On the Deformation Retractions of Frenet Curves

 in Minkowski 4 - SpaceA.E. El-Ahmady ${ }^{1}$ \& A.T. M-Zidan ${ }^{2}$
${ }^{1}$ Mathematics Department, Faculty of Science, Tanta University, Tanta, Egypt
${ }^{2}$ Mathematics Department, Faculty of Science, Damietta University, Damietta, Egypt
Correspondence: A.T. M-Zidan, Mathematics Department, Faculty of Science, Damietta University, Egypt. E-mail: atm_zidan@yahoo.com

Received: July 15, 2020
doi:10.5539/mas.v14n9p55

Accepted: August 22, 2020
URL: https://doi.org/10.5539/mas.v14n9p55

Abstract

In this paper, the position vector equation of the Frenet curves with constant curvatures in Minkowski 4 -space has been presented. New types for retractions and deformation retracts of Frenet curves in E_{1}^{4} are deduced. The relations between the Frenet apparatus of the Frenet curves before and after the deformation retracts are obtained.

Keywords: Minkowski 4-space E_{1}^{4}, Frenet curves, retraction, deformation retracts

AMS Subject Classification(2010):

Primary: 53A35, 53A04, 58C05, 53B30. Secondary: 53Z05; 53Z99.

1. Introduction and Definitions

Minkowski space time in E_{1}^{4} is an Euclidean space provided with the standard flat metric given by $\langle X, Y\rangle=$ $-x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4}$, where $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and $\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ are rectangular coordinate system in E^{4}. Since \langle,$\rangle is an indefinite metric, recall that a vector u \in E_{1}^{4}$ can have one of the three casual characters; it can be space like, if $\langle u, u \gg 0$ or $u=0$, time like, if $\langle u, u\rangle<0$, null or light like if $<u, u\rangle=0$ and $u \neq 0$. The norm of a vector v is given by $\|v\|=\sqrt{|\langle v, v\rangle|}$. Space like or time-like curve $\alpha(s)$ is said to be parametrized by arclength function s , if $g\left(\alpha^{\prime}(s), \alpha^{\prime}(s)\right)= \pm 1$. The velocity of α at $t \in I$ is $\alpha^{\prime}=\left.\frac{d \alpha(u)}{d u}\right|_{\mathrm{t}} . \quad$ Next, v, w in E_{1}^{4} are said to be orthogonal vectors if $g(v, w)=0$ (M. Turgut \& S . Yilmaz.2008) (R. Lopez. 2008) (A. E. El-Ahmady. 2007).
In this paper, we introduce some characterizations of retraction and deformation retract of Frenet curves in E_{1}^{4} by the components of the position vector according to the Frenet equations. Also we obtain some relations among curvatures of Frenet curves and their deformation retracts.

2. Main results

Definition: Denoted by $\left\{\mathrm{T}(\mathrm{s}), \mathrm{N}(\mathrm{s}), B_{1}(s), B_{2}(s)\right\} \quad$ the moving Frenet frame along the curve $\alpha(s)$ in the space E_{1}^{4}. Then $\mathrm{T}, \mathrm{N}, B_{1}, B_{2}$ are the tangent, the principal normal, the first binormal and the second binormal vector fields respectively. Let $\alpha(\mathrm{s})$ is a curve in the space-time in E_{1}^{4} parameterized by arc length function s Lopez .Then for the unit speed curve α (s) with non-null frame vectors, such that the Frenet equations are,

$$
\left(\begin{array}{c}
T^{\prime} \\
N^{\prime} \\
B_{1}{ }^{\prime} \\
B_{2}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
0 & k_{1} & 0 & 0 \\
\mu_{1} k_{1} & 0 & \mu_{2} k_{2} & 0 \\
0 & \mu_{3} k_{2} & 0 & \mu_{4} k_{3} \\
0 & 0 & \mu_{5} k_{3} & 0
\end{array}\right)\left(\begin{array}{c}
T \\
N \\
B_{1} \\
B_{2}
\end{array}\right),
$$

case 1. If $\boldsymbol{\alpha}$ is a time like curve in $\mathbf{E}_{\mathbf{1}}^{\mathbf{4}}$. Then T is a time like vector, so the Frenet equations, $\mu_{i}(1 \leq i \leq$ 5) read, $\mu_{3}=\mu_{5}=-1, \mu_{1}=\mu_{2}=\mu_{4}=1$, where $\mathrm{T}, \mathrm{N}, B_{1}, B_{2}$ are mutually orthogonal vectors with $g(T, T)=-1, \quad g(N, N)=g\left(B_{1}, B_{1}\right)=g\left(B_{2}, B_{2}\right)=1$.
case 2. If α is a space like curve in \mathbf{E}_{1}^{4}.
Then T is a space like vector, so depending on N , then B_{1} can have all three causal characters,

Case2.1. If N is space-like, then B_{1} have the next subcases
Case2.1.1 If B_{1} be space like, then $\mu_{i}(1 \leq i \leq 5)$ read

$$
\mu_{1}=\mu_{3}=-1, \mu_{2}=\mu_{4}=\mu_{5}=1
$$

where T, N, B_{1}, B_{2} are mutually orthogonal vectors satisfies

$$
g(T, T)=g(N, N)=g\left(B_{1}, B_{1}\right)=1, g\left(B_{2}, B_{2}\right)=-1
$$

Case2.1.2 If B_{1} is time like, then $\mu_{i}(1 \leq i \leq 5)$ read

$$
\mu_{1}=-1, \mu_{2}=\mu_{3}=\mu_{4}=\mu_{5}=1
$$

where $\mathrm{T}, \mathrm{N}, B_{1}, B_{2}$ satisfying equations,

$$
g(T, T)=g(N, N)=g\left(B_{2}, B_{2}\right)=1, g\left(B_{1}, B_{1}\right)=-1 .
$$

Case2.1.3 If B_{1} be a null vector, then the Frenet frame equations read

$$
\left(\begin{array}{c}
T^{\prime} \\
N^{\prime} \\
B_{1}{ }^{\prime} \\
B_{2}{ }^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
0 & k_{1} & 0 & 0 \\
-k_{1} & 0 & k_{2} & 0 \\
0 & 0 & k_{3} & 0 \\
0 & -k_{2} & 0 & -k_{3}
\end{array}\right)\left(\begin{array}{c}
T \\
N \\
B_{1} \\
B_{2}
\end{array}\right)
$$

where $\mathrm{T}, \mathrm{N}, B_{1}, B_{2}$, satisfying equations,

$$
\begin{aligned}
g(T, T) & =g(N, N)=1, g\left(B_{1}, B_{1}\right)=g\left(B_{2}, B_{2}\right)=0 \\
g(T, N)=g\left(T, B_{1}\right) & =g\left(T, B_{2}\right)=g\left(N, B_{1}\right)=g\left(N, B_{2}\right)=0, g\left(B_{1}, B_{2}\right)=1
\end{aligned}
$$

Case2.2 If N is time-like, then $\mu_{i}(1 \leq i \leq 5)$ read

$$
\mu_{5}=-1, \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}=1
$$

where $\mathrm{T}, \mathrm{N}, B_{1}, B_{2}$ are satisfying equations,

$$
g(T, T)=g\left(B_{1}, B_{1}\right)=g\left(B_{2}, B_{2}\right)=1, g(N, N)=-1
$$

Remark. The curves which satisfy the previous cases called Frenet curves.
Case2.3 If N is light-like (null), then the Frenet equations read

$$
\left(\begin{array}{c}
T^{\prime} \\
N^{\prime} \\
B_{1}{ }^{\prime} \\
B_{2}{ }^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
0 & k_{1} & 0 & 0 \\
0 & 0 & k_{2} & 0 \\
0 & k_{3} & 0 & -k_{2} \\
-k_{1} & 0 & -k_{3} & 0
\end{array}\right)\left(\begin{array}{c}
T \\
N \\
B_{1} \\
B_{2}
\end{array}\right)
$$

where $k_{1}=0$, when α is a straight line or $k_{1}=1$, in all other cases. With $\mathrm{T}, \mathrm{N}, B_{1}, B_{2}$ are mutually orthogonal vectors satisfying the equations,

$$
\begin{gathered}
g(T, T)=g\left(B_{1}, B_{1}\right)=1, g(N, N)=g\left(B_{2}, B_{2}\right)=0 \\
g(T, N)=g\left(T, B_{1}\right)=g\left(T, B_{2}\right)=g\left(N, \quad B_{1}\right)=g\left(B_{1}, B_{2}\right)=0, g\left(N, B_{2}\right)=1 .
\end{gathered}
$$

case 3. If α is light-like (null) curve in E_{1}^{4}.
Then T is a null vector, so the Frenet equations has the form,

$$
\left(\begin{array}{c}
T^{\prime} \\
N^{\prime} \\
B_{1}^{\prime} \\
B_{2}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
0 & k_{1} & 0 & 0 \\
k_{2} & 0 & -k_{1} & 0 \\
0 & -k_{2} & 0 & k_{3} \\
-k_{3} & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
T \\
N \\
B_{1} \\
B_{2}
\end{array}\right),
$$

where $k_{1}=0$, when α is a straight line or $k_{1}=1$, in all other cases. With $\mathrm{T}, \mathrm{N}, B_{1}, B_{2}$ are mutually orthogonal vectors satisfying the equations,

$$
\begin{aligned}
g(T, T) & =g(N, N)=g\left(B_{1}, B_{1}\right)=0, g\left(B_{2}, B_{2}\right)=1 \\
g(T, N)=g\left(T, B_{2}\right) & =g\left(N, B_{1}\right)=g\left(N, B_{2}\right)=g\left(B_{1}, B_{2}\right)=0, g\left(T, B_{1}\right)=1
\end{aligned}
$$

Where the functions $k_{1}=k_{1}(s), k_{2}=k_{2}(s)$ and $k_{3}=k_{3}(s)$ are called respectively the first, second and third curvature of the curve $\alpha(s)$ (J. Walrave. 1995).
Definition 2.1. A subset A of a topological space X is called retract of X if there exists a continuous map $r: X \rightarrow A$ called a retraction such that $r(a)=a$ for any $a \in A$ (A. E. El-Ahmady \& A.T.M. Zidan. 2019).

Definition 2.2. A subset A of a topological space X is a deformation retracts of X if there exists a retraction $r: X \rightarrow A$ and a homotopy $\varphi: X \times I \rightarrow X$ such that:

$$
\left\{\begin{array}{c}
\varphi(x, 0)=x \\
\varphi(x, 1)=r(x)
\end{array} \quad x \in X, \quad \varphi(a, t)=a, \quad a \in A, t \in[0,1]\right. \text { (A. E. El-Ahmady \& A.T.M. Zidan. 2018) (A. }
$$

E. El-Ahmady. 2014).

Definition 2.3. Time like curves and space like curves with space like or time like normal vector (curves with non-null frame vectors) are called Frenet curves, where $g(T, T) \neq 0, g(N, N) \neq 0, g\left(B_{1}, B_{1}\right) \neq 0$ and $g\left(B_{2}, B_{2}\right) \neq 0$.

3. Position vector of the Frenet curves in E_{1}^{4}.

Frenet equations of the Frenet curves are,

$$
\left(\begin{array}{c}
T^{\prime} \tag{1}\\
N^{\prime} \\
B_{1}^{\prime} \\
B_{2}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
0 & k_{1} & 0 & 0 \\
\mu_{1} k_{1} & 0 & \mu_{2} k_{2} & 0 \\
0 & \mu_{3} k_{2} & 0 & \mu_{4} k_{3} \\
0 & 0 & \mu_{5} k_{3} & 0
\end{array}\right)\left(\begin{array}{c}
T \\
N \\
B_{1} \\
B_{2}
\end{array}\right)
$$

Let $\eta(\mathrm{s})$ be a Frenet curve in E_{1}^{4}, whose position vector satisfies the parametric equation,

$$
\begin{equation*}
\eta(\mathrm{s})=v_{1}(s) T(s)+v_{2}(s) N(s)+v_{3}(s) B_{1}(s)+v_{4}(s) B_{2}(s) \tag{2}
\end{equation*}
$$

For some differentiable functions $v_{j}(s), 1 \leq j \leq 4$, and for $\mu_{i}(1 \leq i \leq 5), \mu_{i} \in\{1,-1\}$.
By differentiating equation(2) with respect to arc-length parameter s and using the Frenet equations (1), for Frenet curves in E_{1}^{4}, we get

$$
\begin{align*}
& \eta^{\prime}(\mathrm{s})=\left(v_{1}^{\prime}+\mu_{1} k_{1} v_{2}\right) T(s) \\
& +\left(v_{2}^{\prime}+k_{1} v_{1}+\mu_{3} k_{2} v_{3}\right) N(s) \tag{3}\\
& +\left(v_{3}^{\prime}+\mu_{2} k_{2} v_{2}+\mu_{5} k_{3} v_{4}\right) B_{1}(s) \\
& \quad+\left(v_{4}^{\prime}+\mu_{4} k_{3} v_{3}\right) B_{2}(s)
\end{align*}
$$

then we get

$$
\begin{gather*}
v_{1}^{\prime}+\mu_{1} k_{1} v_{2}=1 \\
v_{2}^{\prime}+k_{1} v_{1}+\mu_{3} k_{2} v_{3}=0 \tag{4}\\
v_{3}^{\prime}+\mu_{2} k_{2} v_{2}+\mu_{5} k_{3} v_{4}=0 \\
v_{4}^{\prime}+\mu_{4} k_{3} v_{3}=0
\end{gather*}
$$

4. Deformation retracts of Frenet curves in \boldsymbol{E}_{1}^{4}.

We introduce types of retraction on Frenet curves with non-zero curvature in E_{1}^{4}.
In the position vector equation of Frenet curve $\eta(s)$, in equation (2),
if we put $v_{1}(s)=0$, then the Frenet retraction curve defined by $\eta_{r 1}(\mathrm{~s})=r_{1}(\eta(s))$ where,

$$
\eta_{r 1}(\mathrm{~s})=v_{2}(s) N(s)+v_{3}(s) B_{1}(s)+v_{4}(s) B_{2}(s)
$$

if we put $v_{2}(s)=0$, then the Frenet retraction curve defined by $\eta_{r 2}(\mathrm{~s})=r_{2}(\eta(s))$ where,

$$
\eta_{r 2}(\mathrm{~s})=v_{1}(s) T(s)+v_{3}(s) B_{1}(s)+v_{4}(s) B_{2}(s)
$$

if we put $\nu_{3}(s)=0$, then the Frenet retraction curve defined by $\eta_{r 3}(s)=r_{3}(\eta(s)$) where

$$
\eta_{r 3}(\mathrm{~s})=v_{1}(s) T(s)+v_{2}(s) N(s)+v_{4}(s) B_{2}(s)
$$

if we put $v_{4}(s)=\bar{c}, \quad \bar{c} \neq 0$ is constant, then the Frenet retraction curve defined by $\eta_{r 4}(\mathrm{~s})=r_{4}(\eta(s))$ where,

$$
\eta_{r 4}(\mathrm{~s})=v_{1}(s) T(s)+v_{2}(s) N(s)+v_{4}(s) B_{2}(s)
$$

Theorem 4.1. Let $\eta_{r}(\mathrm{~s})=v_{2}(s) N(s)+v_{3}(s) B_{1}(s)+v_{4}(s) B_{2}(s)$, be the position vector of the Frenet retracted curve of the Frenet curve $\eta(s)$ in E_{1}^{4}, by taking $v_{1}(s)=0$, then $\eta_{r}(s)$ lies in the subspace $N B_{1} B_{2}$, and satisfies the differential equation

$$
\frac{\mu_{4} k_{3}}{\mu_{3} k_{2}} \frac{d}{d s}\left(\frac{1}{\mu_{1} k_{1}}\right)+\frac{d}{d s}\left\{\frac{1}{\mu_{5} k_{3}}\left(\frac{\mu_{2} k_{2}}{k_{1}}-\frac{d}{d s}\left(\frac{1}{\mu_{1} \mu_{3} k_{2}} \frac{d}{d s}\left(\frac{1}{k_{1}}\right)\right)\right)\right\}=0
$$

Proof. The position vector of the Frenet retracted curve $\eta_{r}(s)$ of the Frenet curve $\eta(s)$ in E_{1}^{4}, by taking $v_{1}(s)=0$, in equation (2), cab be written as,

$$
\eta_{r}(\mathrm{~s})=v_{2}(s) N(s)+v_{3}(s) B_{1}(s)+v_{4}(s) B_{2}(s)
$$

where $\eta_{r}(\mathrm{~s})$ lies in the subspace $N B_{1} B_{2}$, and by taking $v_{1}(s)=0$, in equations (4),

$$
\begin{gather*}
\mu_{1} k_{1} v_{2}=1 \\
v_{2}^{\prime}+\mu_{3} k_{2} v_{3}=0 \tag{5}\\
v_{3}^{\prime}+\mu_{2} k_{2} v_{2}+\mu_{5} k_{3} v_{4}=0 \\
v_{4}^{\prime}+\mu_{4} k_{3} v_{3}=0
\end{gather*}
$$

By solving the system in equations (5), then the Frenet retracted curve $\eta_{r}(\mathrm{~s})$ satisfies the differential equation in their curvatures and this completes the proof.
Theorem 4.2. The position vector equations of the Frenet retraction curves $\eta_{r i}(\mathbf{s})$ of the Frenet curve $\eta(s)$ with non-zero curvatures in E_{1}^{4} can be written in the form,

$$
\begin{gathered}
\eta_{r 1}(\mathrm{~s})=\frac{1}{\mu_{1} k_{1}} N(s)+\frac{k_{1}^{\prime}}{\mu_{1} \mu_{3} k_{2} k_{1}^{2}} B_{1}(s)-\frac{1}{\mu_{5} k_{3}}\left(\frac{\mu_{2} k_{2}}{k_{1}}-\frac{d}{d s}\left(\frac{1}{\mu_{1} \mu_{3} k_{2}} \frac{d}{d s}\left(\frac{1}{k_{1}}\right)\right)\right) B_{2}(s), \\
\eta_{r 2}(\mathrm{~s})=(s+c) T(s)-\left(\frac{k_{1}(s+c)}{\mu_{3} k_{2}}\right) B_{1}(s)+\frac{1}{\mu_{3} k_{3}} \frac{d}{d s}\left(\frac{k_{1}(s+c)}{\mu_{3} k_{2}}\right) B_{2}(s), \\
\eta_{r 3}(\mathrm{~s})=\frac{c \mu_{3}}{\mu_{2} k_{1}} \frac{d}{d s}\left(\frac{k_{3}}{k_{2}}\right) T(s)+\frac{c \mu_{1} k_{1}}{\mu_{3} k_{2}} N(s)+c B_{2}(s), \\
\eta_{r 4}(\mathrm{~s})=\frac{\mu_{5} \bar{c}}{\mu_{2} k_{1}} \frac{d}{d s}\left(\frac{k_{3}}{k_{2}}\right) T(s)-\frac{\mu_{5} \bar{c} k_{3}}{\mu_{2} k_{2}} N(s)+\bar{c} B_{1}(s),
\end{gathered}
$$

where \bar{c} be non-zero constant.
Proof. The position vector equations of the Frenet retraction curves $\eta_{r i}(\mathrm{~s})$ of the Frenet curve $\eta(s)$ with non-zero curvatures in E_{1}^{4} can be written in the form,

$$
\eta_{r i}(\mathrm{~s})=\sum_{j=1}^{4} v_{j} W_{j}, \quad i, j \in\{1,2,3,4\}, \quad v_{j}=0, \quad \text { when } i=j
$$

where $W_{1}=T, \quad W_{2}=N, W_{3}=B_{1}$, and $W_{4}=B_{2}$, so we get,

$$
\eta_{r 1}(\mathrm{~s})=v_{2}(s) N(s)+v_{3}(s) B_{1}(s)+v_{4}(s) B_{2}(s)
$$

From equations (5), where $v_{1}(s)=0$, then we get,

$$
v_{2}(s)=\frac{1}{\mu_{1} k_{1}}, \quad v_{3}(s)=\frac{k_{1}^{\prime}}{\mu_{1} \mu_{3} k_{2} k_{1}{ }^{2}} \quad \text { and } \quad v_{4}(s)=-\frac{1}{\mu_{5} k_{3}}\left(\frac{\mu_{2} k_{2}}{k_{1}}-\frac{d}{d s}\left(\frac{1}{\mu_{1} \mu_{3} k_{2}} \frac{d}{d s}\left(\frac{1}{k_{1}}\right)\right)\right),
$$

and the position vector equations of the Frenet retraction curve $\eta_{r 1}(s)$ of the Frenet curve $\eta(s)$ with non-zero curvatures can be written as follow,

$$
\eta_{r 1}(\mathrm{~s})=\frac{1}{\mu_{1} k_{1}} N(s)+\frac{k_{1}^{\prime}}{\mu_{1} \mu_{3} k_{2} k_{1}^{2}} B_{1}(s)-\frac{1}{\mu_{5} k_{3}}\left(\frac{\mu_{2} k_{2}}{k_{1}}-\frac{d}{d s}\left(\frac{1}{\mu_{1} \mu_{3} k_{2}} \frac{d}{d s}\left(\frac{1}{k_{1}}\right)\right)\right) B_{2}(s)
$$

Similarly, we can find the Frenet retraction curves $\eta_{r 2}(\mathrm{~s}), \eta_{r 3}(\mathrm{~s}), \eta_{r 4}(\mathrm{~s})$ and this completes the proof.
Corollary 4. 1. The Frenet equations of the Frenet curves with non-zero constant curvatures in the Euclidean space E^{4}, are coincide with the Frenet equations of the Frenet curves of constant curvatures in Minkowski 4-space E_{1}^{4}, if $\mu_{1}=\mu_{3}=\mu_{5}=-1$, and $\mu_{2}=\mu_{4}=1$.
Proof. The proof is clear by substituting $\mu_{1}=\mu_{3}=\mu_{5}=-1$ and $\mu_{2}=\mu_{4}=1$, in equations (4). with the same constant curvatures. Then we have

$$
\left(\begin{array}{c}
T^{\prime} \\
N^{\prime} \\
B_{1}^{\prime} \\
B_{2}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
0 & k_{1} & 0 & 0 \\
-k_{1} & 0 & k_{2} & 0 \\
0 & -k_{2} & 0 & k_{3} \\
0 & 0 & -k_{3} & 0
\end{array}\right)\left(\begin{array}{c}
T \\
N \\
B_{1} \\
B_{2}
\end{array}\right)
$$

which they have the same position vector, and this completes the proof.

5. Frenet curves with constant curvatures in E_{1}^{4} and their Deformation retracts.

The deformation retract ($D . R$) of $\eta(s) \subset \mathrm{E}_{1}^{4}$ into $\eta_{r 1}(\mathrm{~s})=r_{1}(\eta(s))$ is given by

$$
\mathrm{D}(\mathrm{x}, \mathrm{~h})=\mathrm{e}^{\mathrm{h}}(1-h)\{\eta(\mathrm{s})\}+\frac{h}{2}(\mathrm{~h}+1)\left\{\eta_{6}(s)\right\}, m \in \mathbb{R}-\{0\}
$$

where $\mathrm{D}(\mathrm{x}, 0)=\{\eta(s)\}$, and $\mathrm{D}(\mathrm{x}, 1)=\left\{\eta_{1}(s)\right\}$.
The D.R of $\eta(s) \subset \mathrm{E}_{1}^{4}$ into $\eta_{r 2}(\mathrm{~s})=r_{2}(\eta(s))$ is given by

$$
\mathrm{D}(\mathrm{x}, \mathrm{~h})=\frac{(1-h)}{2} 2^{(1-\mathrm{h})}\{\eta(s)\}+\left(\frac{2 \mathrm{~h}}{1+\mathrm{h}}\right)\left\{\eta_{2}(\mathrm{~s})\right\}
$$

where $\mathrm{D}(\mathrm{x}, 0)=\{\eta(s)\}$, and $\mathrm{D}(\mathrm{x}, 1)=\left\{\eta_{2}(s)\right\}$.
The $\quad \mathrm{D} . \mathrm{R}$ of $\eta(s) \subset \mathrm{E}_{1}^{4}$ into $\eta_{r 3}(\mathrm{~s})=r_{3}(\eta(s))$ is given by

$$
\mathrm{D}(\mathrm{x}, \mathrm{~h})=\left(\frac{1-\mathrm{h}}{1+\mathrm{h}}\right)\{\eta(s)\}+\left(\mathrm{he}^{\mathrm{h}-1}\right)\left\{\eta_{3}(\mathrm{~s})\right\}
$$

where $\mathrm{D}(\mathrm{x}, 0)=\{\eta(s)\}$ and $\mathrm{D}(\mathrm{x}, 1)=\left\{\eta_{3}(s)\right\}$.
The D.R of $\eta(s) \subset \mathrm{E}_{1}^{4}$ into $\eta_{r 4}(\mathrm{~s})=r_{4}(\eta(s))$ is given by

$$
\mathrm{D}(\mathrm{x}, \mathrm{~h})=\left(\frac{2 h}{h+1}\left(\mathrm{e}^{\mathrm{h}-1}\right)\right)\{\eta(s)\}+\left\{(|h-1|) \eta_{3}(\mathrm{~s})\right\}
$$

where $\mathrm{D}(\mathrm{x}, 0)=\{\eta(s)\}$, and $\mathrm{D}(\mathrm{x}, 1)=\left\{\eta_{4}(s)\right\}$.
Let the Frenet curves equation with constant curvatures be represented as follows:

$$
\eta(\mathrm{s})=v_{1}(s) T(s)+v_{2}(s) N(s)+v_{3}(s) B_{1}(s)+v_{4}(s) B_{2}(s)
$$

where k_{1}, k_{2} and k_{3} are non-zero constant curvatures.
Theorem 5.1. Let η (s) be a Frenet curve in E_{1}^{4} in equation (2) with non-zero constant curvatures, then the position vector of $\eta(\mathrm{s})$ has been presented by the curvature functions

$$
\begin{gather*}
v_{1}(s)=-\mu_{1} k_{1}\left(\frac{-c_{1} e^{-\lambda_{1} s}+c_{2} e^{\lambda_{1} s}}{\lambda_{1}}+\frac{-c_{3} e^{-\lambda_{2} s}+c_{4} e^{\lambda_{2} s}}{\lambda_{2}}\right)+c_{0}, \\
v_{2}(s)=c_{1} e^{-\lambda_{1} s}+c_{2} e^{\lambda_{1} s}+c_{3} e^{-\lambda_{2} s}+c_{4} e^{\lambda_{2} s}+\frac{1}{\mu_{1} k_{1}}, \tag{6}\\
v_{3}(s)=\frac{1}{k_{2}}\left(\left(\frac{\left.\left.\lambda_{1}{ }^{2}+{k_{1}{ }^{2}}_{\lambda_{1}}\right)\left(-c_{1} e^{-\lambda_{1} s}+c_{2} e^{\lambda_{1} s}\right)+\left(\frac{\lambda_{2}{ }^{2}+k_{1}{ }^{2}}{\lambda_{2}}\right)\left(-c_{3} e^{-\lambda_{2} s}+c_{4} e^{\lambda_{2} s}\right)\right)+\frac{k_{1}}{k_{2}} c_{5},}{v_{4}(s)=-\mu_{4} k_{3} \int v_{3}(s) d s} \begin{array}{l}
=-\frac{\mu_{4} k_{3}}{k_{2}}\left(\left(\frac{\lambda_{1}{ }^{2}+k_{1}{ }^{2}}{\lambda_{1}{ }^{2}}\right)\left(c_{1} e^{-\lambda_{1} s}+c_{2} e^{\lambda_{1} s}\right)+\left(\frac{\lambda_{2}{ }^{2}+k_{1}{ }^{2}}{\lambda_{2}{ }^{2}}\right)\left(c_{3} e^{-\lambda_{2} s}+c_{4} e^{\lambda_{2} s}\right)\right)+\frac{k_{1}}{k_{2}} c_{5} s+c_{6} .
\end{array} .\right.\right.
\end{gather*}
$$

Where $c_{l},(0 \leq l \leq 6)$ are integral constants and

$$
\begin{gather*}
A=-\left(\mu_{1} k_{1}^{2}+\mu_{2} \mu_{5} k_{2}^{2}+\mu_{4} \mu_{5} k_{3}^{2}\right) \\
B=\mu_{1} \mu_{4} \mu_{5} k_{1}^{2}{k_{3}}^{2}, \tag{7}\\
\lambda_{1}=\frac{\sqrt{-2 A-2 \sqrt{A^{2}-4 B}}}{2} \\
\lambda_{2}=\frac{\sqrt{-2 A+2 \sqrt{A^{2}-4 B}}}{2}
\end{gather*}
$$

Proof. Let $\eta(\mathrm{s})$ be a constant curvatures Frenet curve in E_{1}^{4}, by differentiating the second and third equations in equations (4), for $\mu_{i}(1 \leq i \leq 5), \mu_{i} \in\{1,-1\}$, so we can get the system,

$$
\begin{align*}
& v_{1}^{\prime}=1-\mu_{1} k_{1} v_{2} \\
& v_{2}^{\prime \prime}=-\mu_{5} k_{2} v_{3}^{\prime}-k_{1}\left(1-\mu_{1} k_{1} v_{2}\right) \tag{8}\\
& v_{3}^{\prime \prime}=\mu_{4} \mu_{5} k_{3}^{2} v_{3}-\mu_{2} k_{2} v_{2}^{\prime} \\
& v_{4}^{\prime}+\mu_{4} k_{3} v_{3}=0
\end{align*}
$$

By solving the system in equations (8), which has non-trivial solution (6), and this completes the proof.
Corollary 5.1. Let $\eta(s)$ be a constant curvature time like curve in (2). Then the position vector of $\eta(s)$ has been presented by the curvature functions in (6), when $\mu_{i}(1 \leq i \leq 5)$ read, $\mu_{3}=\mu_{5}=-1, \mu_{1}=\mu_{2}=$ $\mu_{4}=1$.
Corollary 5.2.The position vector of the Frenet retraction curves $\eta_{r i}(s)$ of the Frenet curve $\eta(s)$ with non-zero constant curvatures in E_{1}^{4} can be written in the form,

$$
\begin{gather*}
\eta_{r 1}(\mathrm{~s})=\frac{1}{\mu_{1} k_{1}} N(s) \\
\eta_{r 2}(\mathrm{~s})=(s+c) T(s)-\left(\frac{k_{1}(s+c)}{\mu_{3} k_{2}}\right) B_{1}(s) \tag{9}\\
\eta_{r 3}(\mathrm{~s})=\frac{c \mu_{1} k_{1}}{\mu_{3} k_{2}} N(s)+c B_{2}(s) \\
\eta_{r 4}(\mathrm{~s})=\frac{\mu_{5} \bar{c} k_{3}}{\mu_{2} k_{2}} N(s)+\bar{c} B_{2}(s),
\end{gather*}
$$

where \bar{c} be non-zero constant.
Now we introduce the retraction for the position vector of Frenet curves $\eta(s)$ as follow:

$$
\eta(\mathrm{s})=v_{1}(s) T(s)+v_{2}(s) N(s)+v_{3}(s) B_{1}(s)+v_{4}(s) B_{2}(s),
$$

for some differentiable functions $v_{j}(s), 1 \leq j \leq 4$.
Let $r_{i}:\{\eta(\mathrm{s})-\delta\} \rightarrow\{\eta(\mathrm{s})-\delta\}^{*}$. Where $\{\eta(\mathrm{s})-\delta\}$ be open Frenet curve in E_{1}^{4} and $\{\eta(\mathrm{s})-\delta\}^{*}$ be the retraction of the position vector $\eta(\mathrm{s})$.
The retraction $r_{5}(\eta(s))=\eta_{5}(s)$, by substituting $c_{1}=0$ in equations (6),

$$
r_{5}(\eta(\mathrm{~s}))=\eta_{5}(s)=v_{r 5_{1}}(s) T(s)+v_{r 5_{2}}(s) N(s)+v_{r 5_{3}}(s) B_{1}(s)+v_{r 5_{4}}(s) B_{2}(s)
$$

The retraction $r_{6}(\eta(s))=\eta_{6}(s)$, by substituting $c_{2}=0$ in equations (6),

$$
r_{6}(\eta(\mathrm{~s}))=\eta_{6}(s)=v_{r 6_{1}}(s) T(s)+v_{r 6_{2}}(s) N(s)+v_{r 6_{3}}(s) B_{1}(s)+v_{r 6_{4}}(s) B_{2}(s)
$$

The retraction $r_{7}(\eta(s))=\eta_{7}(s)$, by substituting $c_{3}=0$ in equations (6),

$$
r_{7}(\eta(\mathrm{~s}))=\eta_{7}(s)=v_{r 7_{1}}(s) T(s)+v_{r 7_{2}}(s) N(s)+v_{r 7_{3}}(s) B_{1}(s)+v_{r 7_{4}}(s) B_{2}(s)
$$

The retraction $r_{8}(\eta(s))=\eta_{8}(s)$, by substituting $c_{4}=0$ in equations (6),

$$
r_{8}(\eta(\mathrm{~s}))=\eta_{8}(s)=v_{r 8_{1}}(s) T(s)+v_{r 8_{2}}(s) N(s)+v_{r 8_{3}}(s) B_{1}(s)+v_{r 8_{4}}(s) B_{2}(s)
$$

The retraction $r_{9}(\eta(s))=\eta_{9}(s)$, by substituting $B_{1}=0$ in equation (2),

$$
r_{9}(\eta(s))=\eta_{9}(s)=v_{1}(s) T(s)+v_{2}(s) N(s)+v_{4}(s) B_{2}(s)
$$

The retraction $r_{10}(\eta(s))=\eta_{10}(s)$, by substituting $B_{2}=0$ in equation (2),

$$
r_{10}(\eta(s))=\eta_{10}(s)=v_{1}(s) T(s)+v_{2}(s) N(s)+v_{3}(s) B_{1}(s)
$$

The retraction $r_{11}(\eta(s))=\eta_{11}(s)$, by substituting $B_{1}=0$ and $B_{2}=0$, in equation (2),

$$
r_{11}(\eta(s))=\eta_{11}(s)=v_{1}(s) T(s)+v_{2}(s) N(s)
$$

The deformation retracts of Frenet curves with constant curvatures in Minkowski 4-space, where the deformation retract of the Frenet curve is defined as:

$$
\varphi:\{\eta(\mathrm{s})-\delta\} \times I \rightarrow\{\eta(\mathrm{~s})-\delta\},
$$

where $\{\eta(\mathrm{s})-\delta\}$ is open Frenet curve in E_{1}^{4} and $\{\eta(\mathrm{s})-\delta\}^{*}$ is the retraction of the position vector $\eta(\mathrm{s})$ and I is the closed interval $[0,1]$, is presented by

$$
\varphi(x, h):\{\eta(\mathrm{s})-\delta\} \times I \rightarrow\{\eta(\mathrm{~s})-\delta\} .
$$

The deformation retract $(D . R)$ of $\eta(s) \subset \mathrm{E}_{1}^{4}$ into the retraction $\mathrm{r}_{1}(\eta)=\eta_{1}(s)$ is

$$
\mathrm{D}(\mathrm{x}, \mathrm{~h})=(1-\mathrm{h})^{\frac{m}{n}}\{\eta(s)\}+\mathrm{h}^{\frac{m}{n}}\left\{\eta_{1}(s)\right\}
$$

where $\mathrm{D}(\mathrm{x}, 0)=\eta(\mathrm{s})$, and $\mathrm{D}(\mathrm{x}, 1)=\eta_{1}(\mathrm{~s}), m, n \in \mathbb{N}-\{1\}$.
The D. R of $\eta(s) \subset \mathrm{E}_{1}^{4}$ into $\mathrm{r}_{2}(\eta)=\eta_{2}(s)$ be

$$
\mathrm{D}(\mathrm{x}, \mathrm{~h})=\sin \left(\frac{\pi(1-\mathrm{h})}{2}\right)\{\eta(s)\}+\cos \left(\frac{\pi(1-\mathrm{h})}{2}\right)\left\{\eta_{2}(s)\right\} . n \in \mathbb{N}
$$

where $\mathrm{D}(\mathrm{x}, 0)=\{\eta(s)\}$, and $\mathrm{D}(\mathrm{x}, 1)=\left\{\eta_{2}(s)\right\}$.
The $D . R$ of $\eta(s) \subset \mathrm{E}_{1}^{4}$ into $\mathrm{r}_{3}(\eta)=\eta_{3}(s)$ is

$$
\mathrm{D}(\mathrm{x}, \mathrm{~h})=|\mathrm{h}-1|\{\eta(s)\}+\frac{m \mathrm{~h}}{m-1+\mathrm{h}}\left\{\eta_{3}(s)\right\}, \quad m \in \mathbb{R}-\{0\}
$$

where $\mathrm{D}(\mathrm{x}, 0)=\{\eta(\mathrm{s})\}$, and $\mathrm{D}(\mathrm{x}, 1)=\left\{\eta_{3}(s)\right\}$.
The $D . R$ of $\eta(s) \subset \mathrm{E}_{1}^{4}$ into $\mathrm{r}_{4}(\eta)=\eta_{4}(s)$ be

$$
\mathrm{D}(\mathrm{x}, \mathrm{~h})=(1-\mathrm{h})\{\eta(s)\}+\mathrm{h}\left\{\eta_{4}(s)\right\}
$$

where $\mathrm{D}(\mathrm{x}, 0)=\eta(s)$, and $\mathrm{D}(\mathrm{x}, 1)=\eta_{4}(\mathrm{~s}), m, n \in \mathbb{N}-\{1\}$.
The D. R of $\eta(s) \subset \mathrm{E}_{1}^{4}$ into $\mathrm{r}_{5}(\eta)=\eta_{5}(s)$ is

$$
\mathrm{D}(\mathrm{x}, \mathrm{~h})=\sqrt[m]{1-\mathrm{h}}\{\eta(s)\}+\sqrt[m]{\mathrm{h}}\left\{\eta_{5}(s)\right\}, m \in \mathbb{N}
$$

where $\mathrm{D}(\mathrm{x}, 0)=\{\eta(s)\}$, and $\mathrm{D}(\mathrm{x}, 1)=\left\{\eta_{5}(s)\right\}$.
The $D . R$ of $\eta(s) \subset E_{1}^{4}$ into $\mathrm{r}_{6}(\eta)=\eta_{6}(s)$ is given by

$$
\mathrm{D}(\mathrm{x}, \mathrm{~h})=|\mathrm{h}-1|\{\eta(s)\}+\frac{2 \mathrm{he}^{(1-\mathrm{h})}}{1+\mathrm{h}}\left\{\eta_{6}(s)\right\}
$$

where $\mathrm{D}(\mathrm{x}, 0)=\{\eta(\mathrm{s})\}$, and $\mathrm{D}(\mathrm{x}, 1)=\left\{\eta_{6}(s)\right\}$.
The D.R of $\eta(s) \subset \mathrm{E}_{1}^{4}$ into $\mathrm{r}_{7}(\eta)=\eta_{7}(s)$ be

$$
\mathrm{D}(\mathrm{x}, \mathrm{~h})=\left(\frac{1-\mathrm{h}}{1+\mathrm{h}}\right)\{\eta\}+\left(\frac{2 \mathrm{~h}}{1+\mathrm{h}}\right)\left\{\eta_{7}(\mathrm{~s})\right\}
$$

where $\mathrm{D}(\mathrm{x}, 0)=\{\eta(s)\}$, and $\mathrm{D}(\mathrm{x}, 1)=\left\{\eta_{7}(s)\right\}$.
The D.R of $\eta(s) \subset \mathrm{E}_{1}^{4}$ into $\mathrm{r}_{8}(\eta)=\left\{\eta_{8}(s)\right\}$ be

$$
\mathrm{D}(\mathrm{x}, \mathrm{~h})=\cos \left(\left(\frac{\pi}{2}+2 n \pi\right) \mathrm{h}\right)\{\eta(s)\}-\sin \left(\left(\frac{\pi}{2}+2 n \pi\right) \mathrm{h}\right)\left\{\eta_{8}(s)\right\}, n \in \mathbb{N}
$$

where $\mathrm{D}(\mathrm{x}, 0)=\{\eta(s)\}$, and $\mathrm{D}(\mathrm{x}, 1)=\left\{\eta_{8}(s)\right\}$.
Theorem 5.2. The deformation retract of any Frenet curve in E_{1}^{4} be a Frenet curve if and only if the Frenet apparatus $\left\{T_{r}, N_{r}, B_{r}, k_{1 r}, k_{2 r}, k_{3 r}\right\}$ of the retracted curve $\Omega(s)=r(\eta(\mathrm{~s}))$ can be formed by the Frenet apparatus $\left\{T, N, B, k_{1}, k_{2}, k_{3}\right\}$ of $\eta(\mathrm{s})$.
Proof. Let $D(s, h)=p(h) \eta(s)+q(h) r(\eta)$ be a deformation retract of the Frenet curve $\eta(s)$ where $D(s, 0)=$ $\eta(s)$ and $D(s, 1)=r(\eta)$.

$$
\begin{gathered}
D^{\prime}(s, h)=p(h) \eta^{\prime}(s)+q(h) r^{\prime}(\eta) \eta^{\prime}(s)=p(h) T(s)+q(h) r^{\prime}(\eta) T(s), \\
\left\langle D^{\prime}(s, h), D^{\prime}(s, h)\right\rangle=\left\langle T_{D}^{\prime}, T_{D}^{\prime}\right\rangle=\left\langle p(h) T(s)+q(h) r^{\prime}(\eta) T(s), p(h) T(s)+q(h) r^{\prime}(\eta) T(s)\right\rangle \neq 0 .
\end{gathered}
$$

Then the deformation retract of any Frenet curve in E_{1}^{4} be Frenet curve, since we can find that $\left\langle N_{D}^{\prime}, N_{D}^{\prime}\right\rangle \neq 0$, and $\left\langle B_{1_{D}}{ }^{\prime}, B_{1_{D}}{ }_{D}\right\rangle \neq 0$. Conversely this is clear by assume that the Frenet apparatus of the retracted curve $\phi(s)=$ $r(\eta(\mathrm{~s}))$ can be formed by the Frenet apparatus of $\eta(\mathrm{s})$ and by using the Frenet equations for the Frenet curves.
Conclusion. In this paper, the position vector equation of the Frenet curves with constant curvatures and non-zero curvatures in Minkowski 4 -space has been presented. The retractions and Frenet frame of Frenet curves in E_{1}^{4} are deduced. The relations between the deformation retracts and Frenet Frame of Frenet curves are obtained.

References

A. E. El-Ahmady \& A.T.M. Zidan, (2018). On hyperbola in Minkowski3-space and its deformations. International Journal of Applied Mathematics and Statistics, 57(5), 115-127.
A. E. El-Ahmady \& A.T.M. Zidan, (2019). On the retraction of pseudo null space-like curves in Minkowski 3space. JP Journal of Geometry and Topology, 23(2), 89-106. https://doi.org/10.17654/GT023020089
A. E. El-Ahmady \& A.T.M. Zidan. (2020). On Helix in Minkowski 3-space and its Retractions. international j.Math. combin. 1, 90-104. https://doi.org/10.5539/mas.v14n4p90
A. E. El-Ahmady, (2007). The variation of the density on chaotic spheres in chaotic space-like Minkowski space time, Chaos, Solutions and Fractals, 31, 1272-1278. https://doi.org/10.1016/j.chaos.2005.10.112
A. E. El-Ahmady, Malak E. Raslan \& A.T.M. Zidan. (2020). On Null Curves in Minkowski 3-Space and Its Fractal Folding. Modern applied science, 14(4), 90-98. https://doi.org/10.5539/mas.v14n4p90
A. E. El-Ahmady. (2014). Fuzzy deformation retract of fuzzy spheres in fuzzy Minkowski space $\overline{\mathrm{M}}^{\mathrm{n}+1}$. The Journal of Fuzzy Mathematics, 22(3), 555-563.
J .Walrave. (1995). Curves and surfaces in Minkowski space, Ph.D. Thesis, ProQuest LLC, AnnArbor, Mich, USA, Katholieke Universiteit, Leuven, Belgium.
M. Turgut \& S. Yilmaz. (2008). Characterizations of Some Special Space-like Curves in Minkowski space-time, International J.Math. Combin, 2, 17-22.
R. Lopez. (2008). Differential geometry of curves and surfaces in Lorentz - Minkowski space, Instituto de Matematica Estatistica, University of Sao Paulo, Brazil.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

