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Abstract 

The performance of traditional Hotelling T2 control chart using classical estimators in Phase I suffers from 
masking and swamping effects. To alleviate the problem, robust location and scale estimators are recommended. 
This paper proposed a robust Hotelling T2 control chart for individual observations based on minimum vector 
variance (MVV) estimators as an alternative to the traditional multivariate T2 control chart for Phase II data. 
MVV is a new robust estimator which possesses the good properties as in minimum covariance determinant 
(MCD) with better computational efficiency. Through simulation study, we evaluate the performance of the 
proposed chart in terms of probability of detection and false alarm rates, then compared with the performance of 
the traditional charts and the chart issued from MCD estimators. The results showed that MVV control chart has 
competitive performance relative to MCD and traditional control charts even under certain location parameter 
shifts in Phase I data. 

Keywords: Hotelling’s T2 chart, Minimum covariance determinant (MCD) estimator, Minimum vector variance 
(MVV) estimator, Reweighted MCD 

1. Introduction 

In many industrial settings it is frequently required to monitor more than one interrelated variables. The 
Hotelling’s T2 control chart is one of the multivariate statistical tools which is widely used to detect the presence 
of special-causes of variation by monitoring a nominal mean vector  . This chart is popular as it possesses 
almost all the desirable characteristics for a multivariate control chart such as ease of application, flexibility, 
sensitivity to small process changes, and the availability of software for application (Mason & Young, 2002). 
Like any other control charts for monitoring the variability in a process, its construction consists of Phase I and 
Phase II (Alt, 1985) which are also referred to as retrospective and prospective analysis respectively (Woodall & 
Montgomery, 1999). Phase I focuses on analyzing historical data to determine whether the process is in control 
by estimating the in-control parameters of the process and the control limits. While in Phase II, the centre of 
attention is on monitoring on-line data to quickly detect shifts in the process from the in-control parameter values 
estimated in Phase I. Unusual observations in Phase I can lead to the inflation of control limits and reduction of 
power to detect process changes in Phase II. Therefore a successful Phase II analysis depends on a successful 
Phase I analysis in estimating in-control mean, variance, and covariance parameters. 

The preliminary data set collected in retrospective analysis involves either initial subgroups or individual 
observations. In many situations, data are collected according to the rational subgroups concept. Nevertheless, 
sometimes data come in the form of individual observations especially when the production rate is too slow to 
conveniently collect subgroup size greater than one. For individual multivariate observations, the parameter 
estimates for the mean vector and covariance matrix in Phase 1 are based on pooling all the observations 
(Jackson, 1985; Tracy et al., 1992; Wierda, 1994; Lowry & Montgomery,1995). However, this approach will 
cause the variance estimates to inflate if the special-cause of variation present in Phase I, as demonstrated by 
Sullivan and Woodall (1996;1998), Vargas (2003) and Williams (2004). To overcome the problem, alternative 
estimation methods have been proposed in the literature. One of the approaches is to calculate the T2 statistic 
based on successive differences variance-covariance matrix estimator (Holmes & Mergen, 1993; Sullivan & 
Woodall,1996;1998; and Williams et al., 2006). Though this approach is effective in detecting shifts in the mean 
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vector, it fails to detect outliers as shown in Vargas (2003). Another approach is to use robust estimators of the 
process parameters.  

A notable use of robust estimator is in identifying the deviation of data, or outliers. Compared to the classical 
statistics, the use of robust statistics will give a clearer variability description between an outlier and ‘good data’, 
whereas the classical statistics will vaguely show the difference (Hampel et al.,1986). There are two approaches 
to deal with outliers. The first approach is to identify and remove outliers before using the remaining good data 
points to calculate the classical estimators. The other approach is to use the robust estimators in place of classical 
estimators (Beckman & Cook, 1983). A wide range of robust estimators of multivariate location and scatter is 
available, see Maronna and Zamar (2002) and Maronna et al. (2006) for a review. Nonetheless, the minimum 
volume ellipsoid (MVE) and minimum covariance determinant (MCD) estimators introduced by Rousseeuw 
(1985) have received a considerable attention by scientific community and widely used in practice. The 
advantage of using MVE estimators is that, they have high breakdown point of approximately 50% and also 
affine equivariant (Lopuhaa & Rousseeuw, 1991. pg 236). However the computation of MVE estimator is very 
expensive and it may not even be computationally feasible (Hadi, 1992. pg 762). In addition, there is no fast 
algorithm known to compute the estimator. This is due to the fact that MVE has poor rate of convergence 
(Lopuhaa & Rousseeuw, 1991. pg 237) and fails to cope with large sample of more than 30 (Rousseeuw & van 
Driessen, 1999. pg 213). To alleviate the complexity of MVE, Rousseeuw (1985) also introduced the minimum 
covariance determinant (MCD) method. MVE and MCD estimators have the same characteristics with respect to 
affine equivariance, high breakdown value and bounded influence function properties (Rousseeuw & Leroy, 
1987). The only difference is in the criteria used where MVE minimizes the volume of the ellipsoid on 

( 1) / 2h n p    data, while MCD minimizes the determinant of the covariance matrix based on the h  data. 

The MCD estimator is more attractive than MVE because it has a better convergence rate of 1/2n  compared to 
1/3n  of MVE (Butler et al.,1993; Croux & Haesbroeck, 1999) and MCD gives the exact solution (Hadi, 1992; 

Hubert et al., 2005).  
Lopuhaa and Rousseeuw (1991) realized that the efficiency of high breakdown methods can be quite low, and 
proposed reweighted MCD (RMCD) estimator to alleviate the problem. Croux and Haesbroeck (1999) employed 
the reweighted version and noticed that this approach maintains the breakdown point of the initial MCD 
estimators, while attaining a better efficiency. To compute the initial MCD estimator and its reweighted, various 
algorithms have been suggested. Most of the algorithms attempt to increase the computational efficiency because 
to obtain approximate values of these estimators is not only expensive, but could be impossible for large sample 
sizes with large number of quality characteristics (dimensions). Nevertheless, the main contribution in this 
domain is the Fast MCD algorithm proposed by Rousseeuw and van Driessen (1999) and improved by Hubert et 
al. , (2005) which is available in many computer packages such as Matlab, R, SAS, and S-Plus. However, Fast 
MCD is not without limitation. For example, the use of minimum covariance determinant as the objective 
function in data concentration process can be computationally laborious especially when the data set is of high 
dimension. On the other hand, as Angiulli and Pizzuti (2005) have pointed out, the computational efficiency is as 
important as effectiveness. Furthermore, as noted by Fauconnier and Haesbroeck (2009), Fast MCD algorithm 
may return different results when used repeatedly in the same or in different statistical packages and could be 
more critical when n/p are small. To overcome the weaknesses of Fast MCD algorithm, Herwindiati (2006) 

proposed minimum vector variance (MVV) as an alternative measure of multivariate data concentration. 
Herwindiati et al. (2007) revealed that MVV was successfully used as an objective function in Fast MCD 
algorithm to substitute the MCD criterion. The findings showed that MVV is computationally more efficient than 
Fast MCD and as effective as Fast MCD in labelling outliers. Therefore MVV is one of the methods where the 
algorithm itself is referred to as the estimator as discussed in Werner (2003). A detail explanation about this 
method can be referred in Section 2. 
The study on the significant role of MVE, MCD and RMCD estimators in scientific application can be easily 
found in the literature specifically in the construction of robust Hotelling T2 chart. Vargas (2003) and Jensen et al. 
(2007) introduced robust control charts based on MVE and MCD estimators for multivariate individual 
observations. They identified and removed the outliers in Phase I analysis and then calculate the classical 
estimators using the remaining good data points for Phase II analysis. Through this approach, the computability 
and breakdown point of the estimators become more important, but statistical efficiency is not as crucial because 
the highly robust estimators will eventually be replaced by classical estimators in Phase II analysis (Jensen et al., 
2007). They noticed some drawbacks when MVE and MCD are used in Phase I. The T2 issued from MVE did 
not perform under large sample size. Conversely, T2 issued from MCD needs a larger sample size if large number 
of outliers is suspected to ensure that MCD estimator does not breakdown and lose its ability especially when 
monitoring with more variables (p). 

To abate the problems, Chenouri et al. (2009) proposed robust Hotelling T2 chart based on RMCD estimator. 
Besides possessing the nice properties of MCD estimator, this estimator is not unduly influenced by outliers and 
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is more efficient than MCD. However, their approach is different from Vargas (2003) and Jensen et al. (2007) 
whereby they used RMCD estimators in place of classical estimators in constructing Hotelling T2 chart for Phase 
II data. Using the same approach as Chenouri et al. (2009), Alfaro & Ortega (2009) make comparison study for 
the performance of Hotelling T2 control chart based on robust estimators of MCD, MVE, RMCD, and trimmed 
estimator. They concluded their work by recommending the use of T2 based on trimmed estimator and RMCD 
when there are few outliers in the production process because of their ability in controlling false alarm rates. 
However, in the manufacturing of products which emphasizes more on outliers detection than the false alarms 
generated, the T2 based on MCD can be considered as better alternatives. This is due to the fact that the Hotelling 
T2 control charts based on MCD performed well in terms of probability of outliers detection. Theoretically, if the 
percentage of outliers’ detection increases, the chart should also able to control the overall false alarm rate, α 
(Jensen et al., 2007). However the finding in Alfaro and Ortega (2009) shows a conflict between the percentage 
of outliers detection and the ability of robust control chart in controlling the overall false alarm rate when using 
robust charts under certain conditions.  

In this study, we proposed a robust Hotelling T2 control chart using a new robust estimator known as minimum 
vector variance (MVV). The ability of MVV estimator when used in Hotelling T2 control chart for Phase I has 
never been tested before. Djauhari et al. (2008) had suggested to use MVV estimator in Hotelling’s statistic as a 
new criterion because MVV estimators have the same breakdown point as MCD estimators and also posses 
affine equivariant properties. Therefore we are inspired to greater efforts by their suggestion. This study 
integrates the MVV estimators in the Hotelling T2 control chart for Phase II data using the same approach as 
Chenouri et al. (2009) and Alfaro and Ortega (2009) for monitoring the multivariate observations. Even though 
RMCD was observed to be better than MCD in controlling the false alarm rate, in this study, comparisons are 
made based on the initial MCD since the algorithm for the proposed method follows the algorithm of the initial 
MCD. We want to compare the algorithm in its original state and diagnosing problems that might arise using the 
proposed method (MVV) in constructing Hotelling T2 control chart. If there is a need to improve the method, this 
will be continued in the next study. The performance of our proposed control chart was evaluated in the case 
where there are no changes in the covariance structure. Performance evaluation measured the effectiveness in 
terms of the probability of outlier(s) detection and false alarm rate (type I error) on Phase II data. It is worthwhile 
to investigate on the performance using both of them because these measures are closely related (Ramaker et al., 
2004). When the data comes from an in-control process the false alarm rate should be close to a nominal value, α. 
In this study, α is set to be equals to 0.05. When data comes from an out-of-control process then the probability 
of detection should be large to ensure that the chart is able to monitor on-line data and quickly detect shifts in the 
process of Phase II. 

Organization of the remaining part of the paper is as follows. Section 2 discusses about formal definition and the 
properties of the MVV estimator. In Section 3, we formally introduce a robust control chart based on the MVV 
estimators. We also demonstrate the Monte Carlo method to estimate the distribution of Hotelling T2 statistic 
needed for the computation of control limit and discuss how the performance evaluation is done. The results of 
the analysis are presented in Section 4. Finally, discussion and conclusion are given in the last section. 

2. Minimum Vector Variance (MVV) Estimator 

MVV and MCD estimators have the same characteristics with respect to breakdown point, affine equivariant 
properties, and that their algorithms also display the same structures. For details see, Herwindiati (2006), 
Herwindiati et al. (2007) and Djauhari et al. (2008). The only difference between the two is the way in which the 
concentration step is generated; MCD uses covariance determinant (CD), while MVV uses vector variance (VV).  

By definition, vector variance (VV) is the sum of square of all elements on the diagonal of covariance matrix. If 
X is a random vector of p dimension with  as its covariance matrix, then VV of X is 2( )rT  . Its value 

indicates the degree of how multivariate distribution is scattered. The larger the value of VV the more scattered 
the distribution around its mean vector in a subspace of dimension q p . It is equal to zero if and only if the 

distribution degenerates at the mean vector. The use of VV instead of CD as multivariate data concentration 
measures have several advantages (Djauhari, 2007). First, its computation is very efficient even for covariance 
matrix of large size because VV is a quadratic form while CD is a multilinear form. Thus, the number of 
operations of VV is smaller than CD since VV is of order O(p2) and CD is of order O(p3). Second, vector 
variance does not depend on non-singularity of the covariance matrix like covariance determinant. The 
singularity problem usually arises when the number of variable p is larger than number of sample size n. Another 
advantage of VV was illustrated by Djauhari (2007) via comparing the power of vector variance-based test with 
covariance determinant-based test. In general, both tests have similar performance when p is small such as 2p  . 

However, the power of VV is greater than CD to larger shift of covariance structure when p and n are large. 
The main statistical method used in the estimation of MVV is Mahalanobis squared distances (MSD) which is 
defined as  
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2 ( ) ,t
i id x    1, 2,.....i n . 

Consider a data set  1 2, ,...,X X X Xn
  

 of p-variate observations and let H X . The optimal number of the 

data involved in the computation of MVV estimator (i.e.  
MUVM  and 

MUVS  is ( 1) / 2h n p    data points 

which generate a covariance matrix,  
MUVS  having minimum 2( )r MUVT S  among all possible sets of h data. The 

location and scatter estimators are given by Equation (1) and (2) respectively as follows, 
1

iMUV i HM X
h  


                                        (1) 

1
( )( )

1
t

i iMUV i H MUV MUVS X M X M
h   
 

 
                              (2) 

To compute the MVV estimators, we propose the new MVV algorithm by combining the C-step from 
Herwindiati et al. (2007). The C-step is similar to the one in the Fast MCD algorithm, except that the 
computation of covariance determinant is replaced by the vector variance. The complete algorithm is described 
as below: 
Stage 1: Creating Initial Subsets.  
This step must be repeated 500 times 

 
Stage 2: Concentration Steps (C-step)  

 
3. Proposed Hotelling T2 Control Chart  

Suppose that  1 2, ,...,i nx x x x  is the p-variate random sample of n  observations of preliminary data set 

in Phase I. Assume that  are independent and follow a multivariate normal distribution with mean vector   

and covariance matrix  . If   and   are unknown then we need to estimate them using an in-control 

data set. The process of identifying the in-control data set from ix  is referred to as Phase I operation.  
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However, this standard approach is only effective in eliminating very extreme outliers and detecting large shift in 
the mean vector in small sample sizes, but it fails to detect more moderate outliers especially when number of 
variables increased (Vargas, 2003; Jensen et al., 2007; Chenouri et al., 2009). To alleviate the problem of this 
procedure, we proposed using MVV estimator in Phase I data, xi. Since the estimator is known to be free from 
outliers due to its estimation process, they could be readily used as in-control estimators in Phase II. Let 

 1 2, ,...g n nx x x   where g ix x  and 
MUVM  and 

MUVS represent the MVV mean vector and covariance 

matrix estimators, respectively. We define a robust Hotelling’s 2T  for Phase II data,  gx  based on these MVV 

estimates by  

                                 (7) 
3.1 Estimation of control limits for the proposed Hotelling T2 control chart 
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3.2 Performance evaluation. 
In order to assess the performance of 2

( )MUV gT  control charts, various conditions were created by manipulating 

number of observations (n), number of dimensions (p), and level of contamination by using different proportion 
of outliers (ε) and several mean shifts values (

1 ). The performance of the robust Hotelling T2 charts is judged 

based on the false alarm rate and probability of detection in the process behavior from Phase II data. Thus, for 
Phase II observations, we simulate 1000 new datasets of different sample sizes (n) and dimensions (p) in Table 1. 
To determine the false alarm rate and probability of detection, we randomly generate a Phase II observation with 
in-control and out of control parameters respectively from Phase 1, and calculate the proposed robust Hotelling 
T2 statistics. The false alarm rate or probability of detection is estimated as the proportion of statistic values that 
are above the control limits of 1000 replications. 
For Phase I, we simulate data of various conditions created by manipulating the number of observations, 
dimensions and levels of contamination. To examine the effect of contamination on the charts’ performance, we 
have considered a contaminated model by using a mixture of normal suggested by Alfaro & Ortega (2009)  

 
0 0 1 1(1 ) ( , ) ( , )p pN N                                      (9)  

where ε is the proportion of outliers, 
0  and 

0  are the in-control parameters while 
1  and 

1  are the 

out-of-control parameters. In this study we assume contamination with shift in the mean but no changes in 
covariance structure, therefore, the covariance matrix 

0  and 
1  in Equation (9) represent the identity 

matrix of p dimensions (Ip). To check on these conditions, we consider ε to be 0, 0.1 or 0.2. While for the 
probability of detecting a change which depends on the shift in the mean vector, we set 

1  to be a vector of size 

 with value of 0 (when there is no change), 3 or 5 (which is a good leverage point). Manipulation on the mean 
shifts and percentage of outliers generate 5 different types of contaminated distributions as listed below which 
were categorized as ideal, mildly contaminated, moderately contaminated and extremely contaminated as 
follows, 

 
Each of these model was paired with different combinations of sample sizes, n, and number of dimensions, p 
(refer to Table 1) to create various conditions which are capable of highlighting the strengths and weaknesses of 
the charts. Next, in Phase II, we simulate data from multivariate normal distribution 

1( , )p pMCN I , where 
1  

is the shift in the mean vector with values similarly assigned to Phase I (i.e. 0, 3, and 5). The performance of the 
proposed chart is then compared with robust Hotelling T2 chart using MCD ( 2

MCDT ) and the traditional Hotelling 

T2 control charts. For the traditional chart we employed two approaches; first approach denoted as 2
0T  is 

without cleaning the outliers as being adopted by Alfaro and Ortega (2009) and the second approach, which is 
known as the standard approach, cleans the outliers once ( 2

ST ). Each of these charts was tested on 5 types of 

contaminations on 23 combinations of n and p which totalled up to 115 conditions. For each condition, the false 
alarm rates and probability of detection were determined. The programs and simulations were run using 
MATLAB 7.8.0 (R2009a). The algorithm of MVV was executed using the MATLAB 7.8.0 (R2009a), while Fast 
MCD algorithm using mcdcov.m in the LIBRA package under MATLAB 7.8.0 (R2009a).  
4. Simulation Results 
In this section, we compared the performance of 2

MVVT , 2
MCDT , 2

0T  and 2
ST control chart in terms of probability 

of detection and false alarm rate. The results of the investigation are presented in figures and tables for the 
probability of detection and false alarm rates respectively.  
4.1 Probability of detection of outliers 
The graphs illustrating the performance of the four charts in terms of probability of detection are exhibited in 
Figure 1-5. Each figure represents different dimension (p). For each condition, the performance of the control 
chart is regarded as better in detecting changes when the value of the probability is closer to 1. Under bivariate 
case (p = 2) as presented in Figure 1, initially 2

ST  showed better detection than other charts at mild and 

moderate contamination. However, the good performance of 2
ST only sustain at n = 10, 25. Once the value of n 

and p increased, which can be clearly observed in Figure 2-5, the line representing 2
MVVT  consistently at the 
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highest location in the graphs with the probability value of approximately 1, and overlapping with 2
MCDT  line 

under most of the conditions. There are instances when the 2
MCDT  line started with lower values creating gaps 

between the two lines but merged later on when the n values increased. This situation occurs when the sample 
size is small with 20% outliers and mean shift 3.  
Overall, the 2

MVVT  and 2
MCDT control charts consistently achieved high probability in detecting outliers. One can 

observe that, the lines representing 2
0T  and 2

ST  charts are always at the lowest and second lowest respectively, 

creating a very wide gap between the other two lines ( 2
MVVT  and 2

MCDT ). This pattern repeats even within the 

same dimension for p > 5. Result on the 2
ST  chart reveals that the chart performs so well when the number of 

outliers is small (small p and low percentage of contamination), but underperforms when the number of outliers 
gets larger (large p and high percentage of contamination). This weakness can be mitigated by the use of robust 
Hotelling T2 chart.  
4.2 False alarm rates 
The performance of a chart is not purely judged by its ability in detecting outliers, but also in controlling the 
false alarm rate. False alarm rate is the probability of out-of-control signal when a process is in control. The 
value becomes large if the process is unstable due to increase in variability. Inflated false alarm rate can lead to 
unnecessary process adjustments and loss of confidence in the control chart as a monitoring tool (Chang & Bai, 
2004). Hence, a method which can control the false alarm rate to the desired level is necessary. 
Table 2-6 which recorded the false alarm rates for each condition are arranged based on the ascending number of 
dimensions (variables) namely 2,5,10,15p   and 20 with α = 0.05. The first column in each table displays the 

number of sample sizes, followed by the percentage of outliers and non centrality values respectively in the 
second and third column. The last four columns record the false alarm rates of the control charts investigated in 
this study; namely 2

0T  2
ST , 2

MCDT  and 2
MVVT . The control chart is considered to be in control of its false alarm if 

the empirical value is close to the nominal value, α.  
For the bivariate (p = 2) case presented in Table 2, the overall results on false alarm rates show that 2

MVVT  

outperforms the other control charts in especially when the sample size is very small (n = 10). Even though the 

results for and  under most conditions are well controlled, however under ideal condition (no contamination) 
the chart failed to control the false alarm, causing the rate to inflate to 0.1000. The 2

MCDT  and 2
0T  control charts 

are badly affected when the sample size is very small, which are verified by the rates of false alarm which are far 
below the nominal value except for ideal condition. When the percentage of outliers increased to 20% we 
observed that the rates for 2

MVVT , 2
MCDT and 2

0T  charts dwindle as the sample size increased, but the 2
ST chart is 

still in control of its false alarm. The performance of the robust 2
MVVT  chart is much better than the 2

MCDT . The 
2

MVVT  chart performs so well in controlling false alarm rates except when the percentage of outliers is large. 

When the dimension increased to p = 5, the rates of false alarm for both traditional charts ( 2
0T  and 2

ST ) 

improved. Refer to Table 3. Nevertheless, the rates for  chart under ideal condition are still high (very far 
above the nominal value). We also notice improvements in the robust 2

MVVT  charts especially when the 

percentage of outliers is large. In contrast, the false alarm rates for 2
MCDT  chart worsen with values as small as 

0.0020.  
Table 4 displays the false alarm rates for the case of p = 10. While there are noticeable improvements in most of 
the conditions for 2

0T , 2
MVVT  and 2

MCDT  charts, most of the rates for 2
ST  seem to be deviating away from the 

nominal value. Even under the influence of extreme contamination, the rates of 2
MVVT  chart are no less than 

0.022 value. However, the rates for 2
MCDT chart are still far below the nominal level despite the improvement. 

Under the case of p = 15, as can be clearly observed in Table 5, all the charts show better results than the 
previous case. Great improvement could be detected in 2

ST  chart under ideal condition and 2
MVVT  under 

extreme contamination, but 2
MCDT  chart is still unable to control its false alarm rates under the latter condition. 

As we scrutinized the false alarm rates for p = 20 in Table 6, we discover sporadic improvements under different 
conditions. There is no obvious improvement pattern could be observed. However, we can clearly observe that 

2
MCDT  chart performs badly in controlling false alarm rate in all conditions. 

4.3 Real Data Analysis 
To illustrate the Hotelling T2, a company which involved in the production of advanced for the aircraft industry 
has provided us with data on spoilers. Spoilers are vital devices in an airplane. Their function is to increase lifts 
when the airplane is flying. The products are used in civilian, defence, and space applications, which cannot 
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compromise any mistakes, albeit a minor one. Thus, careful monitoring is required to ensure that no variation 
occur in the process. Any slight mistake could jeopardize a human life. 
For the purpose of this study, a sample of 47 products (n = 47) which consists of several features such as trim 
edge (X1), trim edge spar (X2), and drill hole (X3) was furnished to us by the company. Out of the total, 21 
products were collected from 2009, while the rest were from 2010. Hence, we decided to use the 2009 products 
as Phase I historical data, and considered the products from 2010 as future data in this study. The details of the 
historical and future data are displayed in Table 7 and 9 respectively. The products consist of 3 quality variables 
(dimensions) namely trim edge, trim edge spar, and drill hole. Estimates for the location vector (( X ) and scatter 
matrix (S) are presented in Table 8. The calculation of the upper control limits (UCLs) based on the estimates are 

presented in the last column of the table. The values of the T2 based on the above estimators appear in 
the last four columns of Table 9. The graphical presentation of the corresponding control charts are put on view 
in Figure 6.  

When comparing the values of the T2  in Table 9 with the corresponding control limits in Table 8, we 

observe that the three statistics 
2

MVVT , 
2

MCDT and 
2

ST  signal observations 20, 22 and 25 as out-of-control but 

only signals 20 and 25 as out-of-control observations and fails to signal observation 22. The result for 
2

0T is 

as expected since the analysis on the probability of detection using simulated data showed that 
2

0T  was not as 
effective as the other charts in detecting outliers. Chart (a), (b), (c) and (d) in Figure 6 represent the control chart 

for 
2

0T , 
2

ST , 
2

MCDT  and 
2

MVVT  respectively. Even though the performance of 
2

ST  chart in this example is on par 

with the proposed 
2

MVVT  chart and also 
2

MCDT  chart, but the outcome could be due to the small number of 

quality characteristics (dimension) of the product. As revealed in the simulation study,  
2

ST  performed well in 
detecting outliers under low dimension (not more than 5) only, but underperformed when the dimension 
increased to above 5.  
5. Conclusion  

Hotelling T2 chart is well accepted as a reliable method to monitor production; however, under conditions of non 
normality, this chart is known to be underperformed. Alternative on the Hotelling T2 statistic particularly on the 
location and scatter measures are recommended in order to produce a reliable chart regardless of the conditions. 
This study proposed an alternative to the the Hotelling T2 chart by using a robust estimator known as minimum 
variance vector (MVV) for its location and scatter measures. MVV not only has all the properties of the well 
known minimum covariance determinant (MCD) such as high breakdown point and affine equivariant, but also 
has better computational efficiency. The performance of our proposed robust Hotelling T2 chart using MVV in 
terms of false alarm rate and probability of detection were compared with the robust Hotelling T2 chart using 

MCD ( 2
MCDT ) and the traditional Hotelling T2 charts (

2
0T  and 

2
ST ). 

Investigation on the 
2

0T  and 2
MCDT  by Alfaro and Ortega (2009) showed a conflicting result between the 

percentage of outliers detection and the overall false alarm rate such that when the probability of detection 
increased, the false alarm rates inflate away from the nominal value. However, our proposed chart, 2

MVVT  

perform so well in terms of detecting outliers and also in controlling false alarm rates. Even though the 

traditional Hotelling 
2

ST  chart performs so well in terms of controlling false alarm rates, but this chart fails to 
achieve good probability of detection especially when the number of quality characteristics is large. On contrary, 
the Hotelling 2

MCDT  chart performs wonderfully in detecting outliers, however the chart fails terribly in 

controlling false alarm rates. With its good performance in terms of detecting outliers and controlling false alarm 
rates, plus the good properties of its statistics, Hotelling 2

MVVT  chart is indeed a good alternative to the 

multivariate control chart. 
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Table 1. The values of n and p 

p n 
2 10, 25, 50,100, 200, 500
5 30, 50, 100, 200, 500 
10 50, 100, 200, 500 
15 80, 100, 200, 500 
20 100, 200, 300, 500 

 
Table 2. False alarm rates of the corresponding control charts with dimension, p = 2  

Sample Size 
(n) 

% outliers 
(ε) 

Mean shift 
(µ1) 

Control Charts 

 
10 0 0 0.0530 0.1000 0.0520 0.0520
 10% 3 0.0170 0.0650 0.0290 0.0450
  5 0.0160 0.0630 0.0250 0.0450
 20% 3 0.0180 0.0540 0.0210 0.0330
  5 0.0180 0.0480 0.0110 0.0330

25 0 0 0.0590 0.0980 0.0480 0.0530
 10% 3 0.0290 0.0600 0.0280 0.0390
  5 0.0230 0.0670 0.0290 0.0390

 20% 3 0.0280 0.0470 0.0090 0.0190
  5 0.0240 0.0390 0.0050 0.0190

50 0 0 0.0560 0.0920 0.0580     0.0540
 10% 3 0.0200 0.0480 0.0230 0.0350
  5 0.0160 0.0490 0.0230     0.0340
 20% 3 0.0210 0.0370 0.0080 0.0180
  5 0.0160 0.0340 0.0060 0.0170

100 0 0 0.0550 0.0930 0.0460 0.0490
 10% 3 0.0210 0.0470 0.0200 0.0300
  5 0.0160 0.0490 0.0200 0.0290
 20% 3 0.0210 0.0350 0.0050     0.0150
  5 0.0160 0.0350 0.0040 0.0150

200 0 0 0.0580 0.0950 0.0600 0.0690
 10% 3 0.0210 0.0510 0.0310 0.0490
  5 0.0180 0.0470 0.0310     0.0500
 20% 3 0.0200 0.0410 0.0050     0.0280
  5 0.0180 0.0360 0.0020 0.0280

500 0 0 0.0500 0.0880 0.0520 0.0630
 10% 3 0.0190 0.0480 0.0270 0.0490
  5 0.0160 0.0390 0.0260 0.0480
 20% 3 0.0170 0.0370 0.0040 0.0230
  5 0.0160 0.0350 0.0040 0.0230
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Table 3. False alarm rates for independent case with dimension, p = 5  

Sample 
Size 
(n) 

% 
outliers 

(ε) 

Mean shift 
(µ1) 

Control Charts 

    

30 0 0 0.0460 0.0790 0.0430 0.0500 
 10% 3 0.0280 0.0510 0.0100 0.0300 
  5 0.0260 0.0530 0.0100 0.0330 
 20% 3 0.0300 0.0620 0.0050 0.0210 
  5 0.0320 0.0620 0.0000 0.0200 

50 0 0 0.0530 0.0790 0.0650 0.0490 
 10% 3 0.0270 0.0480 0.0130 0.0350 
  5 0.0260 0.0460 0.0130 0.0370 
 20% 3 0.0260 0.0560 0.0040 0.0220 
  5 0.0250 0.0520 0.0020 0.0230 

100 0 0 0.0540 0.0740 0.0320 0.0380 
 10% 3 0.0290 0.0510 0.0140 0.0300 
  5 0.0280 0.0420 0.0140 0.0320 
 20% 3 0.0300 0.0520 0.0020 0.0170 
  5 0.0290 0.0490 0.0020 0.0190 

200 0 0 0.0430 0.0740 0.0410 0.0390 
 10% 3 0.0250 0.0450 0.0200 0.0350 
  5 0.0240 0.0420 0.0200 0.0350 
 20% 3 0.0270 0.0460 0.0010 0.0220 
  5 0.0270 0.0440 0.0010 0.0220 

500 0 0 0.0390 0.0620 0.0420     0.0430 
 10% 3 0.0200 0.0410 0.0160 0.0360 
  5 0.0190 0.0350 0.0170 0.0370 
 20% 3 0.0210 0.0430 0.0030 0.0190 
  5 0.0200 0.0420 0.0030 0.0190 

 

Table 4. False alarm rates for dimension, p = 10  

Sample 
Size 
(n) 

% 
outliers 

(ε) 

Mean shift 
(µ1) 

Control Charts 

    

50 0 0 0.0570 0.0920 0.0530 0.0520 
 10% 3 0.0410 0.0690 0.0210 0.0370 
  5 0.0380 0.0670 0.0210 0.0380 
 20% 3 0.0420 0.0720 0.0080 0.0250 
  5 0.0410 0.0720 0.0020 0.0220 

100 0 0 0.0550 0.0780 0.0420 0.0450 
 10% 3 0.0330 0.0570 0.0190 0.0390 
  5 0.0340 0.0550 0.0200 0.0350 
 20% 3 0.0350 0.0560 0.0030 0.0240 
  5 0.0340 0.0520 0.0030 0.0230 

200 0 0 0.0430 0.0730 0.0540 0.0520 
 10% 3 0.0330 0.0530 0.0200 0.0390 
  5 0.0320 0.0520 0.0200 0.0420 
 20% 3 0.0340 0.0500 0.0020 0.0250 
  5 0.0340 0.0490 0.0020 0.0240 

500 0 0 0.0510 0.0750 0.0490 0.0540 
 10% 3 0.0330 0.0540 0.0220 0.0390 
  5 0.0330 0.0520 0.0230 0.0390 
 20% 3 0.0340 0.0580 0.0040 0.0260 
  5 0.0340 0.0550 0.0040 0.0230 
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Table 5. False Alarm rate for dimension, p = 15  

Sample 
Size 
(n) 

% 
outliers 

(ε) 

Mean shift 
(µ1) 

Control Charts 

    

80 0 0 0.0450 0.0650 0.0580 0.0560 
 10% 3 0.0330 0.0550 0.0260 0.0470 
  5 0.0330 0.0560 0.0230 0.0430 
 20% 3 0.0350 0.0560 0.0060 0.0270 
  5 0.0360 0.0540 0.0030 0.0320 

100 0 0 0.0430 0.0680 0.0490 0.0520 
 10% 3 0.0330 0.0590 0.0240 0.0450 
  5 0.0330 0.0610 0.0240 0.0430 
 20% 3 0.0330 0.0540 0.0030 0.0250 
  5 0.0330 0.0560 0.0020 0.0220 

200 0 0 0.0440 0.0620 0.0540 0.0470 
 10% 3 0.0290 0.0520 0.0330 0.0420 
  5 0.0280 0.0520 0.0310 0.0410 

 20% 3 0.0310 0.0560 0.0040 0.0200 
  5 0.0300 0.0550 0.0040     0.0240 

500 0 0 0.0530 0.0690 0.0460 0.0470 
 10% 3 0.0370 0.0540 0.0270 0.0390 
  5 0.0370 0.0530 0.0260 0.0390 
 20% 3 0.0390 0.0530 0.0060 0.0260 
  5 0.0380 0.0520 0.0060 0.0290 

 

Table 6. False Alarm rate for dimension, p = 20 

Sample 
Size 
(n) 

% 
outliers 

(ε) 

Mean shift 
(µ1) 

Control Charts 

    

100 0 0 0.0410 0.0720 0.0500 0.0530 
 10% 3 0.0340 0.0550 0.0210 0.0400 
  5 0.0330 0.0560 0.0240 0.0420 
 20% 3 0.0310 0.0570 0.0060 0.0300 
  5 0.0300 0.0570 0.0000 0.0240 

200 0 0 0.0450 0.0660 0.0490 0.0510 
 10% 3 0.0320 0.0510 0.0220 0.0370 
  5 0.0340 0.0520 0.0220 0.0380 
 20% 3 0.0360 0.0550 0.0050 0.0310 
  5 0.0380 0.0550 0.0020 0.0250 

300 0 0 0.0430 0.0680 0.0390 0.0440 
 10% 3 0.0400 0.0480 0.0210     0.0350 
  5 0.0390 0.0490 0.0210 0.0340 

 20% 3 0.0410 0.0470 0.0060 0.0240 
  5 0.0420 0.0470 0.0050 0.0220 

500 0 0 0.0520 0.0690 0.0560 0.0530 
 10% 3 0.0390 0.0560 0.0280 0.0400 
  5 0.0380 0.0570 0.0280 0.0400 
 20% 3 0.0390 0.0550 0.0030 0.0350 
  5 0.0390 0.0570 0.0040 0.0320 
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Table 7. Historical data set (Phase I data) 

Product 
No. Trim edge (x1) Trim edge spar (x2) Drill hole (x3) 
1 -0. 0011 0.0003 0.0128 
2 0.0011 0.0021 0.0246 
3 0.0252 0.0308 0.0378 
4 -0. 0017 0.0109 0.0177 
5 -0. 0005 -0. 0010 0.0106 
6 0.0016 -0.0059 0.0128 
7 0.0004 0.0001 0.0062 
8 0.0078 0.0003 0.0159 
9 0.0076 0.0089 0.0097 

10 0.0020 0.0005 0.0071 
11 0.0108 0.0011 0.0092 
12 0.0039 0.0034 0.0425 
13 0.0060 -0.0033 0.0160 
14 0.0066 0.0100 0.0056 
15 0.0045 -0.0067 0.0147 
16 0.0110 -0.0207 0.0337 
17 0.0047 0.0059 0.0065 
18 0.0077 0.0003 0.0191 
19 0.0015 0.0123 0.0124 
20 0.0011 0.0038 0.0104 
21 0.0056 0.0065 0.0063 

Table 8. Estimates of location vector, covariance matrix, and UCL. 

Types of 
Control 
Chart 

Location  
Vector 

(  

Scatter Matrix 
(S) 

 

Upper Control 
Limit (UCL) 

 

 

11.035 
 

 

 

11.798 

 

 

21.946 

  

 

41.298 
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Table 9. The Hotelling T2 values for the future (Phase II ) data 

Product 
No. x1 x2 x3 

 

1 0.0041 0.0087 0.0129 0.55822 1.42418 1.76591 4.39082
2 0.0047 0.0109 0.0124 0.90026 2.54922 2.46944 5.16947
3 0.0031 0.0057 0.0096 0.49916 0.49356 0.34367 0.29917
4 0.0035 -0.0020 0.0101 0.54633 1.01572 0.54563 1.50640
5 0.0040 -0.0028 0.0125 0.45922 0.95881 0.45797 3.78687
6 0.0031 0.0008 0.0061 0.90130 1.74802 1.25274 2.24213
7 -0.0019 0.0101 0.0112 3.09329 4.13719 4.44043 6.53612
8 0.0009 0.0039 0.0082 0.80608 1.28839 0.68370 1.05554
9 -0.0052 0.0090 0.0203 7.36021 9.68427 14.97663 26.04990

10 -0.0008 0.0110 0.0184 3.61976 5.80349 9.74168 19.17603
11 -0.0021 0.0139 0.0170 5.38392 8.08967 11.87166 19.63128
12 -0.0017 0.0092 0.0061 2.73870 4.79492 2.97882 8.13879
13 -0.0010 0.0133 0.0138 3.80577 5.68902 7.40398 11.38954
14 -0.0030 0.0002 0.0053 2.05480 6.34679 3.30863 9.14983
15 0.0016 0.0134 0.0151 2.50731 5.02274 6.80538 12.38812
16 0.0027 0.0086 0.0070 1.19755 1.89797 1.06789 2.05633
17 0.0004 0.0086 0.0087 1.57979 2.26296 1.75966 2.87650
18 -0.0036 0.0136 0.0129 5.79103 7.96571 9.28168 13.92929
19 -0.0028 0.0003 0.0078 1.83044 4.70032 2.41775 4.87909
20 0.0120 0.0123 0.0768 38.13972 190.29688 214.92329 894.51844
21 -0.0015 0.0004 0.0115 1.26507 2.33013 1.54862 2.06405
22 0.0009 0.0232 0.0202 8.41812 19.77199 24.65515 45.24620
23 -0.0035 0.0088 0.0107 3.75884 5.16445 4.87934 7.53275
24 0.0016 0.0061 0.0066 1.06020 1.75635 0.93200 2.23575
25 -0.0228 -0.0466 0.0231 42.84468 134.62223 68.63065 116.02933
26 0.0037 -0.0038 0.0147 0.48316 1.39455 0.77959 7.32655
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