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Abstract 

The effect of antecedent conditions on the prediction of soil pore-water pressure (PWP) using Artificial Neural 
Network (ANN) was evaluated using a multilayer feed forward (MLFF) type ANN model. The Scaled Conjugate 
Gradient (SCG) training algorithm was used for training the ANN. Time series data of rainfall and PWP was used 
for training and testing the ANN model. In the training stage, time series of rainfall was used as input data in one 
model whereas, rainfall and pore water pressure with some antecedent conditions was used in second model and 
corresponding time series of PWP was used as the target output. In the testing stage, data from a different time 
period was used as input and the corresponding time series of pore-water pressure was predicted. The performance 
of the model was evaluated using statistical measures of root mean square error (RMSE) and coefficient of 
determination (R2). The results of the model prediction revealed that when antecedent conditions (past rainfall and 
past pore-water pressures) are included in the model input data, the prediction accuracy improves significantly. 
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1. Introduction 

Variations in soil pore-water pressure (PWP) due to rainfall are known to exhibit highly non-linear and complex 
relationship. This is due to the spatial and temporal variability of precipitation, evaporation pattern and soil 
properties. The knowledge of PWP is very important in the determination of strength and effective stress of a soil. 
Excessive PWP increase is known to cause slope failures in areas susceptible to landslide. To arrive at effective 
remedial and design strategies against slope failure it is necessary to know the PWP changes due to rainfall. 
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Tensiometers are usually used to measure PWP at different depths of soil. In general, PWP of soils depends on 
several soil and climate-related factors such as rainfall, soil properties (grain size, porosity, density, etc.), 
temperature, evaporation, solar radiation, soil depth, and antecedent conditions. Therefore, reliable prediction of 
pore-water pressure is significantly data-demanding. 

Use of Artificial Neural Network (ANN) techniques to solve problems in civil engineering began in the late 
1980’s (Flood, & Kartam, 1994). Applications of ANN techniques for simulation and forecasting in water 
resources engineering are few and relatively recent. ANN has been applied with success in estimation and 
forecasting of discharge capacity of channels (Unal, Mamak, Seckin, & Cobaner, 2010), suspended sediment 
(Mustafa, Isa, & Rezaur 2011), discharge (Tawfik, Ibharim, & Fahmy, 1997) and hourly and daily stream flows 
(Kang, Kim, Park, & Ham, 1993). A comprehensive review carried out by the American Society of Civil 
Engineering (ASCE) Task Committee on Application of ANN in hydrology concluded that ANN can perform 
well as existing models (ASCE, 2000a, 2000b). The ANN approach to nonlinear behavior modeling is more 
effective and more efficient whenever an explicit knowledge of the hydrological process is not required (Hsu, 
Gupta, & Sorooshian, 1995). It appears that for predicting PWP variations application of ANN could be an ideal 
alternative to regression based approaches.  

The objectives of this study are (i) to develop an ANN model using Scaled Conjugate Gradient (SCG) learning 
algorithm for predicting time series of pore-water pressure responses to variations in rainfall pattern, and (ii) to 
evaluate the influence of antecedent conditions (past rainfall and past pore-water pressures) on the prediction 
accuracy of the ANN model. 

2. ANN Model Theory 

The architecture of ANN is a data processing system that consists of a large number of simple units called 
neurons or nodes having a local memory and interconnected with weights and biases. ANN differ from the 
traditional physically based models in a way that, ANN has the ability of self adaptation, can capture functional 
relationships and extract patterns between input and output variables by learning from examples even if the 
primary relationship is complex and difficult to describe by a physically based relationship. Thus application of 
ANN seems appropriate for problems whose solutions necessitate information that are hard to describe and lack 
of sufficient data or observations. Due to its self-learning, self-adaptable processing, non-linear pattern 
classification, and identification capabilities, application of ANN to different aspects of hydrologic modeling has 
attracted interest in recent years (Cigizoglu, 2004; Cigizoglu, & Alp, 2004; Hu, Lam, & Ng, 2001). 

Application of an ANN consists of three steps; (i) training, (ii) validation and (iii) testing. Available data are 
divided for all these steps. Usually, as a rule of thumb, 60% of the available data are used for training, 20% for 
validation and the remaining 20% for testing. However, this rule is not fixed and could be changed depending on 
the availability of data. Training and validation could be viewed as the same process because in both steps input 
and target data are introduced to the network and the network is trained. Therefore, in some instances when a 
large dataset is not available, training and validation could be combined together in a single training session (i.e. 
80% data could be used for training instead of 60% for training and 20% for validation). During testing, a new 
set of data which has not been used in training is provided to the network to produce the output (prediction). To 
assess the performance of the ANN model the outputs generated during testing are compared with the 
corresponding observations. 

An ANN is designed by weights between the neurons, transfer function and learning laws (Caudill, 1987). 
Multilayer Feed Forward (MLFF) networks consists of more than one layer (i.e. input, hidden and output layers) 
and in Feed Forward (FF) networks all the information are transferred in the forward direction only, i.e. from 
input neurons to output neurons through the hidden layer. There is no cycle or loop in the feed forward network. 
The architecture of an MLFF network is shown in Figure 1. Subscripts i, j, and k denote the ith (1 ≤ i ≤L), jth (1 ≤ j 
≤ M), and kth (1 ≤ k ≤ N), neuron in the input, hidden and output layers, respectively. The letters L, M, N denote 
the number of neurons in the input, hidden and output layers respectively. The symbols yk and zk denote the 
output and target values respectively of the kth neuron in the output layer. 

The objective of training is to minimize the error between target and output values by adjusting the weights and 
biases through an algorithm called the learning law. During training a neuron obtains inputs from the previous 
layer which is multiplied by its weight and the bias value is added. Thus, the combination of the net weighted 
inputs and bias netj to the jth neuron in the hidden layer is represented as 
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where, xi is the input to the ith neuron in the input layer; wji is the weight of jth neuron of the hidden layer 
connected to the ith neuron of the input layer and bj is the bias of the jth neuron in the hidden layer. The net input 
to the jth neuron of the hidden layer is then passed through a transfer function f to produce the output of the jth 
neuron in the hidden layer. If the activation level of neurons is strong enough then it produces an output. The 
output of the jth neuron in the hidden layer can be expressed as  









 



L

i
jjiijj bwxfnetfy

1

)()(       (2) 

The output of the hidden layer is an input to the neuron in the output layer and the same operation as in the 
hidden layer is repeated in the output layer to obtain the output of neurons in the output layer. The net weighted 
input and bias to the kth neuron in the output layer is represented as 
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where, wkj is the weight of kth neuron of the output layer connected to the jth neuron of the hidden layer and bk is 
the bias of the kth neuron in the output layer. The output from the kth neuron in the output layer is given by 
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The error ek of the kth neuron in the output layer which is the squared difference between the target and output 
values can be written as 

2)( kkk yze           (5) 

If there are P numbers of input data pairs such that (1 ≤ p ≤ P), the global error of the network in terms of mean 
squared error is written as  
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Equation (6) is called the error function of the network and is a function of network connection weights. During 
training the global error function is minimized by the learning rule. The learning rule enables updating (adjusting) 
the connection weights through successive iterations such that the difference between target and output values 
for all dataset is within a predefined tolerance limit. 

There are several learning algorithms available, the commonly used ones are the (i) Back propagation (BP), (ii) 
Back propagation with momentum, (iii) Conjugate Gradient (CG), (iv) Scaled Conjugate Gradient (SCG), (v) 
Quasi Newton’s and (vi) Levenberg-Marquardt (LM) algorithm. Each of these algorithms has its own distinct 
advantages and weaknesses. However, the SCG algorithm is based on the second order gradient supervised 
learning rule and is claimed to have learning speed (convergence rate) about 2 times faster than the CG algorithm 
and about 20 times faster than the regular BP algorithm (Moller, 1993; Schraudolph, & Graepel, 2002). Other 
major advantages of the SCG algorithm are that it does not depend on any critical user selected parameter (e.g. 
learning rate, momentum) as in BP algorithm and it does not involve computationally expensive line-search to 
scale the step size as in CG algorithm, instead it uses a trust-region method to scale the step size(Cestisli & 
Barkana, 2010; Falas, & Stafylopatis, 2005). 

3. Methodology 

3.1 Data Source and Study Area 

The data used in this study are the time series of pore-water pressure and rainfall records from 3 m soil depth, for 
a period of three and a half months and at 4 hour interval during dry periods (no rainfall) and 10 min interval 
during wet periods. The data was collected through a field instrumentation program of a residual soil slope in 
Yishun, Singapore (Rahardjo, Leong, & Rezaur, 2008; Rezaur, Rahardjo, Leong, & Lee, 2003). The three and a 
half month time series data consists of 1450 pore-water pressure measurements varying between both positive 
and negative values with a maximum negative PWP of magnitude 15 kPa. The entire monitoring period 
spanned over three years and included time series of pore-water pressure and rainfall measurements at 4 different 
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slopes in 2 major geological formations (Bukit Timah Granitic Formation and Sedimentary Jurong Formation) 
and at soil depths 0.5, 1, 2, and 3 m. The data was primarily collected with a view to understand rainfall-induced 
slope failure mechanism (Rahardjo, et al., 2008) and hydrological responses of slopes under tropical climate 
(Rezaur, et al., 2003). Climate at the study area is hot and humid (equatorial) with no marked dry season. The 
temperature varies little throughout the year with an annual average of 26.6 C and a relative humidity of 84% 
(Meteorological-Service-Singapore, 1997). The soil at the Yishun site is residual soil from the Bukit Timah 
granite which varies from silty or clayey sand to silty or sandy clay, depending on the degree of weathering, but 
is commonly sandy clayey silt (Rahardjo, et al., 2008). 

3.2 ANN Architecture 

Two different ANN model architectures were used in this study; hereafter called the ANN1 and ANN2. ANN1 
consisted of one neuron in the input layer for rainfall, 4 neurons in the hidden layer and one neuron in the output 
layer, denoted by ANN architecture 1–4–1. ANN2 denoted by 8–4–1 architecture, consisted of 8 neurons in the 
input layer out of which 3 were used for rainfall values (1 current and 2 antecedent) and the remaining 5 were 
used for PWP (antecedent values). ANN1 architecture was adopted to examine the suitability of modeling the 
variation of pore-water pressure at the current time ut as a direct function of variation of rainfall at current time rt, 
(i.e )( tt rfu  ), i.e. without accounting for any effect from antecedent conditions. Whereas ANN2 architecture 
was adopted to examine the suitability of modeling the variation of pore-water pressure as a function of variation 
of rainfall and pore-water pressure at the present time t and past (antecedent) times (t–1, t–2…… t–5) such that; 

),,,,,,,( 5432121  ttttttttt uuuuurrrfu      (7) 

There is no hard and fast rule for selecting the number of neurons in the hidden layer. In this study, the number 
of neurons in the hidden layer was arrived at by trial and error method (Maier, & Dandy, 2000). A program code 
using ANN toolbox in MATLAB was written for the application of the ANN algorithm described in the ANN 
model and theory section. 

3.3 Input Data Selection 

Success in the identification of a non-liner system by ANN training depends on the selection of appropriate 
training data which should be representative of the non-liner system to be mapped during the ANN training 
(Rojas, 1996). In this study the available three and half month synchronized time series data of pore-water 
pressure and rainfall was divided into two sets. Data from Oct 12–1998 to Dec 17–1998 (about 70% of the 
available data) was used for training-validation while data for the period Dec 18–1998 to Jan 24–1999 
(remaining 30% of the data) was used for testing (prediction).  

3.4 Activation Function Selection 

In this study, the hyperbolic tangent sigmoid transfer function, also known as hyperbolic tangent or tansig (Eq. 8) 
was used for neurons in the hidden layer. Linear transfer function, also known as purelin (Eq. 9) was used for 
neurons in the output layer. 
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3.5 Data Normalization 

The input and target data (raw data) need to be normalized before use in the ANN training and testing to 
commensurate with the upper and lower bound limits of the activation functions used in the hidden neurons. This 
ensures fast processing and convergence during training and minimizes prediction error (Rojas, 1996). Since 
hyperbolic tangent sigmoid activation function whose upper and lower bounds are in the range of –1 to 1 was 
used in the hidden layer neurons, the pore-water pressure and rainfall data was normalized by transforming the 
data to the range of –1 to 1 using the equation; 
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where, zp is the normalized or transformed data series, xp is the original data series, xmin, xmax are the minimum 
and the maximum value of the original data series respectively, 1 ≤ p ≤ P and P is the number of data.  
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3.6 Performance Evaluation Criteria 

In hydrological studies root mean square error (RMSE) is commonly used to evaluate model performance. The 
ideal value of RMSE for best performance is zero. In this study, the performance of the model was evaluated 
using RMSE between the observed and predicted values, as 
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where, zp and yp are the observed and predicted values of pore-water pressure, respectively, P is the number of 
observations for which the error has been computed. 

3.7 Stopping Criterion 

The rule for stopping the training was based on either the relative error of the sum of square error E ≤ goal or the 
maximum number of given epochs, whichever is satisfied first. In the program code, values of 0.001 and 500 
were used for goal and number of epochs, respectively.  

4. Results and Discussion 

The summary of ANN model performance statistics are shown in Table 1. The performance of both the ANN 
models in terms of minimizing the mean square error (MSE) to a desired goal and the time and number of 
epochs to reach the desired goal during training of the networks are shown in Figure 2. ANN1 model started 
training with an initial global MSE of 5.29 and minimized the MSE to 0.3 within only 3 epochs. Thereafter, the 
network appears to be trapped with local minima and the MSE remained constant at 0.28 until the maximum 
number of epochs (500) was reached, the goal however was not achieved (Figure 2a). For ANN2 model the MSE 
decreased very fast (0.8 to 0.003) for the first 7 epochs and then continued to decrease at a slower rate until the 
goal (0.001) was reached at 82 epochs (Figure 2a). Similarly, Figure 2b shows that for ANN1 the MSE decreased 
from 5.29 to 0.3 in 0.02s but remained constant at 0.28 till the training finished at 4s when the maximum number 
of epochs (500) was reached. The ANN2 model minimized the error very fast and achieved the goal with only 
0.83s (Figure 2b). 

A comparison between observed and trained time series of pore-water pressures are shown in Figure 3. Figure 3a 
shows that ANN1 model failed to learn the non-linear behavior of pore-water pressure throughout the training 
duration and the trained values did not follow the target values. While the ANN2 model learned the complex 
behavior of the data well, adopted the non-linearity and then followed the same trend as the target values (Figure 
3b).  

Prediction results of time series of pore–water pressures during testing stage of the ANN models are shown in 
Figure 4. It is clear that ANN1 (with architecture 1–4–1) which gave poor results during training (Figure 3a) also 
showed bad performance during testing (Figure 4a). ANN2 (with architecture 8–4–1) performed well during both 
training (Figure 3b) and prediction (Figure 4b). Figure 3b and Figure 4b show that in both cases i.e. during 
training and prediction, the trends in the trained and predicted time series followed closely the trends of the 
observed pore-water pressures. 

Comparison between observed pore-water pressures and pore-water pressures predicted by the ANN models are 
shown in Figure 5. The coefficient of correlation (R2) and the line of perfect agreement between observed and 
predicted values are also shown in Figure 5. The correlation between the observed and predicted pore-water 
pressures for ANN1 is very poor (R2=0.065, Figure 5a) whereas the correlation between the observed and 
predicted pore-water pressures for ANN2 is good (R2=0.973); confirming the superior performance of ANN2 
model (Figure 5b). 

A comparison of performance statistics in terms of RMSE, epochs, and time to reach goal in Table 1 show the 
high superiority of ANN2 over ANN1, both in training and testing stages. Both networks ANN1 and ANN2 were 
trained with the same learning law (SCG), had the same number of neurons in the hidden (4 neurons) and output 
(1 neuron) layers; while the only difference between ANN1 and ANN2 was the number of neurons in the input 
layer (ANN1: 1 input neuron, ANN2: 8 input neurons) and the choice of input parameters. The superior 
performance of ANN2 over ANN1 both in training and prediction could be attributed to the additional number of 
neurons in the input layer and the inclusion of antecedent conditions. The 8 input neurons in ANN2 were used to 
account for antecedent rainfall and pore-water pressure conditions (see Eq.12) and this resulted in superior 
performance in training and prediction by ANN2. This shows that during pore-water pressure prediction it is 
necessary to account for antecedent pore-water pressure and rainfall conditions.  
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The prediction results (Figure 4b, Figure 5b and Table1) also suggest that SCG training algorithm is suitable for 
pore-water pressure prediction. ANN model with appropriate network architecture can be used for predicting 
time series of pore-water pressure responses to variations in rainfall pattern. It also appears that time series of 
pore-water pressure responses to rainfall which is known to be a function of many factors such as rainfall, 
evaporation, soil properties, antecedent conditions (Rahardjo, et al., 2008; Rezaur, et al., 2003) could be 
predicted using ANN from the knowledge of a relatively few factors only. 

5. Conclusions 

Multilayer Feed Forward neural network model with Scaled Conjugate Gradient (SCG) learning algorithm was 
developed to predict time series of pore-water pressure responses to rainfall. An appropriate network 
configuration that could map the nonlinear behavior of pore-water pressure responses (at 3 m soil depth) to 
climatic condition was identified to be 8–4–1. The study indicated that the SCG learning algorithm is suitable for 
application to problems associated with predictions of non-linear and complex behavior such as pore-water 
pressure variation during rainfall.  

Predictions with a network architecture of 1-4-1 configuration led to unacceptable errors. The superiority of 
prediction accuracy with 8-4-1 configuration indicates the necessity of incorporating the antecedent values for 
the parameters. In other words, it is necessary to account for antecedent pore-water pressure and rainfall for 
prediction of pore-water pressure with reasonable accuracy.  

Highly dynamic, non-linear and complex behavior of pore-water pressure, which is a function of many 
independent variables (i.e. rainfall, evaporation, soil properties, soil depth and antecedent conditions), could be 
predicted with ANN models with a modest number of input variables. 
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Table 1. Performance statistics of ANN models during training and testing 
     RMSE 
Model Architecture** Goal Time (sec) Epochs Training Testing 
ANN1 1-4-1 0.001 3.28 500* 7.87 6.61 
ANN2 8-4-1 0.001 0.83 82 0.48 0.98 
*  Maximum numbers of epochs was reached but did not reach goal 
**  Number of input neurons-Hidden neurons-Output neurons 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Schematic representation of an MLFF network 
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Figure 2a. Comparison of performance in terms of number of epochs to reach goal 
 

 

 

 

 

 

 

 

 

 

Figure 2b. Comparison of performance in terms of time to reach goal 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3a. Comparison between observed and trained time series of pore-water pressures after training using 
ANN1 model 
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Figure 3b. Comparison between observed and trained time series of pore-water pressures after training using 
ANN2 model 

 

 

 

 

 

 

 

 

 

 

 

Figure 4a. Comparison between observed and predicted time series of pore-water pressures obtained during 
testing of ANN1 model 

 

 

 

 

 

 

 

 

 

 

 

Figure 4b. Comparison between observed and predicted time series of pore-water pressures obtained during 
testing of ANN2 model 
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Figure 5a. Comparison between observed and predicted pore-water pressures of ANN1 model 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5b. Comparison between observed and predicted pore-water pressures of ANN2 model 
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