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Abstract 
This investigation considers the application of Artificial Neural Network (ANN) techniques to estimate the pH value for 
effluent treatment process. ANN has the ability to identify the non-linear dynamical systems from the input-output data. 
An important requirement of the application is robustness of the system against erroneous sensor measurements. The 
simulation model of the pH system for common effluent treatment plant (CETP) is developed using MATLAB 7.5, GUI 
tool box. A novel off-line and on-line training scheme for the neural network is developed by error back propagation 
training algorithm to model the pH system for CETP, accurately. For this purpose, a simple feed forward, back 
propagation neural network, with only one hidden layer, and sigmoidal activation functions is used. The training of such 
network is based on Input-Output data which is collected from Perundurai common effluent treatment plant (PCETP). 
Experimentation and simulation results on this neuro identifier of pH system for common effluent treatment plant are 
shown.  
Keywords: pH system, CETP, PCETP, ANN, Alkali wastes 
1. Introduction 
The textile industry occupies an important place in the economy of India and other developing countries. The low 
efficiency of chemical operations and spillage of chemical, cause a significant pollution hazard and make the treatment 
of discharged wastewater a complex problem. Group of textile industries are joined together to form common effluent 
treatment plant to economize the process. The industrial pollution control regime in India is based on the standards and 
regulation approach. Source specific concentration based standard have been laid down for polluting units and penalties 
for non compliance, disconnection of electricity/water supply and closure of the units. The standards are same for large 
and medium units as well as for small units. While most of the large and medium polluting units have been able to erect 
and operate effluent treatment plants, this option does not appear to be viable for many small units because of their 
small size, and technical, financial and managerial constraints. Common effluent treatment plants are being suggested 
as a cost-effective option for compliance with the standards for small polluting units in industrial clusters (Shankar, U., 
2003). 
Most process plants generate a wastewater effluent that must be neutralized prior to discharge or reuse. Consequently, 
pH control is needed in just about every process plant, and yet a large percentage of pH loops perform poorly. Results 
are inferior product quality, environmental pollution, and material waste. However, implementing a pH system is like 
putting a puzzle together. It will only work when all the components are in place. While various pH probes and 
actuators for pH control are available, commercial adaptive pH controllers are still in demand. The challenge is to 
provide a controller that is able to deal with large nonlinear gain changes in the pH loop. It will be useful for not only 
wastewater neutralization, but also chemical concentration control, since concentration is a key quality variable. It is 
impossible for a fixed controller like PID to effectively control this process (OMEGA Engineering, 2006). 
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In 1999, Hunt, K., J. et al said that the internal model control is used to directly incorporate networks modeling the plant 
and its inverse within the control strategy. Rejecting disturbances caused by coupling effects have shown a significant 
improvement over that achieved by fixed parameter PID control designed using a conventional method. In 2003, Yu, D., 
L. et al said that the Implementation of a neural network model based predictive control scheme to a laboratory sealed 
multivariable chemical reactor, three variables are controlled in the reactor- temperature, PH and dissolved oxygen. The 
optical control performance in tracking set-points and rejecting disturbances caused by coupling effects have significant 
improvement over that achieved by fixed parameter PID control designed using a conventional method.  
In 1998, Lin-En Kuo et al said that the Neural Network based Model Predictive Controller (NNMPC) is applied to the 
control of coagulant dosing in a drinking water treatment plant. The hybrid system developed includes raw data 
validation and reconstruction based on a Kohonen self-organizing feature map, and prediction of coagulant dosage 
using multilayer perceptrons. The performance of the network is obviously dependent on the quality and completeness 
of data provided for system training. Continuous updating of training data during operational use will improve the 
performance of the system. 
In 1996, Junhong Nie et al said that the modeling and identification of pH-processes via fuzzy neural approaches is 
done. Extensive simulations including on-line modeling have shown that these nonlinear pH-processes can be modeled 
reasonably well by the present schemes which are simple but efficient. Compared with the backpropagation neural 
network (BNN) modeling approach, this method is particularly suitable for real-time applications. The identification of 
a fuzzy model via a CPN neural network can be completed very quickly by presenting the training examples once only. 
This feature of fast response to new situations has been demonstrated in modeling.  
In 2005, Bernt M. Akesson et al said that the process is modeled by a set of linear models constructed by velocity-based 
linearization in order to reduce the computational requirements associated with the solution of the continuous-time 
nonlinear system equations. The resulting quasi-linear models also simplify the estimation of the system state from the 
measured outputs. The accuracy of the neural network controller approximation which is required to ensure stability and 
performance is shown to be related to the fragility of the model predictive controller. The proposed approach is applied 
to a simulated nonlinear pH neutralization process. The study shows that it is possible to achieve good control 
performance with this approach, reducing the required on-line computations significantly.  
Lamanna, R. et al said that the tuning procedure of a PID is very tedious and time consuming, and the controller 
produces responses of a quality comparable to that of the neural controller within very narrow operating limits. The 
weights are adjusted, depending on the task at hand, to improve performance. The ability to learn is one of the main 
advantages that make the neural network so attractive. Neural networks can also provide significant fault tolerance. 
Since damage to a few links need not significantly impair the overall performance.  
Based on the literature survey, it is seen that a good amount of work has been done using ANN to control the pH value 
for drinking water treatment and waste water treatment process. Literature has suggested few mathematical models; few 
case studies on neural network approach have been attempted, how ever without a real time or simulation study. There 
is no research work was carried out to control the pH value in effluent treatment process. Hence the problem of pH 
control for effluent treatment process using neural network is pursued. 
2. Effluent Treatment Plant 
This section describes the wash water treatment process of Perundurai Common Effluent Treatment Plant (PCETP). 
The wash water treatment plant was opened in July 2002 and reduces COD and BOD by 40-60%. They regularly 
measure pH, TSS, TS BOD, COD and TDS. The receiving tank and the bar screens are designed for the peak flow, but 
the units down stream of the equalization tank are designed for an average flow and an average quality.  
The wash water plant is designed to treat 3600 m3 per day of wash water effluent received from 14 member units and 
the plant consists of the following 
2.1 Screening 
The raw effluent from the plant is first passed through a bar screen of 20mm and 15 mm size removes the floating 
matters in the receiving sump. In the receiving sump, the variation of pH value at various intervals of time is shown in 
Figure 1. 
2.2 Equalization  
The screened effluent is collected in the equalization tank. The function of equalization tank is to homogenize the flow 
and characteristic of the effluent. The equalization tank is designed for a hydraulic retention time of 24 hrs. The 
equalization tank is provided with floating surface aerators to ensure proper mixing and to avoid settling of suspended 
solids. The variation of pH value at various intervals of time is shown in Figure 2. 
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2.3 Colour Removal 
The equalized effluent is pumped to flash mixer, where lime, ferrous sulphate and poly electrolyte is dozed for 
precipitation of colour and coagulation of the solids formed. The dozing arrangement has been provided to adjust the 
dosage based on the incoming effluent’s pH. 
2.4 Clarification 
The coagulated suspended solids and precipitate formed due to colour removal will then the let to clarilflocculator for 
settling and removal of suspended solids. Settled sludge will be moved continuously along the floor towards center of 
unit by means of slowly rotating scrapper which covers the entire floor area. The accumulated sludge will be transferred 
to sludge pocket of the clarifier for sludge drawn off. The excess sludge will be removed from time to time to avoid the 
build up of the same. The variation of pH value at various intervals of time is shown in Figure 3. 
2.5 Filtration 
The clarified effluent from clarilflocculator is taken to Auto Valve less Gravity Filter (AVGF) for filtration. The filter 
operated automatically on the loss of head principle. This is generally accepted as being the most accurate control 
besides the constant analysis of the filtered water turbidity which is seldom practical on a continuous basis. The head 
loss at which AVGF initiates backwashing is determined by the height of the inverted U-turn at the top of the backwash 
pipe. The level of water in this pipe is proportional to the head loss across the filtered bed. The AVGF filtered effluent 
is neutralized in the static mixer with HCl acid and pumped to the Activated Carbon Filter to remove odor in the 
effluent. Then, it is pumped to farm land for irrigation. 
2.6 Sludge Treatment 
The underflow from the clarilflocculator, are pumped to the sludge thickener. The thickened sludge with 6% 
consistency will then pumped to the centrifuge. Polymer is dosed to enhance the efficiency of thickening and 
dewatering. The filtrate from the centrifuge is taken back to the clarilflocculator while dewatered sludge is collected in 
bags and stacked in the roofed shed (Meenakshipriya, B. et al, 2008). 
3. SIMULINK Block Diagram 
The SIMULINK block diagram of pH identifier using MATLAB 7.5, GUI- Neural Network toolbox is shown in Figure 
4. The following parameters are considered to develop the SIMULINK model of pH identifier. 
net = newff([-1 1;-1 1],[2,1],{'purelin' 'tansig'},'trainscg'); 
net.layers{1}.initFcn='initwb'; 
net.inputweights{1,1}.initFcn='rands'; 
net.biases{1,1}.initFcn='rands'; 
net.biases{2,1}.initFcn='rands'; 
net.layers{2}.initFcn='initwb'; 
net.layerweights{2,1}.initFcn='rands'; 
net.biases{1}.initFcn='rands'; 
net=init(net); 
net.trainparam.show=139; 
net.trainparam.epochs=100; 
net.trainparam.goal=0; 
net=train(net,Inputs',Target'); 
A=sim(net,inputs'); 
gensim(net); 
3.1 Generation of data 
The values of pH before treatment, HCl dosing and pH after treatment are measured at various intervals of time. The 
sampled data of all these parameters are used as training and testing input pairs to model the pH identifier as shown in 
Table 1.  
3.2 Neural Network Training 
A feed forward neural architecture is selected and the training is done using TRAINLM Levenberg-Marquardt back 
propagation algorithm. The selected number of input variables is 2 which are pH before treatment, HCl dosing and 
output variable is 1 i.e., pH after treatment. The number of epochs are fixed at 100 and learning rate parameter is 
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selected as 0.001.The initial weights are set randomly (very close to zero) and training is carried out for the given 
number of epochs. 
The neural network is trained with various values of hidden nodes, learning rate and number of epochs. Neural network 
with too many hidden nodes may over fit the network and cause unrealistic oscillation between the training samples. On 
the other hand network with small number of hidden nodes may fail to approximate/generalize the complex underlying 
relationship in the data with fine fidelity. When the number of training epochs is increased during the training process, 
the training error approaches to zero, but the problem of excessive training occurs and the network converges to 
memorization of the training data. The training error indicates the average deviation from the actual values used for 
training. The activation function used between the input and hidden layer is sigmoid and the one between hidden and 
output layer is linear. 
4. Simulation Results 
The simulation results are shown in Table 1 and the response of measured pH value Vs neural predicted pH value is 
shown in Figure 5. The value of measured pH is shown as solid lines and the neural predicted pH value is shown as 
dotted lines. Figure 6 shows the error analysis of pH identifier for training, validation and testing.  From the error 
analysis, the accuracy of neural identifier is 0.004% in terms of error. 
5. Conclusion 
In this paper, a new method of pH identifier using neural network is proposed to increase the performance of pH control 
system. Neural network with linear filter architecture and back propagation through time learning algorithm is used to 
design the pH control system. The neural network learning process has been performed in both on-line and off-line. 
Model by means of data collection over a wide range of pH improves the accuracy, reduces the complexity, increases 
the immunity to the noise and fewer controllers are needed. In many applications, the network has to emulate nonlinear 
and time varying functions where the functions might change depending on the plant operating condition and parameter 
variation. In such cases the network requires continuous training on-line so that it correctly emulates the model. From 
the presented results it can be noted that the neural systems offer an attractive solution for pH control system. The 
neural approach show good simulated response and suggest that further research in this area would be worthwhile. 
Future work could include: 

 An investigation of the implications of a practical implementation. 
 An evaluation of learning algorithms which offer superior performance to the error back propagation 

algorithm. 
Nomenclature 
CETP   - Common Effluent Treatment Plant 
PCETP  -  Perundurai Common Effluent Treatment Plant 
ANN  - Artificial Neural Network 
BNN  - Backpropagation Neural Network 
PID  - Proportional Integral Derivative  
AVGF  - Automatic Valves Gravity Filter 
ACF  - Automatic Carbon Filter 
TDS  - Total Dissolved Solids 
TSS  - Total Suspended Solids 
COD  - Chemical Oxygen Demand 
BOD  - Biological Oxygen Demand 
HCl  - Hydro Chloride 
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Table 1. Comparison of Measured pH value and Neural predicted pH value 

 
DATE 

 

 
TIME 

 

pH before 
treatment 

HCl dosing
(ml) 

pH after 
treatment 

Neural Predicted 
pH value 

Error 
value 

27.02.08 12.15 8.29 0.7 7.8 7.7524 0.0476 

 1.15 8.32 0.6 7.5 7.5185 -0.0185 

 2.15 8.42 0.6 7.59 7.5689 0.0211 

 3.15 8.51 0.6 7.61 7.5984 0.0116 

 4.15 8.56 0.6 7.54 7.5938 -0.0538 

 5.15 8.62 0.6 7.62 7.5828 0.0372 

29.02.08 2.15 7.89 0.6 7.64 7.6403 -0.0003 

 3.15 7.71 0.7 7.79 7.7859 0.0041 

 4.15 7.73 0.7 7.6 7.6055 -0.0055 

15.03.08 10.15 8.71 0.8 7.46 7.5124 -0.0524 

 11.15 8.61 0.5 7.71 7.6135 0.0965 

 12.15 8.72 0.6 7.61 7.5663 0.0437 

 1.15 8.76 0.9 7.52 7.5203 -0.0003 

 2.15 8.77 0.8 7.51 7.5296 -0.0196 

 3.15 8.78 0.6 7.52 7.5778 -0.0578 

 4.15 8.85 1.0 7.55 7.5499 1E-04 

16.03.08 10.15 9.0 0.7 7.6 7.5503 0.0497 

 11.15 8.7 0.5 7.7 7.6203 0.0797 

 12.15 8.9 0.6 7.6 7.6281 -0.0281 

 1.15 8.8 0.5 7.7 7.6084 0.0916 

 2.15 8.6 0.6 7.8 7.5882 0.2118 

 3.15 8.5 0.7 7.8 7.6712 0.1288 

 4.15 8.6 0.6 7.5 7.5882 -0.0882 

17.03.08 10.15 8.42 0.6 7.6 7.5689 0.0311 

 11.15 8.52 0.6 7.61 7.5991 0.0109 

 12.15 8.41 0.7 7.7 7.7445 -0.0445 
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 1.15 8.61 0.5 7.65 7.6135 0.0365 

 2.15 8.62 0.7 7.51 7.5533 -0.0433 

 3.15 8.73 0.8 7.62 7.5114 0.1086 

 4.15 8.76 0.7 7.5 7.5661 -0.0661 

18.03.08 10.15 8.72 0.6 7.61 7.5663 0.0437 

 11.15 8.77 0.8 7.51 7.5296 -0.0196 

 12.15 7.69 0.6 7.64 7.5663 0.0737 

 1.15 8.32 0.6 7.5 7.5296 -0.0296 

 2.15 8.61 0.7 7.63 7.64 -0.01 

 3.15 8.74 0.6 7.52 7.5185 0.0015 

 4.15 8.91 0.7 7.63 7.5604 0.0696 

19.03.08 1.15 8.81 0.6 7.6 7.568 0.032 

 2.15 8.8 0.5 7.7 7.6541 0.0459 

 3.15 8.8 0.7 7.6 7.5896 0.0104 

 4.15 8.96 0.7 7.5 7.6084 -0.1084 

20.03.08 11 6.7 - 6.7 6.699 0.001 

 12 6.3 - 6.3 6.3 0 

 2 6.4 - 6.4 6.4009 -0.0009 

 3 6.3 - 6.3 6.3 0 

 4 6.3 - 6.3 6.3 0 

 5 6.3 - 6.3 6.3 0 

21.03.08 11 7.9 0.5 7.5 7.5002 -0.0002 

 12 7.9 0.4 7.6 7.6 0 

 2 8.1 0.7 7.7 7.6648 0.0352 

 3 8.0 0.7 7.6 7.5849 0.0151 

 4 8.2 0.6 7.6 7.5455 0.0545 

 5 8.1 0.7 7.6 7.6648 -0.0648 

22.03.08 9.35 7.0 - 7.0 7.0004 -0.0004 

 10.35 7.0 - 7.0 7.0004 -0.0004 

 11.35 7.1 - 7.1 7.1006 -0.0006 

 12.35 7.1 - 7.1 7.1006 -0.0006 

 2.35 7.2 - 7.2 7.1992 0.0008 

 3.35 7.3 - 7.3 7.2996 0.0004 

 4.35 7.4 - 7.4 7.4011 -0.0011 

 5.35 7.5 - 7.5 7.4988 0.0012 

23.03.08 9.15 7.2 - 7.2 7.1992 0.0008 

 10.15 7.4 - 7.4 7.4011 -0.0011 

 11.15 7.4 - 7.4 7.4011 -0.0011 

 12.15 7.2 - 7.2 7.1992 0.0008 

 2.15 7.4 - 7.4 7.4011 -0.0011 

 3.15 7.6 - 7.6 7.6012 -0.0012 
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 4.15 7.5 - 7.5 7.4988 0.0012 

 5.15 7.5 - 7.5 7.4988 0.0012 

24.03.08 11.15 8.7 0.3 7.6 7.6029 -0.0029 

 12.15 8.6 0.3 7.5 7.4999 1E-04 

 2.15 8.9 0.5 7.5 7.5772 -0.0772 

 3.15 9.0 0.5 7.6 7.6629 -0.0629 

 4.15 9.0 0.4 7.8 7.7008 0.0992 

 5.15 8.9 0.3 7.5 7.4987 0.0013 

 6.15 9.0 0.4 7.7 7.7008 -0.0008 

25.03.08 11.15 9.1 0.7 7.5 7.501 -0.001 

 12.15 9.0 0.7 7.5 7.5503 -0.0503 

 2.15 8.8 0.6 7.6 7.5854 0.0146 

 3.15 8.6 0.4 7.5 7.4865 0.0135 

 4.15 8.5 0.3 7.7 7.6982 0.0018 

 5.15 8.7 0.5 7.6 7.6203 -0.0203 

 6.15 8.8 0.6 7.5 7.5854 -0.0854 

26.03.08 11.35 8.9 0.7 7.6 7.6563 -0.0563 

 12.35 8.2 0.6 7.5 7.5455 -0.0455 

 1.35 8.8 0.5 7.6 7.6084 -0.0084 

 2.35 8.9 0.6 7.5 7.6281 -0.1281 

 3.35 8.7 0.6 7.5 7.5667 -0.0667 

 4.35 8.9 0.6 7.6 7.6281 -0.0281 

 5.35 8.9 0.7 7.7 7.6563 0.0437 

27.03.08 11.15 8.9 0.6 7.8 7.6281 0.1719 

 12.15 8.9 0.6 7.8 7.6281 0.1719 

 1.15 8.8 0.7 7.6 7.6009 -0.0009 

 2.15 8.7 0.7 7.5 7.5342 -0.0342 

 3.15 8.7 0.7 7.5 7.5342 -0.0342 

 4.15 8.7 0.6 7.7 7.5667 0.1333 

 5.15 8.8 0.7 7.5 7.6009 -0.1009 

28.03.08 11.15 9.0 0.7 7.5 7.5503 -0.0503 

 12.15 9.1 0.6 7.7 7.6981 0.0019 

 1.15 9.0 0.7 7.6 7.5503 0.0497 

 2.15 9.0 0.7 7.6 7.5503 0.0497 

 3.15 9.0 0.6 7.6 7.6277 -0.0277 

 4.15 8.9 0.6 7.5 7.6281 -0.1281 

 5.15 8.9 0.5 7.6 7.5772 0.0228 

30.03.08 9.15 8.8 0.5 7.5 7.6084 -0.1084 

 10.15 8.7 0.6 7.7 7.5667 0.1333 

 11.15 8.9 0.5 7.6 7.5772 0.0228 

 12.15 8.9 0.6 7.8 7.6281 0.1719 
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 2.15 8.5 0.7 7.6 7.6712 -0.0712 

 3.15 8.6 0.6 7.5 7.5882 -0.0882 

 4.15 8.7 0.5 7.6 7.6203 -0.0203 

31.03.08 11.35 8.8 0.6 7.5 7.5854 -0.0854 

 12.35 8.7 0.7 7.6 7.5342 0.0658 

 1.35 8.5 0.7 7.6 7.6712 -0.0712 

 2.35 8.6 0.5 7.5 7.614 -0.114 

 3.35 8.6 0.6 7.6 7.5882 0.0118 

 4.35 8.5 0.4 7.6 7.6128 -0.0128 

 5.35 8.7 0.5 7.5 7.6203 -0.1203 

01.04.08 11.35 6.7 - 6.7 6.699 0.001 

 12.35 6.6 - 6.6 6.6011 -0.0011 

 1.35 6.6 - 6.6 6.6011 -0.0011 

 2.35 6.5 - 6.5 6.4989 0.0011 

 3.35 6.5 - 6.5 6.4989 0.0011 

 4.35 6.6 - 6.6 6.6011 -0.0011 

 5.35 6.3 - 6.3 6.3 0 

02.04.08 11.35 8.6 0.6 7.5 7.5882 -0.0882 

 12.35 8.5 0.5 7.7 7.6811 0.0189 

 1.35 8.9 0.6 7.7 7.6281 0.0719 

 2.35 8.6 0.7 7.6 7.5683 0.0317 

 3.35 8.7 0.8 7.5 7.5167 -0.0167 

 4.35 8.9 0.6 7.6 7.6281 -0.0281 

 5.35 8.8 0.7 7.7 7.6009 0.0991 

03.04.08 11.15 9.0 0.5 7.6 7.6629 -0.0629 

 12.15 8.9 0.7 7.8 7.6563 0.1437 

 1.15 8.9 0.6 7.5 7.6281 -0.1281 

 2.15 9.0 0.4 7.6 7.7008 -0.1008 

 3.15 9.0 0.5 7.8 7.6629 0.1371 

 4.15 8.9 0.6 7.6 7.6281 -0.0281 

 5.15 8.6 0.6 7.5 7.5882 -0.0882 
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Figure 1. pH variation in Receiving Sump 
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Figure 2. pH variation in Equalization Tank 
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Figure 3. pH variation in Clarilflocculator Overflow 
 

 
 

 
Figure 4. SIMULINK Block Diagram for pH Identifier 
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Figure 5. Measured pH value Vs Neural predicted pH value 
 

 
 

Figure 6. Error response 
 
 




