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Abstract 

The calculation and analysis of torque and drag play an important role in drilling and well design. Different 
models (soft, stiffness, mixed and finite element) have been used to calculate the torque and drag. This paper 
introduces a practical FEA (Finite Element Analysis) model of the drill string which can reflect working behavior, 
including interaction between the drillstring and borehole wall, computational model of torque and drag, and 
verification with examples. The sensitivity analysis to some key input and output parameters has been conducted. 
The calculated hook load shows a good match to the rig recorded values. The drillstring displacements calculated 
by the FEA model matches those from an analytical method. The program developed and discussed in this paper 
can be used for torque and drag analysis, dynamic behavior analysis, and friction coefficient back-calculation. 
The FEA program of the drillstring presented herein will benefit in preplanning and real-time simulation of oil 
and gas well drilling operations. 
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1. Introduction 

Drag and torque due to friction are phenomena particularly associated with deviated wells (directional and 
horizontal wells) (Sheppard et al., 1987). Torque and Drag analysis remains an important evaluation process for 
assessing drilling feasibility of directional wells, minimizing the occurrence of catastrophic drill string failures 
and avoiding premature termination of the drilling operation before reaching planned target depth (Adewuya et 
al., 1998). The need to drill deeper and more complex well profiles as well as the need to drill extended reach 
wells is increasing. Surface torque is becoming an important factor in the decision-making process to determine 
if certain wells can be drilled or not (Maehs et al., 2010). In directional and deep wells, the torque and drag 
generated by contact between the drill string and the borehole play major roles in the following areas: well 
planning, drilling operation (trouble diagnosis and prevention), and casing running/setting operations. They also 
affect the completion/cementing operation. Their accurate predictions are therefore very important if the well is 
to be successfully and economically drilled and completed (Ho et al., 1988).  

There are two common models for torque and drag. The Soft String Model (SSM) (Johancsik et al., 1983) was 
developed as a drill string torque and drag model for directional wells that ignored drill string stiffness and 
considered the drillstring as “soft” string components with weight. The model assumes that sliding friction forces 
result from contact of the drill string with the wellbore. The contact force between drill string and the wellbore 
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wall is decided by the drill string’s weight and tension. Determination of the friction coefficient is critical to 
practical applications of this model. Field data was utilized to back calculate the sliding friction coefficient in 
their work. Based on the above models, others have done practical application analysis and simulation (Aadnoy 
et al., 2010). 

The soft string model does not reflect the stiffness of the drill string and does not take into account the clearance 
between the drill string and wellbore. Static models that ignore the effects of drill string bending and stiffness on 
wall-contact forces might incorrectly predict friction force. They are unable to perform some of the more 
sophisticated calculations required to identify potential failure modes that may be encountered in more 
challenging wellbores. There have been many stiff string models developed, but there is no industry standard 
formulation (Mitchell et al., 2009). In 1988, Ho developed an improved stiff string model for torque and drag 
based on the theory of large drill string deformation. The author additionally considers the effects of drill string 
stiffness and hole clearance. Actually, the assumption is that the drill string is in continuous contact with the 
wellbore, and the model is hard to solve. 

FEA (or FEM) is a numerical method, which take into account the stiffness and the borehole drillstring clearance 
effectively when calculating torque and drag. 

Yang presented a three-dimensional finite difference method for bottom hole assembly (BHA) analysis under 
static loads (Yang, D. et al., 2008). Bueno modeled the drill string as non-deformed elastic beams. Bueno 
assumed that the contact points only occur at the tool-joints. The upper boundary condition (rotary Table) was set 
as a full restriction on the degrees of freedom. The wellbore was discretized with contact elements with a 
specified spring-stiffness (Bueno et al., 1994). Ritto took into account the fluid structure interaction model and 
the Timoshenko beam model is applied and the finite element method is used to discretize the system (Ritto et al, 
2009). Kenneth R. Newman introduced a dynamic finite-element/ finite-difference model which is a part of a 
software package. The model performs a 3D finite element analysis of drill string at each specific point in time. 
This analysis is run repeatedly at short time steps through time using a finite-difference algorithm (Newman et 
al., 2009). 

This paper introduces a practical FEA model of the drillstring which reflects working behavior, including 
interaction between the drillstring and borehole wall, computational model of torque and drag, and verification 
examples. 

2. FE modeling of drill string 

2.1 Hamilton’s Principle 

A 3D beam model is used with six degrees of freedom for each node (as shown in Figure 1): two transverse 
displacements (U2 or U8, U3 or U9), two bending rotations (U5 or U11, U6 or U12), one torsional rotation and 
one axial displacement (U1 or U7, U4 or U10). 

In order to derive the equations of motion, Hamilton's principle has been employed in its extended version 
including non-conservative forces, and can be expressed by Equation 1. 

                          0)(
2

1
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t

t
dtWVT                                    (1) 

Where V is the potential strain energy, T is the kinetic energy and W is the work done by the non-conservative 
forces. 

The discrete system of equations of an element can be expressed as the following Equation 2. 

                  
eeeeeee FUKUCUM }{}{][}{][}{][

...

                 (2) 
Where the vector eU}{ , eU}{  eU}{   and eF}{ represent generalized displacement, velocity, acceleration and 
force, respectively. The matrix eM}{ , eC}{  and eK}{  represents element mass, damping and stiffness 
matrix, respectively. All element matrices are assembled to form global matrices. 

2.2 Element mass matrix 

The element matrix has two parts like Equation 3. The matrix [M1]
e includes all three translational contributions 

and the axial rotation contribution, while [M2]
e contains contributions from the third and fourth rotation 

components. 

                                   eee MMM 21                                       (3) 
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2.3 Element stiffness matrix 

                              
     e e e

L NK K K 
                                   (4) 

The element stiffness matrix also includes two parts shown in Equation 4. 

[KL]e and [KN]e is linear and nonlinear stiffness matrix respectively. 

                              
       1 2

e e e e

N NA NA NTK K K K  
                      (5) 

The matrices [KNA1]
e and [KNA2]

e represent coupling between axial force and flexure. The matrix [KNT]e 
represents coupling between the torsion and flexure. 

2.4 Element damping matrix 

The element damping matrix also includes two parts: [CD]e and [CN]e. 

                               
     e e e

D NC C C 
                                    (6) 

                               
     e e e

D LC M K  
                                (7) 

[CD]e is called dissipative damping matrix which is obtained from a linear combination of the mass and stiffness 
matrices, and [CN]e is called non-dissipative damping matrix which is from gyroscopic terms in the kinetic 
energy. α and  β are coefficients. 

2.5 Global mass, damping and stiffness matrices 

The global matrices are obtained by assembling all element matrices in the global coordinate system. The 
assembly process can be shown in the following Equation 8 using the mass matrix as an example. 
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2.6 Coordinate transform matrix 

As described in the previous sections, the wellbore geometry of a horizontal well is complicated and usually 
includes vertical, curved and horizontal sections. Therefore, a coordinate transformation matrix (Equation 9) is 
needed from the local element coordinate system xyz to the global coordinate system XYZ. O is the origin of the 
global system, which represents the wellhead and the direction of Z is vertically downward (as shown in Figure 
2). 
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  (9) 
In Equation 9, α and β represent inclination and azimuth respectively. There are three translations and three 
rotations respectively, which are Uz, Ux, Uy, Фz, Фx, and Фy in the local system, uz, ux, uy, φz, φx, and φy in the 
global system.  
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2.7 External force vector 

Including gravity, inertial force, pressure from the difference between annular fluid and formation pressure, 
friction from the fluid flowing, and impact force between drillstring and wellbore. The following is showing how 
to convert the distributed gravity into an equivalent nodal force (Equation 12). 

From Figure 3, we can get Equations 10 and 11. 

                                        qz=w*cos (α)                                    (10) 
                                        qx=w*sin (α)                                    (11) 
Where  

w-unit weight of drillstring 

α- inclination angle 

The element load vector from the gravity is as follows. 
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Where 

L-element length 

Imbalanced force occurs when the center of gravity doesn’t coincide with the rotary center of the drill string. In 
the research of this paper, the imbalanced force is neglected. Next, we assume the load vector for element i as 
{FFi} in the global coordinate system. 
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Where 
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So the global load vector {FF} is Equation 16. 
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  (16) 
2.8 Boundary conditions 

The main boundaries at rotary Table, drill bit and stabilizers are shown in the Figure 4. The suspension system, 
including the rig, wire line and hook, is simplified as a spring, the stiffness coefficient of which is KH, so the 
hook load can be calculated using the following Equation 17. 

                                   
1
zhookload UKHF 
                                 (17) 

Where 

hookloadF - hook load 
1
zU -the axial translation of the first node 

At the rotary Table: radial displacement is constrained, axial displacement and rotation around drill string axis is 
released. There are different boundaries applied for different drilling modes: 

(1) rotary drilling (including common rotary drilling and top drive system) 

01 xU  

01 yU  

RPMz  21  or  surfacez TorT 1  

Where 

RPM- rotary speed of the Table 
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Torsurface- torque on the Table 

(2) sliding, tripping in, tripping out 

01 xU  

01 yU  

01  z
  

At the bottom hole: radial displacement is constrained, axial displacement and rotation around drill string axis is 
released, axial and radial force and a torque around the drill string axis is also applied. 

(3) Rotary drilling (including common rotary drilling and top drive system) and sliding 

0N
xU  

0N
yU  

bottom
N

z WOBF   

bottom
N

z TorT   

(4) Sliding, tripping in, tripping out 

0N
xU  

0N
yU  

0N
zF  

0N
zT  

Where  

N-The number of element 

At the stabilizers: radial displacement is constrained and axial displacement and rotation around drill string axis 
is released; 

0i
xU  

0i
yU  

The drill string is constrained in the wellbore all the time (as shown in Figure 5). In the local coordinate system 
oxyz, the lateral displacements ux and uy from the centerline should satisfy the following Equation 18. 

                                 
duu yx  22

                                       (18) 
Where ∆d= (Dw−Dc)/2 is the clearance between BHA components and wellbore wall, Dw is the diameter of the 
wellbore and Dc is the outer diameter of BHA. If the above equation is not satisfied, the BHA will contact the 
wellbore wall, which will be as a precondition to calculate the drag and torque. 

2.9 Dynamic equation (Equation 19) after assembling all element matrixes 
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2.10 Numerical solution method (Wilson-θ) 

Wilson-θ method is used to get the response of Equation 19 
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3. Modeling of Torque and Drag 

3.1 Interaction of drill string/wellbore 

It’s important to model the interaction between the drillstring and wellbore. This is because it helps understand 
how to control or reduce the common vibrations: axial, lateral and torsional. Figure 6 shows a spatial state of a 
drill string in a wellbore. 

To determine which node of the drill string contacts the wall of the borehole Equation 18 is used. The velocity of 
the node after impact is 10% of before impact. The impact force Fimpact (Equation 23) can be expressed as 
(Kuang et al., 1999): 

                                   
VMKFimpact 

                                  (23) 
Where 

K: impacting coefficient 

M: element mass 

V: the velocity of the node when impacting 

3.2 Torque & drag modeling 

The normal force Fn is important in the calculation of torque and drag (as shown in Figure 7). Johancsik 
developed a model for calculating Fn (Equation 24). However, the finite element method/program can in 
addition calculate the contact force or normal force automatically. After the normal contact force is obtained, the 
axial drag and torque can be obtained (Equations 25 and 26) if axial and tangential friction coefficient is given. 
The following is an example for upward movement of the drill string (tripping out), 

                    
 2

1
22 )sin()sin(   WFFF ttn                      (24) 

                                 naf FF  
                                        (25) 

                                 
rFT ntf  

                                      (26) 
Where 

Ft-tension 

w-unit weight 

If the movement of the drill string is upward (as opposed to tripping in and drilling), the direction of the friction 
force is opposite. 

3.3 Back-calculation of friction coefficient 

If we know the hook load measured on the surface, and the friction coefficient or factor can be back-calculated. 
This involves using an optimal method to get an appropriate coefficient when the calculated hook load is close to 
the known hook load (for example, the field recorded hook load). 

4. Dynamic program 

A FEA program was developed for analyzing working behavior and calculating torque and drag based on above 
models using FORTRAN. 

4.1 Program structure and flowchart; 

The flow chart is shown in Figure 8. 

4.2 Input 

Input File 1(drill string structure) 

Length of drill pipe, Outside Diameter, Inside Diameter, Density, Young's Module, Poisson ratio, Number of 
Elements 

An example for the values in the file: 

2793.46,           0.14519,         0.12136,         7850,     2.06E11,        0.3,          56 

Input File 2(wellbore geometry) 
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MD, Inclination, Azimuth, Friction coefficient, Buoyancy coefficient 

An example for the values in the file: 

428.83, 0.010471976, 2.91644518, 0.35, 0.867515924 

Input File 3 (control parameters) 

60     (RPM) 

0.004 (Time step) 

1.4    (theta in Wilson-theta method) 

2000   (total steps to be simulated) 

30.    (mass of the drill bit) 

0.015   (clearance between borehole wall and outside wall of drill pipe) 

8.0E6 (Stiffness of the hook) 

4.3 Output 

The output includes the following parameters: torque, drag, hook load, contacting nodes, translation and rotation 
at any node. 

4.4 Sensitivity analysis of the FEA program 

Some input variables were selected for sensitivity analysis. They are: total length of drill string, friction 
coefficient, length of each element, outside diameter of drill string and the inclination angle of borehole. The 
output parameter is the calculated hook load. 

From the Figure 9, the outside diameter of the string is the most sensitive parameter, and the length of string is 
the second, which are obvious because the hook load is directly related to the geometry of the string, such as 
diameter, length, and unit weight. In fact, if we focus on those effects from non-geometrical parameters of drill 
string, such as inclination, element length, friction coefficient, and azimuth, the element length has the least 
effect in the three selected input parameters as shown in the Figure 9. 

5. Verifications 

5.1 Simple verification example 

This is a simple example of a rod that is hung and exposed to gravity (as shown in Figure 10). The rod is divided 
into 3 elements, so there are four nodes. The comparison between analytical model and FEA is shown in Table 1. 

5.2 Vertical well drilling example 

This is an example in which the drill string is in a vertical well as shown in Figure 11. The drill string is hanging 
from a hook, and rotates with a constant speed at the well head; the bottom of the string is applied with a reactive 
load (WOB). With the FEA program, the hook load and displacements including rotation at any node is obtained. 

The known parameters: 

n =60 RPM 

ω=2πn/60=6.28(rad/s) 

Total elements=200 

Length of the string=2000m 

Total weight of the string=659.73KN 

WOB=425KN 

The calculated parameters: 

Hook load=241.46KN 

Theoretical value=659.73-425=234.73 

The relative error= (241.46-234.73)/234.73 

                             =2.87% 

The error is accepTable ; therefore it is believed the FEA program can be used for vertical wells. 
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5.3 Horizontal well drilling example 

This is a more complex example (azimuth=0), which is typical for horizontal well drilling. The well profile is 
from an actual field case. The length of the drillstring is 3351m. 

5.4 Figure explanations and analysis of results 

Figure 12 shows the axial displacement of four nodal locations (hook, 700m, 1400m, and drill bit). It is obvious 
that with the increase in depth, the displacement decrease. But why is the displacement of the hook less than 
those at 700m and 1400m? This is because the stiffness coefficient is much larger than those at 700m and 1400m. 
Figure 13 shows the rotary speed at three different locations (700m, 1400m, and drill bit). The rotary speeds at 
different locations are different in the beginning, the speed of the drill bit response more slowly and the speed at 
the 700m location response the fastest. Figure 14 indicates that FEA has a closer solution under the normal 
condition, because it lies in the middle area of the field data region.  

6. Conclusions 

The validity of finite element model was verified by analyzing three examples of different complicity. The values 
of displacement from the FEA model match those from the analytical model. The calculation of hook load is 
accepTable in value. The values by the FEA model agree with those from the field collected data. 
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Table 1. Comparison of analytical solution with FEA 

Nodes Analytical results FEA 

U1 0 0 

U2 0.463835 0.453915 

U3 0.742136 0.726339 

U4 0.834903 0.817175 

 

 
Figure 1. A 3D beam element for the drill string 

 

 

Figure 2. The local and global coordinate systems 
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Figure 3. Equivalent nodal forces conversion 

 

 

 
Figure 4. Main boundaries on the drill string 

 

 

 
Figure 5. Constraint relations between drill string and wellbore 
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Figure 6. The interaction between drill string and wellbore 

 

 

 
Figure 7. The forces applied on an element of drill string 
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Figure 8. Flow chart of the FEA program 
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Figure 9. Sensitivity analysis of some input parameters 

 
 
 
 
 
 

 
 

 
Figure 10. FEA of a rod with one end fixed 
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Figure 11. FEA of vertical well drilling 

 
 

Displacements at different locations
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Figure 12. The axial displacement of four nodal locations  
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Rotary speed at different locations
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Figure 13. The rotary speed at three different locations 
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Figure 14. The calculated torque versus measured depth 


