of (10), (22a) and (22b), we get

E+& = (é‘,% - é{% ) +2= —i[4 sin’ (w7 /2)] +2 27

s=1

o (RN )

r(G)+tr(G,) =4+ [ (28)
! SRRSO su(h+1)

Putting them into (26), we obtain

3, {(h:+1)[sin2(/‘,%)+sin2(k‘Ayz ) +sin2(k;A% L s/ (29)

STeT Ay Ay My a ()

This suggests that numerical dispersion of the ADI-SFDTD method can be reduced to any degree if appropriate

cells are used. Figure 1 is the normalized phase velocity of different ¢ for different FDTD schemes, we see the
proposed ADI-FDTD has good performance. Figure 2 shows the normalized error contrast between ADI-FDTD
and ADI-SFDTD, it clearly shows that ADI-SFDTD is more efficiency.

4. Conclusion

In this paper , a novel algorithm that based on SFDTD and ADI technique has be proposed, the spatial
discretization scheme curl operator R is endued with two different styles when doing computation from the
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(5 —1) th progression to s th progression. Then, Its stability and numerical dispersion has been analyzed. The
results show that the proposed method has good efficiency and accuracy.
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Figure 1. Normalized phase velocity of different ¢ for different FDTD schemes
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Figure 2. The normalized numerical dispersion error contrast between ADI-FDTD and ADI-SFDTD
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