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Abstract

Tissue phantoms are widely used as substitute materials for real tissue validation of various newly emerging
biomedical technologies such as ultrasound (US), computed tomography (CT), and magnetic resonance imaging
(MRI). However, there is no specific recipe for fabricating skin-mimicking phantoms which can mimic both the
mechanical and dielectric properties of human skin at lower frequency ranges.

The objective of this paper is to present a variety of tissue-mimicking materials for filling this research gap in the
lower frequency range from 20 Hz to 300 kHz. The starting point of our experiments is based on the
oil-in-gelatin based tissue-mimicking materials (TMMs) that have shown to mimic the dielectric properties of
human skin in higher frequency ranges. This paper examines the mechanical and dielectric performance of five
major classes of tissue-mimicking materials (1) Oil-in-gelatin, (2) lignin and graphene nanopowder in gelatin, (3)
gelatin and distilled water, (4) mixed oil in gelatin and distilled water, and (5) lignin in gelatin and distilled
water.

Mechanical and electrical testing was performed using compression testing and parallel plate method
respectively. The effect of electrode polarization was considered in the measured data and the intrinsic
impedance values were found to be following the Cole-Cole equation. The Young's modulus range of all
tissue-mimicking materials was within the range of skin.

Keywords: Tissue Mimicking Materials (TMMs), gelatin, graphene nanopowder, lignin, Cole-Cole plot,
dielectric constant, Young's modulus (YM)

1. Introduction

Tissue-mimicking (TM) phantoms are vivid models of real human tissue that exhibit realistic properties of
tissues in certain areas (Porter et al., n.d.). As real human tissue samples are difficult to obtain and store (Bot et
al., 2009) (Singh et al., 2016), tissue phantoms are making a significant contribution to the characterization of
the new imaging technologies and medical training. Human skin is the heaviest and vastest organ of the human
body, which performs critical functions to human health, especially in regulation and protection. The
development of the skin phantoms will facilitate the development of biomedical applications and contribute to
skin clinical research, particularly for cosmetic, dermatology, and detection of cutaneous pathology (Kalra et al.,
2016)(Garrett et al., 2014)(Moll and Dennis, n.d.)(Sugihara et al., 1991) (Meaney et al., 2012).

Although the field of tissue-mimicking phantoms manufacturing is becoming more attractive and many
researchers have achieved active explorations in it, there is no specific recipe for fabricating skin-mimicking
phantoms that can properly match mechanical and electrical properties of human skin. The dielectric properties
of most existing skin-mimicking phantoms were measured at high frequencies (normally over 5S00MHz) to
satisfy the requirement of microwave imaging technology (Meaney et al., 2012) (Popovic et al., 2005). To date,
less research has been done on phantoms mimicking human skin at low frequencies because of the error
introduced due to the electrode-polarization effect.

However, this relatively blank research area has attracted more attention recently with the gradual clinical
application of low-frequency technologies such as electrical impedance tomography (EIT) (Riu and Anton, 2010)
(Ahn et al., 2010). The adjustable frequency of currently commercial devices of EIT for clinical use is below 150
kHz (Orschulik and Menden, 2017).
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The objective of this paper is to present a variety of tissue-mimicking materials for manufacturing skin phantoms,
which can mimic the mechanical and electrical properties of real human tissue under different physical
conditions in low-frequency ranges (from 20Hz to 300 kHz). Also, the skin phantoms should present stable,
flexible, reliable properties and can be prepared in a standard lab (without expensive machinery) using
commonly available chemicals.

Schwan (Schwan, 1994) was the first person to fully described the main features of the dielectric spectrum of
most tissues with three dielectric dispersions (Lorenzo et al., 2018), as seen in Figure 1. The changes in dielectric
constant occur in three distinct major frequency regions: low-frequency (below 1 kHz), radio frequency (10 kHz
to 100 MHz), and high frequency (over 100 MHz), and are named a, 8 and y dispersions respectively
(Matthie, 2008)(Lorenzo et al., 2018).
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Figure 1. The variation of the relative permittivity (¢") with frequency for a typical biological tissue (Lorenzo et
al., 2018).

The low-frequency dispersion « is related to ionic diffusion processes at the site of the cellular membrane. The
y-dispersion of high frequency is due to the polarization of water molecules. However, the range of measurement
frequency (from 20 Hz to 60kHz)of our skin phantoms studies belongs to a and B-dispersions which are
commonly considered to be associated with the structure of the cell membranes and their interactions with the
intracellular and extra-cellular electrolytes (Pethig R, 1984).

The goal of this study is to prepare skin phantoms that can reflect the dielectric and mechanical properties of real
skin. Reliable measurement and prediction data of the dielectric and mechanical properties of actual skin have
been summarized in this section which will be used for comparison purposes in this study.

Human skin can be considered as a heterogeneous tissue consisting of four layers: Stratum Corneum, Epidermis,
Dermis, and Hypodermis (Kalra et al., 2016)(Groves et al., 2012). The mechanical properties of skin are usually
determined by Young’s Modulus.

Young’s Modulus of skin measured cross-sectionally using indentation tests is between 5 to 100 kPa. However,
measured values can depend on indenter geometry and whether quasistatic or dynamic testing is being performed.
Values of between 25 kPa and 140 MPa are typical for both tensile and torsion tests. Tensile tests indicate higher
Young's Modulus at higher strain rates, indicating that skin is viscoelastic. Young's Modulus measured by suction
tests spans 25 kPa to 260 kPa, which is between the ranges found from indentation (thickness-mode) and
tensile/torsion (in-plane mode). Suction tests are a common choice for skin testing, as they are easy to apply in
vivo and allow for additional deformation detection through, for example, imaging ultrasound [18].

The study of the dielectric properties of actual tissues belongs to basic and applied sciences. The theoretical
aspects and main findings of this topic have been extensively reviewed in (Pethig R, 1984) (Kyle et al.,
2004)(Cole and Cole, 1941)(Schwan, 1994)(Cole, 1972). The systematic records of the electrical properties of
human tissue began in the 1950s (C. Gabriel et al., 1996). Since that time, a large amount of measurement data
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records about the dielectric properties of biological tissues have been tested and collected. In 1996, Gabriel et al.
(C. Gabriel et al., 1996) presented an almost complete summarization of the data available in the literature,
which includes the electrical properties of 30 types of tissues in broad frequency ranges from kilo Hz to Mega
Hz. Amongst them, the collection of skin data is mainly divided into wet skin and dry skin (see table 1). In the
same year, Gabriel et al. again experimentally measured the dielectric properties of amount tissues using
swept-frequency network and impedance analyzers in the frequency range 10 Hz to 20 GHz.

The measuring data were shown to fall well within the literature data in (C. Gabriel et al., 1996) of the vast body.
Later, all the dielectric properties data of the spectrum from 10 Hz to 100 GHz was modeled by a four-pole
Cole-Cole model (S. Gabriel et al., 1996):

A f
e(w) = &, + Xy En/l + (jwt,) 1 + Gl/jweo M

Where og; is the ionic conductivity of the tissue at very low frequency, &, is the relative permittivity in the
infinite frequency, 7 is relaxation time and w is the angular frequency, Aeg, is the magnitude of the dispersion
and a is a parameter that depends on materials’ properties.

Table 1. Parameters used to estimate dielectric properties of dry and wet skin

Tissue &, A& T, a; Ae, T, a, A& T3 as Ag, Ty ay o

bpe (ps) (ns) (us) (ms)

Dry 40 320 7.23 0.00 1100 3248 0.2 0 N N 0 N N  2e4
skin
Wet 40 390 796 0.10 280 7958 0 3e¢4 159 0.16 3e4 1592 02 4de4
skin

Parameters of equation (1) are used to predict the dielectric properties of skin tissue in figures 2 and 3.

Skin (Wet)

1.0E+4

1.0E+3

1.0E+2

1.0E+1

1.0E+0

1.0E-1

1.0E-2

1.0E-4
1.0E+1 1.0E+2 1.0E+3 1.0E+4 1.0E+5 1.0E+6 1.0E+7 1.0E+8 1.0E+9 1.0E+10 1.0E+11

Frequency (Hz)

Figure 2. The relative permittivity properties (upper line) and the conductivity (lower line) of wet skin (8.
Gabriel et al., 1996).
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Figure 3. The relative permittivity properties (upper line) and the conductivity (lower line) of dry skin (S.
Gabriel et al., 1996).

In the last decades, several skin tissue phantoms have been presented using different tissue-mimicking materials
(TMMs). Depending on their main composition, there are mainly three types of TMMs- water-based,
oil-in-gelatin, and carbon-rubber-based(Garrett et al., 2014), (Moll and Dennis, n.d.). Water-based phantoms are
easily evaporated by air exposure and are not mechanically robust [6], (Abrelli et al., 2017), (Manuscript, 2011).
Therefore, they are not considered suitable for this study.

No direct references have been found to prepare TMMs which are tested in low-frequency ranges, thus the
existing techniques to prepare TMMs suitable for higher frequency testing will be used as a starting point in this
study.

For oil-in-gelatin materials, the content of gelatin and the content of mineral oil are two parameters that mainly
regulate the properties of the phantoms, and both can change the electrical properties individually. The
carbon-rubber-based TMMs are made from mixtures of carbon as conductive filler and rubber as the insulating
matrix. Garrett in 2004 (Garrett et al., 2014) tested several types of TMMs using carbon black and graphite as
carbon filler, silicon, and urethane rubber as rubber matrix through varying the concentrations of carbon filler to
test their dielectric properties in 1~10 GHz frequency range.

The methods and materials adopted to prepare TMMs for low-frequency range testing are mentioned in section
II.

2. Methods and Materials

As an exploratory study, the direction of exploration in each subsequent phase is always based on the
experimental performance of the previous phase. Figure 4 shows the general process of the methodology adopted
in this research.
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Figure 4. The main steps of this research

The specific content of our experiment can be summarized in three stages. A similar recipe of the oil-in-gelatin
TMMs in (Lazebnik et al., 2005)(Madsen et al., 1982) will be applied, and then lignin, carbon-based materials
(graphene Nanopowder) will be added.

The flow chart Figure 5 below shows the direction of this experiment. A list of chemicals used to prepare skin
phantoms is presented in table 2.

[ 1. The complex recipe of the oil-in-gelatin« ]

Added materialv

2. Oil-in-gelatin mixtures
with adding lignin/
grapheme nanotube«

Vcduced materials«

3. Gelatin solution only«

~

A

@
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. 2

\
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Figure 5. The direction and the recipes of this research

Table 2. Details of the chemicals used in skin phantom preparation

Product’s name Description Company s details
Matrix Gelatin LR Lgela8iE-25108-500g ECP Itd
material
Isopropyl Alcohol 99.97% pure Pure Nature
P-Toluic acid 98% CAS 99-94-5 Sigma-Aldrich
Additive Safflower oil CAS 8001-23-8 Pure Nature
s Kerosene oil UN 1223 TMK Packers LTD
Liquid surfactant Original 750 mL Palmolive
(Australia)
Lignin CAS 8068-05-01 Sigma-Aldrich
Graphene Nano power A0-4: 60 nm Graphene

Supermarket
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2.1 Oil-in-Gelatin TMM

The investigated materials are mainly a mixture of gelatin solution and a solution of mixed oil (50 vol%
kerosene and 50 vol% safflower oil). The volume content of the mixed oil (from 0 to 40%) is the variation factor
to tune the properties of the prepared samples (details in table 3).

For comparison purposes, samples without adding oil were also prepared. The five main steps of preparing the
oil-in-gelatin TMMs are described below.

Step 1: Prepare isopropyl alcohol-based solvent by mixing p-toluic acid (powder) with n-propanol.

Step 2: Add the solvent produced in Step I using a quantitative pipette into a new small beaker. Add the
desired amount of deionized (DI) water and mix the solution at room temperature until the solution becomes
white.

Step 3: Add dry mass gelatin into the solution and keep stirring. Heat and stir the mixture on a hotplate at 100°C
of temperature until the mixture becomes transparent (see figure 6).

Figure 6. The gelatin solution changed from turbid (left) to transparent (right)

Step 4: Prepare the desired amount of mixed oil (50 vol% kerosene and 50 vol% safflower oil) in another beaker
and heat at 50 “C. Pour the gelatin mixture prepared in step 3 and liquid surfactant into the beaker.

Step 5: Stop stirring when the emulsion becomes uniform and almost white (about 2 minutes). Remove all air
bubbles and pour the solution into a mold. (Figure 7).
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Figure 7. The oil-in-gelatin TMMs

Table 3. The concentration of each ingredient in oil-in-gelatin TMMs samples

No. mixed oil p-toluic acid  Isopropyl Alcohol DI water Gelatin surfactant

vol% wt% wt% wt% wt% wt% wt%

1 0 0 0.086 3.32 81.93 14.66 0

2 5 4.24 0.080 3.09 78.93 13.63 2.77

3 10 8.31 0.074 2.86 70.71 12.65 5.4

4 15 12.2 0.069 2.65 65.42 11.70 7.96

5 20 16 0.063 2.44 60.30 10.80 10.41

6 25 19.6 0.058 2.25 55.43 9.92 12.74

7 30 23 0.053 2.06 50.81 9.08 15

8 40 29.6 0.044 1.70 41.87 7.50 19.29

2.2 Lignin/ Graphene Nanopowder TMM

Desired quantities of Lignin (0- 6wt%) and graphene nanopowder (0 to 0.15%) were added to the gelatin mixture
prepared above in Step III (see figure 8). The rest of the recipe was the same as used to prepare oil-in-gelatin
mixtures. The concentrations of each ingredient can be seen in tables 4 and 5.

Table 4. Compositions of oil-in-gelatin samples on adding lignin

Lignin mixed oil p-tol. acid Isopropyl Alcohol DI water Gelatin surfactant
wt% wt% wt% wt% wt% wt% wt%

0 16 0.063 2.44 60.30 10.80 10.41

2 15.65 0.062 2.40 59.10 10.59 10.20

4 15.33 0.061 2.35 57.90 10.36 10.0

6 15.01 0.060 2.30 56.71 10.14 9.78
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Table 5. Compositions of oil-in-gelatin samples on adding graphene Nanopowder

Graphene Mixed p-tol. Isopropyl DI water  Gelatin Lignin surfactant
Nanopowder oil acid Alcohol
wt% wt% wt% wt% wt% wt% wt% wt%
0.00 15.330 0.0610 2.350 57.90 10.360 4.00 10.0
0.05 15.327 0.0608 2.345 57.89 10.355 3.998 9.983
0.10 15.320 0.0608 2.344 57.30 10.350 3.996 9.982
0.15 15.313 0.0608 2.342 57.80 10.34 3.994 9.977

Figure 8. The oil-in-gelatin mixtures on adding lignin/ graphene Nanopowder

2.3 Gelatin-DI TMM

Gelatin-DI TMM is prepared by mixing gelatin with DI water, followed by curing at 100°C temperature (see
figure 9). Different concentrations of Gelatin and DI water were added as seen in table 6.

Figure 9. Gelatin-DI TMMs
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Table 6. Concentrations of ingredients in Gelatin-DI TMMs

No. Gelatin DI water
Weight percent (wt %) Mass Volume (ml)
©®
1 10 1.67 15
2 15 2.65 15
3 20 3.75 15
4 25 5.00 15
5 30 6.43 15

2.4 Gelatin-DI and Mixed Oil TMM

Desired quantities of mixed oil (kerosene and sunflower oil) were added to the Gelatin-DI mixtures, and the
solution was stirred vigorously before curing to ensure consistency (see figure 10).

The oil increased the viscosity of the solution, and therefore the mixture was stirred for a longer period when the
oil percentage was increased.

Figure 10. The samples of gelatin solution + mixed oil materials

Table 7. Compositions of gelatin + mixed oil samples

No. Mixed oil Gelatin DI water Mixed oil
(wt %) © (ml) ©
Designed  Actual
5 wt% 3g 3.07 15 ml 0.95
10 wt% 3g 3.05 15 ml 2.00
3 15 wt% 3g 3.05 15 ml 3.18

2.5 Gelatin-DI and Lignin TMM

Like mixed oil, lignin increased the viscosity of the solution. Therefore, gelatin and DI solution were mixed with
lignin for a longer period. Lignin gave black color to the phantoms (see figure 11).
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Figure 11. The samples of gelatin solution + lignin

Table 8. Compositions of gelatin + lignin samples

No. Lignin Gelatin DI water Lignin
(wt %) (8 (ml) ®
Designed  Actual
2 wt% 3g 3.02 15 ml 0.37
2 4 wt% 3g 3.00 15 ml 0.75
3 6 wt% 3g 3.05 15 ml 1.15

2.6 Shaping and Sizing of TMM

The dimensions of materials under testing (MUT) will affect the accuracy of a measurement response.
Appropriate and uniform size of MUT will increase the reliability for the final comparison of the experimental
data.

The samples were cut into two shapes- cylindrical and circular flat sheets, to measure the mechanical and
dielectric properties, respectively.

Cylindrical containers with 36mm in inner diameter and 20mm in depth were used to solidify cylinder samples
as seen in figure 12.

Figure 12. Cylindrical molds to prepare samples for mechanical testing

10
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A circular cutter consisting of two concentric blades with diameters 44.6mm and 52.6mm was designed and
manufactured. Homogeneous film samples of the TMMs were generated by pouring the molten mixture (above
45°C) into a petri dish with a height of 5mm to solidify. After the mixture was cured, the cutting tool was used to
cut a circular film of desired dimensions (Figure 13).

Figure 13. 3D design of a cutting tool and a sample cut in the desired shape
2.7 Mechanical Testing of the TMMs

A compression test was performed on the samples to evaluate their Young’s Modulus (YM) using a TA.XT.Plus
Texture Analyzer from Stable Micro Systems (Surrey, UK). The settings listed in table 9 were used to obtain a
stress-strain curve, from which YM was calculated.

Table 9. Settings used in TA.XT.Plus texture analyzer

Caption Value
Test Mode Compression
Pre-test Speed 1.00 mm/sec
Test Speed 0.5 mm/sec
Post-Test Speed 1.00 mm/sec
Target Mode Strain
Strain 25%
Trigger type Force

Trigger force 0.05N

11
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2.8 Electrical Testing of TMMs

There are five kinds of dielectric measurement techniques: Coaxial Probe technique, Transmission Line method,
Free Space method, Resonant Cavity method, and Parallel Plate method. A summary of each of them is shown in
table 10.

Table 10. Summary of dielectric measurement techniques (Kalra et al., 2016)

Techniques Schematic diagram Features
Coaxial Probe Broadband, non-destructive,
ﬁ convenient; Best for loss MUTs,
- liquids or semi-solids

Transmission Line Broadband;

Best for lossy to loss MUTs;

machineable solids

Free Space ) Non-contacting;
M Best for high temperatures, lager,
flat samples

Resonant Cavity

Accurate;
Best for low loss MUTs; small

samples, substrates, thin films.

Parallel Plate Best for low frequencies; thin, flat
@ sheets.
<7/
T

This study aims to prepare TMM in a low-frequency range, thus, the parallel plate capacitor method was
employed. This method employs a parallel plate conductor to sandwiching the materials under testing between
them (Kalra et al., 2016).

A precision LCR meter (E4980A Keysight Technologies, California, USA) was used to measure the electrical
properties of TMMs. The operating range of LCR meter is between 20Hz and 2MHz, which is suitable for this
study. Besides, Keysight 16089B Kelvin Clip Leads connected to two copper circular electrodes (42.8 mm in
diameter) were also used. The setup of the testing equipment is shown in Figure 14.

12
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Kelvin clip leads

Circular flat films

Figure 14. An LCR Meter and Kelvin clip leads to measure the dielectric constant of circular flat films

The dielectric constant (g,) of the samples was calculated by measuring their impedances (Z) and phase angles
() across a range of frequencies- 20Hz to 300KHz with 50 frequency points. The equations used to measure the
dielectric constant are mentioned below.

Z=R+jX, 2)

@ = tan™?! (%) 3)
=1

X = /an(Hz)C(F) (4)

‘ST:d.C/gO-A (5)

where R, X, f,C,e5, A are resistance, reactance, frequency, capacitance, the permittivity of air, and
cross-sectional area of the electrode in SI units respectively.

The measurements were carried out at room temperature, where the circular flat samples were gently pressed
between the electrodes, ensuring that the two electrodes are parallel to each other with no air gap between them.
Each measurement was taken three times and the standard deviation (SD) was calculated to ensure that the data
is accurate. Only measurements with SD<1 were considered.

Cole-Cole model was used to fit the experimental impedance data and to predict the dielectric properties over the
measured frequency range (Tarasov and Titov, 2013)(Ayllon et al., 2009) (Said and Varadan, 2009). A response
similar to a Cole-Cole plot indicates that the TMM can be treated as a biological tissue (skin in this case).

2.9 Electrode Polarization Effect

Electrode polarization is an impedance formed due to the accumulation of charges at the electrode-TMM
interface. It is more prominent at lower frequencies, and therefore needs to be addressed to calculate the true
impedance.

Zm =Zp+ Zirye (6)

where Zp,, Zp, Ziye are the measured impedance, impedance due to polarization and true impedance
respectively.

The polarization impedance Z, behaves like a frequency-dependent RC circuit, with the resistor R, and
capacitor C, in series (see figure 15) (Prodan and Bot, n.d.)(Schwan, 1968).
A B
Cp = o.)_m' Rp = (7)

wn

Where A, B, m, n depends on the electrode and sample's properties and @ = 27 f(y).

13
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d2ce

T ZCP

Figure 15. Equivalent circuits with polarization impedance in series with the sample

A curve-fitting model using the Error Sum of Squares (SSE) was developed in MATLAB to find the most
appropriate values of the parameters in equation (7) for each TMM.

Z, was subtracted from the measured Z,,, to evaluate Z;.,, (see equation 6).
3. Results

Five types of TMMs were developed in this study as mentioned in section II. This section demonstrates the
results obtained by mechanical and electrical testing of each TMM.

The mechanical testing shows the stress-strain plot for TMMs with varying Young’s Modulus (YM) on changing
the ingredients’ concentrations.

The electrical properties of the TMMs were depicted by a plot of their permittivity (dielectric constants) and
conductivity with varying frequencies.

3.1 Oil in Gelatin TMM

Mechanical properties

15 vol% oil
6000
5500 y=39193x-3280.8
2 _
5000 R%=0.9988

0 0.05 0.1 0.15 0.2 0.25
Strain (%)

Figure 16: The stress-strain plot of 15% oil content sample with a linear trend line.

14
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Table 11. YM calculated from Stress-strain plots on increasing Oil in gelatin

Samples 1 2 3 4 5 6 7 8 9
Oil content (In 0% 5% 10% 15% 20% 25% 30% 35% 40%

volume)

Young’s 50832 50792 40100 39193 38211 33053 28352 19610 8249

modulus (Pa)

Electrical properties
1.00E+07
1.00E+06
>\1.OOE+05
=
.2 1.00E+04
R=
§1.OOE+03
5)
P~ 1.00E+02
—@— 0 vol% oil —@— 5 vol% oil —0— 10 vol% oil
1.00E+01 15 vol% oil —8— 20 vol% oil —@— 25 vol% oil
—@— 30 vol% oil —@— Permittivity of wet skin
1.00E+00
1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05
Frequency (Hz)

Figure 17. The permittivity of the oil-in-gelatin TMMs and actual skin

0.7

06 —@— 0 vol% oil —@— 5 vol% oil —0— 10 vol% oil
_o
g 15 vol% oil —e—20 vol% oil —8— 25 vol% ol

0.5
7p]
~ —@— 30 vol% oil —@— Conductivity of wet skin
204
2
g 0.3
o
= 0.2
o
@)

0.1

0
1 10 100 1000 10000 100000
Frequency (Hz)

Figurel8. The conductivity of the oil-in-gelatin TMMSs and actual skin

15
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Figure 19. Cole-Cole plot for the 20 vol% oil sample
3.2 Lignin/ Graphene Nanopowder TMM
Mechanical Properties
Lignin
RT
4000 4 wt% lignin
7000 y = 30387x - 1000.3
6000 R? =0.9988
~~
<
A< 5000
N
v 4000
wn
& 3000
-
n
2000
1000
0
0 0.05 0.1 0.15 0.2 0.25 0.3
Strain (%)

Figure 20. The stress-strain plot of oil-in-gelatin sample on adding 4 wt% lignin

Table 12. YM calculated from Stress-strain plots on increasing Lignin concentration in Oil +gelatin mixture

Samples 1 2 3 4
Lignin content 0% 2% 4% 6%
(wt %)
Young’s modulus 38211 28243 30387 33848
(Pa)

16
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Graphene Nanopowder
0.15 wt% grapheme nanopowder
6000
y =25377x-2045.4
5000 R? = 0.9957

B
o
o
o

Stress (Pa)
]
8

2000

1000

0 0.05 0.1 0.15 0.2 0.25 03 0.35
Strain (%)

Figure 21. The stress-strain plot of oil-in-gelatin sample on adding 0.15 wt% graphene nanopowder

Table 13. YM calculated from Stress-strain plots on increasing Graphene Nanopowder in Oil +gelatin mixture

Samples 1 2 3 4
Graphene 0% 0.05% 0.1% 0.15%
Nanopowder

content
(wt %)
Young’s modulus 30387 28042 26511 25377
(Pa)
Electrical Properties
Lignin
1.00E+07
1.00E+06
1.00E+05
> M
E 1.00E+04
*Z 1.00E+03
=
—
& 1.00E+02
1.00E+01 —8— 0% lignin —0— 2% lignin —0— 4% lignin
6% lignin —@— \Wet skin
1.00E+00
1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.00E+05
Frequency (Hz)

Figure 22. The permittivity of the lignin in oil+gelatin mixtures and actual skin

17
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Figure 23. The conductivity of the lignin in oil+gelatin mixtures and actual skin
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Figure 24. Cole-Cole plot on adding 2wt% lignin in oil+gelatin mixture
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Figure 25. The permittivity of the graphene nanopowder in oil+gelatin mixtures and actual skin
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Figure 26. The conductivity of the graphene nanopowder in oil+gelatin mixtures and actual skin
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Figure 27. Cole-Cole plot on adding 0.05wt% graphene nanopowder in oil+gelatin mixture

Desired mechanical properties were achieved on using gelatin, DI mixed oil, and lignin for preparing TMMs, as
discussed in section IV, therefore only electrical properties of the remaining TMMs were tested.
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3.3 Gelatin-DI TMM

Electrical Properties
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Figure 28. The permittivity of the gelatin-DI TMMs and actual skin
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Figure 29. The conductivity of the gelatin-DI TMMs and actual skin
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3.4 Gelatin-DI and Mixed Oil TMM
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Figure 30. The permittivity of the gelatin-DI and mixed oil TMMs and actual skin
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Figure 31. The conductivity of the gelatin-DI and mixed oil TMMs and actual skin
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Figure 32. Cole-Cole plot on adding Swt% mixed oil in a gelatin-DI mixture
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3.5 Gelatin-DI and lignin TMM
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Figure 33. The permittivity of the gelatin-DI and lignin TMMs and actual skin
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Figure 34. The conductivity of the gelatin-DI and lignin TMMs and actual skin
16
14
212
E
O 10
N
9 8
S
o 6
s}
S 4
+~
2
S 2
[
0
0 10 20 30 40 50 60 70 80
Resistance, R (Ohms)

Figure 35. Cole-Cole plot on adding 2wt% lignin in a gelatin-DI mixture

22



mas.ccsenet.org Modern Applied Science Vol. 14, No. 7; 2020

4. Discussion

On testing the mechanical properties of oil in gelatin TMMs, it was observed that the YM increases on increasing
the concentration of oil in gelatin. The range of YM of the oil-in-gelatin phantoms varied from 8 kPa to 50 kPa.
This range is well within the YM of human skin, measured by indentation and suction techniques (5kPa to 260
kPa), as stated in section I.

The samples became more fragile and stickier when large volumes of oil were added in gelatin, therefore adding
more than 30vol% oil in gelatin is not advisable.

The changes in permittivity and conductivity with a frequency sweep can be seen in figures 17 and 18
respectively. At lower frequencies, no significant change in the permittivity was observed on increasing the oil
concentration. This outcome is different than the study performed by Lazebnik [26] in 2005 at higher frequencies
(500MHz-20GHz). The contradiction in results can either be due to the addition of solvents- p-toluic acid
(powder) and n-propanol in oil in gelatin TMMSs or due to the polarization effect at low frequencies. However,
the polarization effect was reduced using SSE curve fitting in Matlab, as discussed in section II, and the best
Cole-Cole fit was achieved (see figure 19). The conductivities of the TMMs increased on increasing the oil
concentration, which is in alignment with the trend in literature.

The addition of lignin and graphene nanopowder further reduced the YM of the TMMSs (tables 12 and 13),
although the YM of TMMs (25kPa-33kPa) was closer to human skin than oil-in- gelatin TMMs. Adding more
than 6% lignin to the mixture wasn’t feasible due to high viscosity and poor agitation of the mixture. The
increase in YM on the addition of graphene nanopowder can be due to the suspension of insoluble graphene
powder in the oil-gelatin based emulsions.

An increase in the permittivity and conductivities of the TMMs was observed on increasing the concentration of
lignin and graphene nanopowders in oil-in-gelatin mixtures. This trend is in agreement with the findings in the
literature (Lan et al., n.d.).

The measured data for both lignin and graphene nanopowders agreed with the Cole-Cole plot (figures 24 and 27),
indicating their ability to mimic biological tissues.

As seen from figure 28, the permittivity was almost unchangeable on increasing the concentration of gelatin in
DI, although the conductivity of the gelatin-DI mixture was closer to wet and dry skin at 25 wt% concentration
of gelatin in DI.

However, on adding 5wt% mixed oil in gelatin-DI (see figure 30), the permittivity and conductivity dropped by
17067 and 0.42 S/m, respectively, which is closer to the values for dry and wet skin. Similarly, the addition of
lignin reduced the permittivity and conductivity of the samples at low frequencies.

5. Conclusion

This study examined the mechanical and electrical performance of five kinds of TMMs at a frequency range of
20 Hz to 300 kHz. Amongst them, the oil-in-gelatin based TMMs were mainly standing on the contributions in
(Lazebnik et al., 2005) (Lan et al., n.d.). The shreds of evidence from this study confirm that in general these
tested TMMs can reach the mechanical requirement for fabricating skin phantoms.

The mechanical properties of TMMs were tested using compression tests based on the assumption that they are
homogeneous in nature. More accurate research in the future should consider the heterogeneous and anisotropic
properties of human skin.

This study fulfills the requirement of preparing high-quality skin phantoms using readily available materials at a
lower frequency range. The electrode polarization effect, which occurs mainly at low frequencies was also
removed using model fitting in Matlab, and a resemblance to the Cole-Cole plot was found in all TMMs.

All proposed skin phantom materials reflect some regularity between the dielectric properties and ingredients’
concentrations. Although some exceptions cannot be explained, for example, the oil-in-gelatin based TMMs
didn’t show a substantial increase in permittivity at higher concentrations of oil in contrast with the findings in
the literature.

The concentrations of oil, the lignin or graphene nanopowder can be further increased, but this will affect the
Young’s Modulus of the TMMs.

In conclusion, we propose the use of gelatin-DI TMMs doped with mixed oil or lignin for low-frequency
applications. A concentration of 5-15wt% of mixed oil (50 vol% kerosene and 50 vol% sunflower oil) or 2-6wt%
of lignin in Gelatin and DI mixtures are the most suitable choices for preparing TMMs for the skin.
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Future work can be done in testing the shelf life and biocompatibility of these materials.
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