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Abstract 

In order to reduce memory usage and improve efficiency, the unconditionally stable locally 1-D (LOD)-FDTD 
method for bodies of revolution (BOR) is extended to Debye dispersive media based on the bilinear Z transform 
(BZT) theory. The LOD-BOR-FDTD method is proposed. To validate the Higher efficiency and Lower memory 
usage of the proposed algorithm, two numerical examples are given. Compared with the 3-D FDTD and 
ADI-BOR-FDTD result, they show good agreement and at least 80% of computational time to the ADI 
counterparts. 

Keywords: Body of revolution (BOR), Locally 1-D finite difference time-domain method (LOD-FDTD), 
Rotationally symmetric geometry, Dispersive media 

1. Introduction 

THE dispersive property of bodies of revolution is important for the analysis of wide-band electromagnetic 
characteristics. The body-of-revolution finite-difference time-domain (BOR-FDTD) method (A. Taflove and S. 
C. Hagness, 2005)(D. B. Davidson and R. W. Ziolkowski, 1994)(Y. Chen, R. Mittra, and P. Harms, 1996) is an 
effective means for simulating electromagnetic wave propagation in circularly symmetric structures. 
Nevertheless, a time step size of the BOR-FDTD is limited by the Courant-Friedrich-Levy (CFL) condition in 
the conventional FDTD. As a result, the computational time will be increased significantly, when the use of finer 
space discretization or a large mode number is needed. To conquer the constraint, (H.-L. Chen, B. Chen, Y. Yi, 
and D.-G. Fang, 2007) presents alternating-direction-implicit(ADI)-BOR-FDTD method. Recently, the locally 
1-D (LOD) scheme has been introduced to BOR-FDTD(Jun Shibayama, Bungo Murakami, Junji Yamauchi, and 
Hisamatsu Nakano, 2009). The LOD method (J. Shibayama, M. Muraki, J. Yamauchi, and H. Nakano, 2005) 
provides a quite simple algorithm compared with the ADI algorithm. The LOD formulation is a simple type of 
split-step approach (W. Fu and E. L. Tan, 2004). Although it is first-order accurate in time (J. Shibayama, M. 
Muraki, R. Takahashi, J. Yamauchi, and H. Nakano, 2006), the numerical results is comparable to the ADI 
counterparts which has second-order accurate in time. Although the locally 1-D (LOD)-BOR-FDTD is 
developed, but no dispersive media was considered.  

On the other hand, the use of Z transforms (D. M. Sullivan, 1992) to the treatment of dispersive media in FDTD 
is an attractive alternative, since it has the advantage that the complicated convolution integrals can simply be 
reduced to algebraic equations, and the relationship between the flux density and the electric field can readily be 
translated into finite-difference equations. But we found the conventional Z transforms could bring higher error 
for Dispersive Media. So the bilinear Z transforms (BZT) is used to avoid error for the trapezoidal integration is 
more accurate than rectangular integration (D. M. Sullivan, 2000). This fact motivates us to apply the bilinear Z 
transforms to the LOD-BOR-FDTD for a concise frequency-dependent formulation. 

In this letter, we use the BZT method to build an extension of the LOD-BOR-FDTD to Debye dispersive media 
in order to reduce memory usage and improve efficiency. 

2. Formulation 

Bilinear Z Transforms 

For Debye dispersive medium having p  poles, the electric flux density D and the electric field E in the frequency 
domain are related as (A. Taflove and S. C. Hagness, 2005) 
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where
0 is the free-space permittivity, 

ps, is the static or zero frequency relative permittivity, 
p, is the relative 

permittivity at infinite frequency, 
p is the pole relaxation time, and

p
N  is the number of poles in susceptibility 

response. 
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Taking bilinear Z transforms of(1)by    11 z1z1j1   2 ,      t-1t-1 ez-1ez1j1   2 and 

    tzEzD r0  in which the normalised expression of field components (A. Taflove and S. C. Hagness, 2005) 

is used yields the following equation in the Z domain: 
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in which t and 
1z
 represent the time period and the delay of l time periods, respectively. We readily translate 

(2), (3) into the finite difference equations in the time domain as 
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Combined Debye media with LOD-BOR-FDTD 
We now solve (4),(5) combined with the following standard LOD-BOR-FDTD equations with the field 
normalization (Jun Shibayama, Bungo Murakami, Junji Yamauchi, and Hisamatsu Nakano, 2009). For simplicity, 
we will examine the case for mode number is 0: 
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for the first step and 
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for the second step.  
We now calculate the E and H from n time steps to n+1. 
1) Substituting (7c) into (6c)(6e) equations, we get 
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Substituting (4),(6e*) into (6c*), and implicitly solve the resultant tridiagonal equation, we get 1n
zE . And then 
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explicitly solve (6e*), (4) and (5), getting 1n
zD , 21nH

, 1n
zS  . 

2) Substituting (7d) into (6b) (6d) equations, we get 
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Substituting (6b*) into (6d*), we get 1nH 
. And then explicitly solve (6b*), getting 21nE

. 

3) Substituting (6a) into (7a)(7e) equations, we get 
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Substituting (4), (7e*) into (7a*), we get 1nE
. And then explicitly solve (7e*), (4) and (5), 

getting 1nD
, 1nH

, 1nS 


. 

4) Substituting (6f) into (7f) (7b) equations, we get 
   






















 










2111 1

2

nnn
z

n
z

EE

t

HH                                                      (7f*) 


















 




n
z

n
z

nn
HH

t

EE 1211
1

2
                                                           (7b*) 

Substituting (7b*) into (7f*) equations, we get 1n
zH , 1nE

. Then, the E and H  are updated from n to n+1. 

3. Numerical Results 

To verify the proposed algorithm and accuracy, two numerical examples we analysed are shown. In all cases, the 
 -polarized plane wave is introduced by defining a set of equivalent currents on a closed Huygen’s surface (D. E. 
Merewether, R. Fisher, and F. W. Smith, 1980). The Computational domains are truncated by PML cells which 
have n=8 layers (Jun Shibayama, Bungo Murakami, Junji Yamauchi, and Hisamatsu Nakano, 2009). 

As a first example (H.-L. Chen, B. Chen, Y. Yi, D.-G. Fang and Heng Liu, 2009), a typical first order Debye 
material is water with the parameters 80s  , 275. , 111001  . . Here, the scattering from a water 

sphere with radius of 420 m  is calculated. The grid size is m10z   and mode number ranges from 0 to 6. 

Fig.1(a) shows the back scattered radar cross section (RCS) for different CFLN values, which is defined 
as

FDTDttCFLN  , where 
FDTDt is the maximum FDTD time step. For the purpose of comparison, the result 

obtained from three-dimensional (3-D) FDTD method with grid size m10zyx   is also given. Fig. 1(b) 

shows the errors of the LOD versus ADI method. Compared with the theoretical value, they show good 
agreement. The errors in time domain are also tabulated, which are evaluated using the following expression: 

  ref
far

ref
farfar EEE100Error %                                                            (8) 

where ref
farE  is the far field in time domain calculated using 3-D FDTD,   represents the Euclid norm 

operation. 
The second example, we calculate the back scattered RCS of a cold plasma cylinder with height of 6cm and 
radius of 3cm illuminated by perpendicularly incident plane wave. The complex relative permittivity of the 
plasma medium is defined as 

 2
c

2
pr Vj1                                                                        (9) 

where
p is the radian plasma frequency and

cV is the collision 

frequency. It has been shown that (K. S. Kunz and R. J. Luebbers, 1993), with the 
transformation   0dr jx1  , the plasma medium behaves like a Debye medium with a conductivity, and 

a negative susceptibility  c
2

c
2
pd Vj1Vx   . The grid size is 5mm0z .   and mode number ranges 

from 0 to 9. The plasma considered has a plasma frequency 
p of srad1004 10.  and a collision 

frequency
cV of 20 GHz. Again, we compare the results of the proposed method with that of the conventional 3-D 

FDTD method with grid size 5mm0zyx .  . As shown in Fig. 2(a), good agreements are achieved even 



www.ccsenet.org/mas                     Modern Applied Science                     Vol. 5, No. 4; August 2011 

Published by Canadian Center of Science and Education 121

if the time step of the ADI-BOR-FDTD is four times that used in the conventional FDTD method. Fig. 2(b) 
shows the errors of the LOD versus ADI method. Good agreement is expressed. 
4. Conclusion 

In this letter, the LOD-BOR-FDTD method has been extended to solve electromagnetic problems in Debye 
dispersive media using the bilinear Z transforms. The LOD-BOR-FDTD combine with the BZT offers quite 
simple algorithm with a subsequent reduction in the computational time, maintaining numerical results identical 
to the ADI counterparts. Numerical results indicate that the presented method is valid and efficient. Compared 
with the 3-D FDTD and ADI-BOR-FDTD results, they show good agreement and at least 45% and 80% of 
running time, respectively. For open region problems, efficient absorbing boundary conditions such as perfectly 
matched layers (I. Ahmed, E. Li, K. Krohne, 2007)(V. E. do Nascimento, B. H. V. Borges, and F. L. Teixeira, 
2006) for LOD-BOR-FDTD are required. The proposed method has reduced memory usage and improved 
efficiency. 
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(a) 

 
(b) 

Figure 1. Backscattering from the water sphere is showed in(a) and errors of the LOD versus ADI method is 
showed in(b). 

 
(a) 

 
(b) 

Figure 2. Back scattered RCS of the plasma cylinder is showed in(a) and errors of the LOD versus ADI method 

is showed in(b). 


