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Abstract 
Tissue phantoms are widely used as substitute materials for real tissue validation of various newly emerging 
biomedical technologies such as ultrasound (US), computed tomography (CT), and magnetic resonance imaging 
(MRI). However, there is no specific recipe for fabricating skin-mimicking phantoms which can mimic both the 
mechanical and dielectric properties of human skin at lower frequency ranges.  

The objective of this paper is to present a variety of tissue-mimicking materials for filling this research gap in the 
lower frequency range from 20 Hz to 300 kHz. The starting point of our experiments is based on the 
oil-in-gelatin based tissue-mimicking materials (TMMs) that have shown to mimic the dielectric properties of 
human skin in higher frequency ranges. This paper examines the mechanical and dielectric performance of five 
major classes of tissue-mimicking materials (1) Oil-in-gelatin, (2) lignin and graphene nanopowder in gelatin, (3) 
gelatin and distilled water, (4) mixed oil in gelatin and distilled water, and (5) lignin in gelatin and distilled 
water.  

Mechanical and electrical testing was performed using compression testing and parallel plate method 
respectively. The effect of electrode polarization was considered in the measured data and the intrinsic 
impedance values were found to be following the Cole-Cole equation. The Young's modulus range of all 
tissue-mimicking materials was within the range of skin. 

Keywords: Tissue Mimicking Materials (TMMs), gelatin, graphene nanopowder, lignin, Cole-Cole plot, 
dielectric constant, Young's modulus (YM) 

1. Introduction 
Tissue-mimicking (TM) phantoms are vivid models of real human tissue that exhibit realistic properties of 
tissues in certain areas (Porter et al., n.d.). As real human tissue samples are difficult to obtain and store (Bot et 
al., 2009) (Singh et al., 2016), tissue phantoms are making a significant contribution to the characterization of 
the new imaging technologies and medical training. Human skin is the heaviest and vastest organ of the human 
body, which performs critical functions to human health, especially in regulation and protection. The 
development of the skin phantoms will facilitate the development of biomedical applications and contribute to 
skin clinical research, particularly for cosmetic, dermatology, and detection of cutaneous pathology (Kalra et al., 
2016)(Garrett et al., 2014)(Moll and Dennis, n.d.)(Sugihara et al., 1991) (Meaney et al., 2012). 

Although the field of tissue-mimicking phantoms manufacturing is becoming more attractive and many 
researchers have achieved active explorations in it, there is no specific recipe for fabricating skin-mimicking 
phantoms that can properly match mechanical and electrical properties of human skin. The dielectric properties 
of most existing skin-mimicking phantoms were measured at high frequencies (normally over 500MHz) to 
satisfy the requirement of microwave imaging technology (Meaney et al., 2012) (Popovic et al., 2005). To date, 
less research has been done on phantoms mimicking human skin at low frequencies because of the error 
introduced due to the electrode-polarization effect.  

However, this relatively blank research area has attracted more attention recently with the gradual clinical 
application of low-frequency technologies such as electrical impedance tomography (EIT) (Riu and Anton, 2010) 
(Ahn et al., 2010). The adjustable frequency of currently commercial devices of EIT for clinical use is below 150 
kHz (Orschulik and Menden, 2017).  
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2.1 Oil-in-Gelatin TMM 

The investigated materials are mainly a mixture of gelatin solution and a solution of mixed oil (50 vol% 
kerosene and 50 vol% safflower oil). The volume content of the mixed oil (from 0 to 40%) is the variation factor 
to tune the properties of the prepared samples (details in table 3).  

For comparison purposes, samples without adding oil were also prepared. The five main steps of preparing the 
oil-in-gelatin TMMs are described below. 

Step 1: Prepare isopropyl alcohol-based solvent by mixing p-toluic acid (powder) with n-propanol. 

Step 2:  Add the solvent produced in Step I using a quantitative pipette into a new small beaker. Add the 
desired amount of deionized (DI) water and mix the solution at room temperature until the solution becomes 
white.  
Step 3: Add dry mass gelatin into the solution and keep stirring. Heat and stir the mixture on a hotplate at 100℃ 
of temperature until the mixture becomes transparent (see figure 6). 

 

 
Figure 6. The gelatin solution changed from turbid (left) to transparent (right) 

Step 4: Prepare the desired amount of mixed oil (50 vol% kerosene and 50 vol% safflower oil) in another beaker 
and heat at 50 ℃. Pour the gelatin mixture prepared in step 3 and liquid surfactant into the beaker. 

Step 5: Stop stirring when the emulsion becomes uniform and almost white (about 2 minutes). Remove all air 
bubbles and pour the solution into a mold. (Figure 7). 
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Figure 7. The oil-in-gelatin TMMs 

Table 3. The concentration of each ingredient in oil-in-gelatin TMMs samples 

No. mixed oil p-toluic acid Isopropyl Alcohol DI water Gelatin surfactant 

vol% wt% wt% wt% wt% wt% wt% 

1 0 0 0.086 3.32 81.93 14.66 0 

2 5 4.24 0.080 3.09 78.93 13.63 2.77 

3 10 8.31 0.074 2.86 70.71 12.65 5.4 

4 15 12.2 0.069 2.65 65.42 11.70 7.96 

5 20 16 0.063 2.44 60.30 10.80 10.41 

6 25 19.6 0.058 2.25 55.43 9.92 12.74 

7 30 23 0.053 2.06 50.81 9.08 15 

8 40 29.6 0.044 1.70 41.87 7.50 19.29 

 

2.2 Lignin/ Graphene Nanopowder TMM 

Desired quantities of Lignin (0- 6wt%) and graphene nanopowder (0 to 0.15%) were added to the gelatin mixture 
prepared above in Step III (see figure 8). The rest of the recipe was the same as used to prepare oil-in-gelatin 
mixtures. The concentrations of each ingredient can be seen in tables 4 and 5. 

Table 4. Compositions of oil-in-gelatin samples on adding lignin 

Lignin mixed oil p-tol. acid Isopropyl Alcohol DI water Gelatin surfactant
wt% wt% wt% wt% wt% wt% wt% 

0 16 0.063 2.44 60.30 10.80 10.41 

2 15.65 0.062 2.40 59.10 10.59 10.20 

4 15.33 0.061 2.35 57.90 10.36 10.0 

6 15.01 0.060 2.30 56.71 10.14 9.78 
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A circular cutter consisting of two concentric blades with diameters 44.6mm and 52.6mm was designed and 
manufactured. Homogeneous film samples of the TMMs were generated by pouring the molten mixture (above 
45℃) into a petri dish with a height of 5mm to solidify. After the mixture was cured, the cutting tool was used to 
cut a circular film of desired dimensions (Figure 13).   

 
Figure 13. 3D design of a cutting tool and a sample cut in the desired shape 

2.7 Mechanical Testing of the TMMs 

A compression test was performed on the samples to evaluate their Young’s Modulus (YM) using a TA.XT.Plus 
Texture Analyzer from Stable Micro Systems (Surrey, UK). The settings listed in table 9 were used to obtain a 
stress-strain curve, from which YM was calculated. 

Table 9. Settings used in TA.XT.Plus texture analyzer 

Caption Value 

Test Mode Compression 

Pre-test Speed 1.00 mm/sec 

Test Speed 0.5 mm/sec 

Post-Test Speed 1.00 mm/sec 

Target Mode Strain 

Strain 25% 

Trigger type Force 

Trigger force 0.05N 
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Table 11. YM calculated from Stress-strain plots on increasing Oil in gelatin 

Samples 1 2 3 4 5 6 7 8 9 
Oil content (In 

volume) 
0% 5% 10% 15% 20% 25% 30% 35% 40% 

Young’s 
modulus (Pa) 

50832 50792 40100 39193 38211 33053 28352 19610 8249 

 

Electrical properties 

 
 

Figure 17. The permittivity of the oil-in-gelatin TMMs and actual skin 

 

 

 
Figure18. The conductivity of the oil-in-gelatin TMMs and actual skin 
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Figure 19. Cole-Cole plot for the 20 vol% oil sample 

3.2 Lignin/ Graphene Nanopowder TMM 

Mechanical Properties 
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Figure 20. The stress-strain plot of oil-in-gelatin sample on adding 4 wt% lignin 

 

Table 12. YM calculated from Stress-strain plots on increasing Lignin concentration in Oil +gelatin mixture 

Samples 1 2 3 4 

Lignin content 
(wt %) 

0% 2% 4% 6% 

Young’s modulus 
(Pa) 

38211 28243 30387 33848 

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70

R
ea

ct
an

ce
, X

 (
O

hm
s)

Resistance, R (Ohms)

y = 30387x - 1000.3
R² = 0.9988

0

1000

2000

3000

4000

5000

6000

7000

8000

0 0.05 0.1 0.15 0.2 0.25 0.3

S
tr

es
s 

  (
P

a)

Strain  (%)

4 wt% lignin



mas.ccsenet.org Modern Applied Science Vol. 14, No. 7; 2020 

17 
 

Graphene Nanopowder 

 
Figure 21. The stress-strain plot of oil-in-gelatin sample on adding 0.15 wt% graphene nanopowder 

Table 13. YM calculated from Stress-strain plots on increasing Graphene Nanopowder in Oil +gelatin mixture 

Samples 1 2 3 4 
Graphene 
Nanopowder 

content 
(wt %) 

0% 0.05% 0.1% 0.15% 

Young’s modulus 
(Pa) 

30387 28042 26511 25377 

Electrical Properties 

Lignin 

 
 

Figure 22. The permittivity of the lignin in oil+gelatin mixtures and actual skin 
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Figure 23. The conductivity of the lignin in oil+gelatin mixtures and actual skin 

 

 

Figure 24. Cole-Cole plot on adding 2wt% lignin in oil+gelatin mixture 
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Figure 25. The permittivity of the graphene nanopowder in oil+gelatin mixtures and actual skin 
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Figure 26. The conductivity of the graphene nanopowder in oil+gelatin mixtures and actual skin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. Cole-Cole plot on adding 0.05wt% graphene nanopowder in oil+gelatin mixture 
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3.3 Gelatin-DI TMM 

Electrical Properties 

 
Figure 28. The permittivity of the gelatin-DI TMMs and actual skin 

 

 
Figure 29. The conductivity of the gelatin-DI TMMs and actual skin 
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3.4 Gelatin-DI and Mixed Oil TMM 

Electrical Properties 

 
Figure 30. The permittivity of the gelatin-DI and mixed oil TMMs and actual skin 

 

 

Figure 31. The conductivity of the gelatin-DI and mixed oil TMMs and actual skin 

 

 

Figure 32. Cole-Cole plot on adding 5wt% mixed oil in a gelatin-DI mixture 
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3.5 Gelatin-DI and lignin TMM 

Electrical Properties 

 
Figure 33. The permittivity of the gelatin-DI and lignin TMMs and actual skin 

 

 
Figure 34. The conductivity of the gelatin-DI and lignin TMMs and actual skin 

 

 
Figure 35. Cole-Cole plot on adding 2wt% lignin in a gelatin-DI mixture 
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4. Discussion  
On testing the mechanical properties of oil in gelatin TMMs, it was observed that the YM increases on increasing 
the concentration of oil in gelatin. The range of YM of the oil-in-gelatin phantoms varied from 8 kPa to 50 kPa. 
This range is well within the YM of human skin, measured by indentation and suction techniques (5kPa to 260 
kPa), as stated in section I.  

The samples became more fragile and stickier when large volumes of oil were added in gelatin, therefore adding 
more than 30vol% oil in gelatin is not advisable. 

The changes in permittivity and conductivity with a frequency sweep can be seen in figures 17 and 18 
respectively. At lower frequencies, no significant change in the permittivity was observed on increasing the oil 
concentration. This outcome is different than the study performed by Lazebnik [26] in 2005 at higher frequencies 
(500MHz-20GHz). The contradiction in results can either be due to the addition of solvents- p-toluic acid 
(powder) and n-propanol in oil in gelatin TMMs or due to the polarization effect at low frequencies. However, 
the polarization effect was reduced using SSE curve fitting in Matlab, as discussed in section II, and the best 
Cole-Cole fit was achieved (see figure 19). The conductivities of the TMMs increased on increasing the oil 
concentration, which is in alignment with the trend in literature. 

The addition of lignin and graphene nanopowder further reduced the YM of the TMMs (tables 12 and 13), 
although the YM of TMMs (25kPa-33kPa) was closer to human skin than oil-in- gelatin TMMs. Adding more 
than 6% lignin to the mixture wasn’t feasible due to high viscosity and poor agitation of the mixture. The 
increase in YM on the addition of graphene nanopowder can be due to the suspension of insoluble graphene 
powder in the oil-gelatin based emulsions.  

An increase in the permittivity and conductivities of the TMMs was observed on increasing the concentration of 
lignin and graphene nanopowders in oil-in-gelatin mixtures. This trend is in agreement with the findings in the 
literature (Lan et al., n.d.). 

The measured data for both lignin and graphene nanopowders agreed with the Cole-Cole plot (figures 24 and 27), 
indicating their ability to mimic biological tissues. 

As seen from figure 28, the permittivity was almost unchangeable on increasing the concentration of gelatin in 
DI, although the conductivity of the gelatin-DI mixture was closer to wet and dry skin at 25 wt% concentration 
of gelatin in DI. 

However, on adding 5wt% mixed oil in gelatin-DI (see figure 30), the permittivity and conductivity dropped by 
17067 and 0.42 S/m, respectively, which is closer to the values for dry and wet skin. Similarly, the addition of 
lignin reduced the permittivity and conductivity of the samples at low frequencies. 

5. Conclusion 
This study examined the mechanical and electrical performance of five kinds of TMMs at a frequency range of 
20 Hz to 300 kHz. Amongst them, the oil-in-gelatin based TMMs were mainly standing on the contributions in 
(Lazebnik et al., 2005) (Lan et al., n.d.). The shreds of evidence from this study confirm that in general these 
tested TMMs can reach the mechanical requirement for fabricating skin phantoms.  

The mechanical properties of TMMs were tested using compression tests based on the assumption that they are 
homogeneous in nature. More accurate research in the future should consider the heterogeneous and anisotropic 
properties of human skin. 

This study fulfills the requirement of preparing high-quality skin phantoms using readily available materials at a 
lower frequency range. The electrode polarization effect, which occurs mainly at low frequencies was also 
removed using model fitting in Matlab, and a resemblance to the Cole-Cole plot was found in all TMMs. 

All proposed skin phantom materials reflect some regularity between the dielectric properties and ingredients’ 
concentrations. Although some exceptions cannot be explained, for example, the oil-in-gelatin based TMMs 
didn’t show a substantial increase in permittivity at higher concentrations of oil in contrast with the findings in 
the literature. 

The concentrations of oil, the lignin or graphene nanopowder can be further increased, but this will affect the 
Young’s Modulus of the TMMs.  

In conclusion, we propose the use of gelatin-DI TMMs doped with mixed oil or lignin for low-frequency 
applications. A concentration of 5-15wt% of mixed oil (50 vol% kerosene and 50 vol% sunflower oil) or 2-6wt% 
of lignin in Gelatin and DI mixtures are the most suitable choices for preparing TMMs for the skin. 
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Future work can be done in testing the shelf life and biocompatibility of these materials. 
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