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Abstract 
Conversion to biochar may be a value-added approach to recycle defatted cottonseed meal, a major byproduct 
from the cotton industry. In this work, complete slow pyrolysis at seven peak temperatures ranging from 300 to 
600°C in batch reactors was implemented to process cottonseed meal into biochar products. Elemental analysis, 
attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy and quantitative solid state 13C 
nuclear magnetic resonance (NMR) spectroscopy were applied to characterize raw meal and its derived biochar 
products. The biochar yield and organic C and total N recoveries decreased as the peak pyrolysis temperatures was 
elevated. However, most of the mineral elements including P in cottonseed meal were retained during pyrolysis 
and became enriched in biochar as a result of the decreased mass yield. The spectral data showed that pyrolysis 
removed the functional groups of biopolymers in cottonseed meal, producing highly aromatic structures in 
biochars. With increasing pyrolysis temperature, alkyl structures decreased progressively in the biochar products 
and became negligible at higher temperatures (550 and 600°C). Quantitative analysis of FT IR data revealed that 
the values of a simple 3-band (1800,1700, and 650 cm-1)-based R reading of the biochars were linearly related to 
the pyrolysis temperature, and showed strong correlations with decreasing aromaticity and increasing alkyl, 
aliphatic C-O/N and carbonyl signal intensities in the 13C NMR spectra. Therefore, the cheaper and faster FT-IR 
measurement could be used as a routine conversion indicator of pyrolysis of lignocellulosic biomass instead of the 
more expensive and time-consuming NMR spectroscopy. 
Keywords: biochar, cottonseed meal, FT-IR, slow pyrolysis, solid state NMR 
1. Introduction 
The thermochemical conversion of lignocellulosic biomass using pyrolysis (slow, intermediate, and fast) and 
gasification results in typically three products: biochar, bio-oil, and syngas (He et al., 2016a). The yield of biochar 
and its ratio to the other two co-products (syngas and bio-oil) are dependent on both the nature of the biomass 
materials and the carbonization conditions. Slow and intermediate pyrolysis processes with residence times in the 
minute range are generally favored for biochar production, since the yield of char is linearly correlated with the 
heating rate of pyrolysis (Mok et al., 1992). Persistent in the environment and able to retain water, nutrients, and 
contaminants, biochar can be used as a soil conditioner for improving soil health, enhancing fertilizer use 
efficiency, promoting plant growth, and reducing greenhouse gas emission (Guo et al., 2016a; 2019). Biochar may 
also be used in environmental rehabilitation such as remediation of saline soils and reclamation of abandoned mine 
land through its high capacity for contaminant immobilization (Feng et al., 2020; Guo et al., 2016a). Biochar 
filters are suitable for onsite wastewater treatment (Perez-Mercado et al., 2018; Dalahmeh et al., 2020). In “green” 
chemistry, biochar is used as an enzyme carrier or immobilizer to increase the enzymatic activity and thermal 
stability (Noritomi et al., 2019; Noritomi et al., 2018; Noritomi et al., 2017).  
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Cotton is a non-food crop and a major fiber source for the textile industry. Exploration of the utilization of cotton 
plant biomass residues as a sustainable industrial feedstock promises to enhance the environmental and economic 
viability of the cotton industry (Grewal et al., 2020; He et al., 2020; 2017; Windeatt et al., 2014). Especially, 
defatted cottonseed meal, the solid byproduct after oil extraction from cottonseed, accounts typically for 45% of 
the cottonseed biomass and is currently mainly used as an animal feed additive (Swiatkiewicz et al., 2016; Cheng 
et al., 2020) and fermentation substrate (Grewal & Khare, 2017). Attempts have been made to convert cottonseed 
meal into value-added products such as bioplastics and films (Chen et al., 2019), superabsorbent hydrogel (Zhang 
et al., 2010), antioxidant peptides/extracts (Song et al., 2020), and wood adhesives (Cheng et al., 2013; He et al., 
2014a, b; Li et al., 2019; Liu et al., 2018). The economic viability of these biorefinery efforts, however, is still a 
major concern. Given its relatively high energy density (i.e., higher heating value of 17.9 MJ kg-1), cottonseed 
meal could be a good feedstock for producing biochar and bio-oil via pyrolysis (He et al., 2016a; Ozbay et al., 
2001). While there were several reports from Turkey (Ozbay et al., 2006; Putun, 2010; Putun et al., 2006) and 
India (Singh et al., 2014) on pyrolysis of cottonseed cakes (equivalent to the meal product in the USA) mainly for 
bio-oil production, pyrolysis processing of cottonseed meal had not been investigated in the USA.  
Therefore, we conducted cottonseed meal pyrolytic conversion studies, aiming to facilitate the utilization of this 
agricultural byproduct as a "green" and value-added raw material. Previously we (He et al., 2018) characterized 
the cottonseed meal-derived bio-oil products for potential use as adhesives blends like other pyrolysis bio-oils (Li 
et al., 2020a; Mao et al., 2017; Wan et al., 2018). In this work, using attenuated total reflection Fourier transform 
infrared (ATR FT-IR) spectroscopy and quantitative solid state 13C nuclear magnetic resonance (NMR) 
spectroscopy, we characterized meal-derived biochar products prepared at seven peak temperatures in the range of 
300 to 600°C. The goals of this project were to 1) increase the knowledge on the effects of pyrolysis temperature 
on the chemical composition of the meal-based biochar products and 2) explore a structural indicator measurable 
by relatively simple FT-IR spectroscopy. 
2. Experimental 
2.1 Cottonseed Meal Material and Slow Pyrolysis 
Mill-scale produced cottonseed meal was provided by Cotton, Inc. (Cary, NC, USA) and was used as the biomass 
material for pyrolysis (He et al., 2016b). The cottonseed meal was converted to biochar and bio-oil using a 
custom-made benchtop pyrolyzer consisting of a furnace, a pyrolysis reactor (a 3.78-L iron container with a side 
vent and movable lid), a condenser, and a bio-oil collector (Guo et al., 2012). Approximately 2200 g of the 
air-dried cottonseed meal were packed into the reactor. The reactor was then placed in the electricity-powered 
furnace. Pyrolysis of cottonseed meal started when the temperature inside the reactor reached above 200°C. The 
resulting pyrolysis vapor passed through the side vent and entered into the condenser, where a room temperature of 
22°C was maintained by slowly flowing water. Slow pyrolysis with peak temperature at 300, 350, 400, 450, 500, 
550, and 600°C was applied to conversion of cottonseed meal to biochar and bio-oil. Hereafter, the resulting 
biochars are referred to as Char300, Char350, Char400, Char450, Char500, Char550, and Char600, respectively. 
At each peak temperature when the pyrolysis was complete as indicated by no more visible smoke accumulating in 
the condenser, the reactor was withdrawn from the furnace and immediately sealed with a piece of aluminum tape 
on the side vent. After cooling down to room temperature, the biochar in the reactor was ground to <0.85 mm and 
stored in a Ziploc bag for later chemical and spectroscopic characterization.  
2.2 Determination of Elemental Contents  
The contents of total N and C in each sample were determined using a LECO Truspec dry combustion 
Carbon/Nitrogen Analyzer (St. Joseph, MI) (NFTS, 1993). The total contents of 11 other mineral elements (P, Ca, 
K, Mg, Na, S, Fe, Zn, Cu, Mn, and Al) were analyzed by digesting the biochar samples with HNO3 in the HotBlock 
Environmental Express block digester followed by quantitative measurements using a Spectro CirOs inductively 
coupled plasma (ICP) spectrometer (Mahwah, NJ, USA) (He et al., 2017). Triplicates were analyzed for each 
sample and data of means were reported. 
2.3 ATR FT-IR Spectroscopy 
Raw cottonseed meal and the derived biochars were analyzed by an ATR FT-IR spectrometer equipped with the 
OPUS software (Bruker Optics, Billerica, MA, USA). An amount of 5-10 mg of sample was placed on the 
diamond/ZnSe ATR crystal, enough to cover the crystal entirely, which was subsequently secured with a metal 
clamp to ensure a reproducible pressure applied to the samples and intimate contact between the ATR crystal and 
the sample. All samples were analyzed in the reflectance mode. Samples were run against an air background 
with 32 sample scans at 8 cm-1 resolution in the mid-infrared region (600 cm-1-4400 cm-1). Spectra were 
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generated using the Origin software (Version 8). All spectra were baseline corrected and integrated using peak 
height. Peak heights were calculated from the baseline using the Bruker OPUS FT-IR software. Using a simple 
3-band algorithm, R readings were calculated based on the intensity ratio of a multi-point average (A1700) of 
bands in the 1750-1500 cm-1 region relative to the average (A650) of bands in the 645-655 cm-1 region, both after 
subtracting the average (A1800) of reference bands in the 2000-1790 cm-1 region (Liu et al., 2015).  
2.4 Solid State 13C NMR Spectroscopy 
Solid state 13C NMR analyses of cottonseed meal and the derived biochars were performed at 100 MHz using a 
Bruker Avance 400 spectrometer equipped with a 4-mm double-resonance probe head (Cao et al., 2019). Nearly 
quantitative multiple cross-polarization (multiCP) 13C NMR spectra (Johnson & Schmidt-Rohr, 2014) were 
measured on cottonseed meal and seven cottonseed meal-derived biochar samples with 11 cross-polarization 
repeats of 0.55 ms to 1.1 ms duration each. Quantitative direct polarization (DP) 13C NMR spectra were recorded 
for cottonseed meal chars prepared at 550 °C and 600 °C with recycle delays of 25 s and 20 s, respectively. 
MultiCP and DP were also combined with recoupled dipolar dephasing (Mao & Schmidt-Rohr, 2004) to obtain 
quantitative information on the nonprotonated carbons, and mobile segments such as rotating CH3 groups and 
(CH2)n in lipids.  
Peak assignments were based on the literature for agricultural byproducts and soil organic matter (Cao et al., 
2011; He & Mao, 2011; He et al., 2015a). Specifically, the assignments for cottonseed meal spectra were 
220-187 ppm  C=O, 187-163 ppm  carboxyls and amides, 163-141 ppm  aromatic C-O, 141-113 ppm  
aromatic C-C and C-H, 113-94 ppm  O-C-O, 94-46 ppm  alkyl C-O/N, 46-0 ppm  alkyl C, and 27-0 ppm 
 CH3. Peak assignments for biochar products were shifted slightly as 220-187 ppm  C=O, 187-165 ppm  
carboxyls and amides, 165-90 ppm  aromatics including nonprotonated aromatic C-O/N and protonated 
aromatic C-H, 90-50 ppm  alkyl C-O/N, 50-0 ppm  alkyl C, and 27-0 ppm  CH3. 
3. Results and Discussion 
3.1 Yield and Element Contents of Biochar Products 
Table 1. Production yield (%), contents (g kg-1) and recovery (%) of organic C, total N, and total P of biochar 
products and raw material defatted cottonseed meal (CSM). Pyrolysis temperatures of CSM are indicated by the 
suffixing numbers of char products. 

Product Yield Organic C Total N Total P 
 
CSM 
Char300 
Char350 
Char400 
Char450 
Char500 
Char550 
Char600 

 
N/A 
53.3 
46.7 
40.8 
36.0 
35.0 
33.4 
32.2 

Content 
465.4±4.2 
556.0±4.2 
367.6±4.2 
302.4±4.2 
255.2±4.2 
255.7±4.2 
258.3±4.2 
253.5±4.2 

Recovery
N/A 
63.7 
36.9 
26.5 
19.8 
19.2 
18.5 
17.5 

Content 
72.3±4.2
89.8±4.2
71.7±4.2
58.7±4.2
53.3±4.2
50.1±4.2
46.7±4.2
42.1±4.2

Recovery 
N/A 
66.2 
46.3 
33.1 
26.5 
24.2 
21.6 
18.7 

Content 
12.7±4.2 
22.7±4.2 
24.0±4.2 
26.3±4.2 
26.6±4.2 
27.9±4.2 
29.8±4.2 
30.5±4.2 

Recovery
N/A 
99.6 
99.8 
100.4 
96.2 
96.1 
97.9 
87.5 

Biochar yield, contents of organic carbon (OC), total N, and total P in and its biochar products are listed in Table 1. 
The yield of biochar decreased from 53.33% of the dry feed mass to 32.16% with increases in pyrolysis 
temperature from 300 to 600°C. Recoveries of OC and total N were in the same decreasing trend. However, the 
biochar prepared at 300°C possessed OC and total N contents even higher than those of raw cottonseed meal 
indicating enriched organic carbon and N-compounds in Char300. Higher pyrolysis temperature converted 
biomass to more volatile hydrocarbons (with or without N) and non-condensable gases, leading to decreases in 
mass yield and OC and N recoveries (He et al., 2016a). Phosphorus is mainly present in cottonseed meal as 
phosphate ester compounds (He et al., 2015; 2017). The pyrolytic products were predominantly non-volatile 
inorganic phosphates, leading to nearly 100% P recovery and increasing total P contents in biochars as the 
pyrolysis temperature was elevated. The relatively low P recovery (87.5%) with Char600 might be due to some 
mass deviation as the low recovery was not observed with the content of P in poultry litter-based Char600 (Guo et 
al., 2012). Nowadays, P is not only a critical plat nutrient, but also a pollutant of concern with excess quantity in 
the environment (He et al., 2016c; Adhikari et al., 2019). Sequential extraction of P in biosolids and resultant 
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biochars showed that P becomes more tightly bound to biochar after pyrolysis, particularly at increased process 
temperature (Jiang et al., 2019). Investigating P speciation transformation during pyrolysis of poultry litter, they 
reported that organic P (in particular phytates) in poultry litter was decomposed to inorganic P forms at a pyrolysis 
temperature above 300°C while hydroxyapatite (Ca10(PO4)6(OH)2) was formed in the biochar products. 
Furthermore, the inhibition effect of pyrolysis on P lability occurs mainly through transformation of labile 
phosphates in poultry litter into less soluble forms. While both poultry litter and cottonseed meal are 
phytate-enriched, future characterization by wet chemistry (He & Honeycutt, 2001) and spectroscopic techniques 
(He et al., 2009a) should shed light on the P species and bioavailability in these cottonseed meal-derived biochars.  
In addition, we also measured the contents of 10 other mineral elements in cottonseed meal and its derived biochar 
products (Table 2). The data for cottonseed meal were in the range of defatted cottonseed meal products in the 
literature (He et al., 2016b, 2015b). Compared to the meal, the contents of the macro mineral nutrients Ca, K, Mg 
and the micro mineral nutrients Fe, Zn, Mn in the seven biochars increased by 2- to 3-fold, to a greater extent at 
higher pyrolysis temperature. This trend was apparently due to the non-volatile properties of these mineral 
compounds in the 300-600°C temperature range, and increased concentration from reduced biochar mass at higher 
pyrolysis temperature. The contents of Na and Cu also increased in the biochar products. However, the increasing 
trend with higher pyrolysis temperature was not obvious, perhaps partly due to the greater measurement deviations 
with their lower content and less measurement sensitivity. On the other hand, there was a lower Al content in all 
biochar products than cottonseed meal itself, and the content values fluctuated. While Al compounds seem 
non-volatile, they appear to be distributed to the bio-oil fractions as the previous work on the bio-oil 
characterization reported 73.7 and 391.1 mg Al kg-1 of aqueous and oily phases of bio-oil, compared to 99.6 mg Al 
kg-1 of the meal (He et al., 2018). In the meantime, the content of the non-metal element S in biochar products also 
decreased with increasing pyrolysis temperature and all were lower than in the meal. As S existed in the meal 
primarily in S-containing protein/amino acids (He et al., 2015b; 2014c), pyrolysis apparently decomposed these 
protein/amino acids and released the S in volatile S compounds. This observation was different from that for 
poultry litter-based biochars, whose S content was 10-30 fold higher and increased with higher pyrolysis 
temperatures (Guo et al., 2012). The difference could be attributed to the fact that significant sodium bisulfate was 
intentionally added to poultry bedding to reduce feces ammonia emissions (Guo et al., 2009). Indeed, the contents 
of mineral elements were generally higher in animal manure-based biochars (Guo et al., 2019; 2012; Zeng et al., 
2018) due to mineral supplements in animal feeds and manure treatments (Schroder et al., 2011; Zhang et al., 
2020) 
Table 2. Contents of 10 selected elements in cottonseed meal (CSM) and its biochar products. Pyrolysis 
temperatures of CSM are indicated by the suffixing numbers of char products. 

Product Ca K Mg Na S Fe Zn Cu Mn Al 
 --------------Macro element, g kg-1------------------ -----------------Micro element, mg kg-1--------------- 

CSM a 
Char300 
Char350 
Char400 
Char450 
Char500 
Char550 
Char600 

2.3±0.0 
3.9±0.1 
4.5±0.1 
4.2±0.1 
5.2±0.1 
5.1±0.0 
5.9±0.1 
5.7±0.1 

15.5±0.1 
29.6±0.1 
33.5±0.3 
31.6±0.4 
38.8±0.4 
38.6±0.2 
42.4±0.5 
41.1±0.3 

6.2±0.0 
12.4±0.2 
14.4±0.2 
13.7±0.1 
16.5±0.2 
16.6±0.3 
18.6±0.3 
18.2±0.2 

2.3±0.0
2.4±0.0
2.8±0.0
2.6±0.0
3.0±0.0
3.1±0.0
3.2±0.0
3.2±0.0

4.2±0.0
3.0±0.0
2.7±0.1
2.2±0.1
2.0±0.0
1.8±0.0
1.4±0.0
1.0±0.0

107±2
136±6
190±6
215±7
218±4
219±2
---b 
260±6

59±1 
139±13
154±10
152±10
175±11
171±10
211±5 
200±10

9.4±0.1 
31.0±2.4 
26.3±3.9 
22.7±3.1 
17.1±0.8 
15.1±1.0 
18.4±4.1 
17.5±1.7 

23.3±0.6 
54.8±0.6 
63.4±0.6 
59.0±0.7 
69.3±0.9 
69.5±0.7 
86.9±1.9 
75.0±1.2 

99.6±6.8
0.0±0.0 
0.0±0.0 
14.4±0.8
2.5±0.5 
4.7±0.3 
22.3±1.1
30.8±1.1

a Data taken from He et al. (2018). 
b No reliable data available. 
3.2 ATR FT-IR Spectra 
Figure 1 presents the ATR FT-IR spectra of cottonseed meal (CSM) and the seven biochar products in the 
functional region from 2700 to 4000 cm−1 and the fingerprint region from 500-2000 cm−1. The FT-IR spectral 
features of the meal samples were consistent with those reported previously (He et al., 2014b). The raw cottonseed 
meal showed a main absorption peak at 3280 cm−1 and double shoulders around 2900 cm−1 in the functional region 
of 2700-4000 cm−1. These spectral features could be assigned to C-H bond stretching and O-H bond stretching, 
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FT-IR spectroscopy could not identify the specific P species due to the high similarity of spectral features of 
different P compounds (He et al., 2007). By solid state 31P NMR analysis, Jiang et al. (Jiang et al., 2019) found that 
organic phytates (inositol hexaphosphoric acid compounds) decomposed and hydroxyapatite [Ca10(PO4)6(OH)2] 
formed during conversion of poultry litter to biochar at pyrolysis temperatures above 300 °C, in addition to the 
formation of farringtonite [Mg3(PO4)2]. As the meal is phytate-rich (Han, 1988) and possesses significant base 
metal minerals with contents of K>Mg>Ca (Table 2), future work with wet chemistry and 31P NMR spectroscopy 
(He & Honeycutt, 2001; He et al., 2009a) could shed light on what metal P species had been formed in biochars 
from meal phytates. 
In application of ATR FT-IR spectroscopy to characterize biochars generated from various agricultural 
by-products, Liu et al. (2015) proposed a simple 3-band algorithm (R readings) per multi-point averages of the 
band intensities at respective ranges of 1750-1500 cm-1, 2000-1790 cm-1, and 645-655 cm-1. While the FT-IR 
analysis of Liu et al. (2015) has been applied to qualitative characterization of biochars from various agricultural 
and industrial wastes and byproducts (e.g., Li et al., 2020b; Nair et al., 2020; Rodriguez et al., 2020), the 
quantitative evaluation by the R reading has not been adopted. This is mainly due to the two facts that 1) its 
physical significance is not apparent as the idea was derived from three-band ratio algorithms in cotton fiber and 
cellulose studies (Liu et al., 2011; Nam et al., 2017), and 2) Liu et al. (2015) did not report clear correlations 
between R readings and pyrolysis temperature of the four types of plant biomass biochars they generated.  

 

Figure 2. Effect of pyrolysis temperatures on 3-band R readings of cottonseed meal-based biochar products. 
R=(A1700-A1800)/(A650-A1800) (Liu et al., 2015). The symbol *** indicates that the statistical R-squared value is 

significant at p= 0.001 
To explore its potential application, in this work, we computed the R readings of the seven meal-based biochars 
(Figure 2). The R value was 0.516±0.030 for the raw meal. In comparison, the R reading of Char300 was notably 
higher at 0.735. The value decreased linearly for biochars generated at elevated pyrolysis temperatures. Char600 
demonstrated an R reading at 0.175. The reported R reading values of lignocellulosic residues-derived biochars 
were in the range of 0.65 and 0.20 for lower pyrolysis temperature (300 to 500°C) products and 0.11 to 0.03 for 
higher temperature (600 to 800°C) products (Liu et al., 2015). Furthermore, we noticed a linear regression 
relationship (R2 =0.974, p < 0.001) between the R reading of meal-derived biochar and the pyrolysis peak 
temperature, suggesting pyrolysis temperature is a key factor controlling the spectral R reading of biochar products. 
The apparent cause was inclusion of the R readings of the raw feedstock materials in the correlation analysis. The 
well fitting linear regression found in this work indicated that the FT-IR spectral intensity difference could be used 
to distinguish semi-quantitatively lignocellulosic material-based biochar products prepared under different 
conditions.  
3.3 Solid State 13C NMR Spectra 
The multiple cross-polarization (multiCP) 13C NMR spectra of cottonseed meal and the derived biochar products 
are presented in Figure 3. The resulting nearly quantitative data are listed in Table 3. The NMR spectra of raw 
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carboxyl/amide groups resonating near 173 ppm. In addition, the signals of OCH3 are partially selected and 
retained in the dipolar-dephased spectrum, with its low intensity indicating a smaller contribution of OCH3 than 
NCH to the peak near 55 ppm. Per the chemical composition of the meal (He et al., 2015b), the identified signals 
were more specifically indicative of the presence of cellulose or hemicellulose (20, 64, 74, 82, 88, and 105 ppm), 
peptide/protein (55 and 173 ppm), and lipid (15, 30, and 129 ppm) in the cottonseed meal. 
The 13C NMR spectra of biochars produced from cottonseed meal are composed of two major broad bands, 
assigned to aromatic and alkyl carbons, respectively. These features were similar to those of lignocellulosic 
material-based (Cao et al., 2019; Haeldermans et al., 2019) and manure-based (Cao et al., 2011; Jiang et al., 2019) 
biochar products. For the biochars prepared at low temperature (< 400°C), the aromatic carbon peak extended to 
~190 ppm due to the overlapping of signals from nonpolar aromatics, O/N-substituted aromatics and 
carboxyl/ester (COO). The alkyl carbon band showed signals primarily from CH3, and CH2/CH. These 
observations indicated that pyrolysis even at the lowest temperature (300°C) had transformed biopolymers present 
in cottonseed meal to aromatic-rich structures. With increasing temperatures, the aromatic band became much 
narrower, resulting from the decreased intensity of O/N-substituted aromatics and carboxyl/ester (COO) (Table 3). 
The alkyl C band, dominated by signals of CH3 above 400°C, decreased in intensity with temperature and became 
negligible at 550 and 600°C. Furthermore, comparison of DP (dashed lines) and multiCP spectra of Char550 and 
Char600 showed that multiCP provided nearly quantitative spectra in much shorter measuring time while the 
proportion of nonprotonated aromatic carbons was only slightly underestimated. In summary, pyrolysis of the 
meal at 300 °C removed its signatures of biopolymers, and produced highly aromatic structures. With increasing 
temperature, alkyl structures (mainly CH3 for biochars prepared at above 400°C) decreased progressively in 
intensity and became negligible at high temperatures (550 and 600°C). Meanwhile, O/N-substituted aromatics and 
carboxyl/ester decreased in intensity, leading to more uniform aromatic ring structures. 
Table 3. Nearly quantitative 13C NMR spectral analysis (% of total 13C signal) of defatted cottonseed meal (CSM) 
and its pyrolysis biochars from multiCP spectra and multiCP spectra after dipolar dephasing. Pyrolysis 
temperatures of CSM are indicated by the suffixing numbers of char products. 

Product Carbonyls Aromatics b Aliphatic C-O/N b Alkyl 
C=O COO C-O/N C-C C-H O-C-O C-O/N Cq/CH/CH2 CH3 

CSM 0.0 14.0 3.5 3 4 9 46 14 6.5 
Char300 1.0 5.5 39.0 21.0 5.5 17.5 10.5 
Char350 1.0 4.0 46.0 20.0 4.0 15.0 10.0 
Char400 1.5 3.5 49.0 25.0 3.0 9.0 9.0 
Char450 1.0 3.0 56.0 28.0 2.0 3.5 6.5 
Char500 0.5 1.5 54.0 34.0 2.5 3.0 4.5 
Char550 0.5 1.0 60.0 32.5 2.5 1.5 2.0 
Char550a 0.5 2.0 63.0 28.5 2.5 1.5 2.0 
Char600 1.0 2.0 62.5 32.0 1.0 0.5 1.0 
Char600a 1.0 2.0 66.0 27.0 2.0 1.0 1.0 

a Functional group composition derived from quantitative 13C direct polarization magic angle spinning spectra. 
b Different sub types of two functional groups (i.e., aromatics between C-O/N and C-C, and aliphatic C-O/N 
between O-C-O and C-O/N) indistinguishable with biochar products. 
3.4 Correlation Analysis of Quantitative FT-IR and Solid State 13C NMR Spectral Data 
While both FT-IR and solid state 13C NMR spectroscopies are complementarily used in the characterization of 
agricultural and soil samples, the two types of data are generally compared only qualitatively in terms of their 
functional group assignments (He et al., 2009b; Jiang et al., 2019; Mao et al., 2008). Instead, in this work, we 
quantitatively analyzed the correlation of the data of FT-IR 3-band R readings and 13C NMR functional group 
concentrations of seven meal-based biochar products (Figure 4). 
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Figure 4. Linear regressions of FT-IR 3-band R readings with relative intensities of 13C NMR functional groups of 
cottonseed meal-based biochar products. Symbols * and *** indicate the statistical R-squared values significant at 

p=0.05 and 0.001, respectively 
FT-IR 3-band R readings showed a negatively linear regression with the aromatic carbon fraction from 13C NMR 
spectroscopy with high confidence (R2 = 0.951, p=0.001). The FT-IR R readings showed a linear relationship with 
other three carbon functional group concentrations from 13C NMR spectroscopy. The R-squared values for the 
regressions with alkyl, aliphatic C-O/N and carbonyl were 0.951, 0.857, 0.703 with p=0.001, 0.05 and 0.5, 
respectively. These observations suggested that the aromatic components in these biochars were mainly from alkyl 
components with some contributions from aliphatic C-O/N and carbonyl components in cottonseed meal. Given 
that more chemically detailed and quantitative information can be deduced from solid state 13C NMR spectra, 
Haeldermans and coworkers (Haeldermans et al., 2019) argued that the technique is more convenient than FT-IR 
to monitor the pyrolysis conversion of the lignocellulosic material into the biochar. Hereby in our work, the high 
correlation between the two sets of data implied that the more affordable and faster FT-IR R measurement 
developed by (Liu et al., 2015) could be used as a routine conversion indicator of pyrolysis of lignocellulosic 
biomass if further confirmed with biochars from other feedstocks.  
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4. Conclusions 
To our knowledge, this work is the first reporting on characterization of cottonseed meal-based biochar products, 
though a few publications on meal-derived pyrolysis bio-oil products can be found in the literature. Both content 
and recovery of OC and total N in meal-derived biochars decreased with increasing pyrolysis temperature. 
However, P and most other mineral elements in the feedstock were retained and concentrated in the biochars. ATR 
FT-IR and solid state 13C NMR analyses indicated that cottonseed meal was primarily composed of cellulose, 
hemicellulose, protein, and lipid. Slow pyrolysis of cottonseed meal at 300°C removed signatures of the 
oxygen-containing biopolymers and subsequently produced highly aromatic structures. With increasing pyrolysis 
temperatures, the nonpolar alkyl structures decreased progressively and became negligible at 550 and 600°C, 
leading to more uniform aromatic ring structures in high-temperature biochar products. This information is useful 
for guiding the effective uses of these products as soil amendments, industrial feedstocks, and for environmental 
remediation. For example, the higher pyrolysis temperatures would be selected for production of the cottonseed 
meal biochar products for carbon sequestration and other environmental applications as the adsorption capacity is 
due to the abundance of polar functional groups on the carbon material surface (Song & Guo, 2012; Kalus et al., 
2019). On the other hand, lower temperatures (e.g., 300°C) should be considered in pyrolysis for agricultural use to 
retain plant nutrients, N uptake and organic matter diversity (Guo et al., 2016b; Mahdi et al., 2017). 
In addition, a simple 3-FT-IR-band (1800, 1700, and 650 cm-1)-based algorithm provided R readings of the 
biochars that were shown to be linearly related to the pyrolysis temperature, indicating pyrolysis temperature as a 
key factor affecting the readings. Furthermore, the readings showed a negative linear regression with the relative 
intensity of 13C NMR-identified aromatic structures, and positive linear regressions with 13C NMR-identified 
functional groups of alkyl, aliphatic C-O/N and carbonyl. If further confirmed, the more affordable and faster 
FT-IR R measurement could be used as a routine conversion indicator of pyrolysis of lignocellulosic biomass 
instead of the expensive and time-consuming solid state 13C NMR spectroscopy.  
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