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Abstract 
In this paper, a new spectral gradient direction is proposed to solve the ℓ -regularized convex minimization 
problem. The spectral parameter of the proposed method is computed as a convex combination of two existing 
spectral parameters of some conjugate gradient method. Moreover, the spectral gradient method is applied to the 
resulting problem at each iteration without requiring the Jacobian matrix. Furthermore, the proposed method is 
shown to have converge globally under some assumptions. Numerically, the proposed method is efficient and 
robust in terms of its quality in reconstructing sparse signal and low computational cost compared to the existing 
methods. 
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1. Introduction 
Consider the following unconstrained minimization problem for sparse signal recovery  min{ ∥ − ∥ + ∥ ∥ }                                      (1) 

where	 ∈ ℝ × ( << ), ∈ ℝ , ∥⋅∥  is the	ℓ −norm of a vector ∈ ℝ  usually called regularizer and ∈ ℝ  is a regularization parameter that can be interpreted as a trade-off between sparsity and residual error. 

Several solvers have been proposed to solve the model (1). Due to simplicity and efficiency, iterative shrinkage 
thresholding (IST) and the quick iterative shrinkage thresholding algorithm (FISTA) are among methods used 
(Beck & Teboulle, 2009; Khoramian, 2012). Additionally, in (Hale et al., 2007), a continuous search fixed point 
based method was introduced, and the Barzilai-Borwein stepsize (Huang & Wan, 2017) implemented a 
nonmonotone line search acceleration technique. Gradient descent based methods are alternative methods used 
to solve model (1). Figueiredo (Figueiredo et al., 2007) initiate a gradient based method combined with 
projection to solve (1). Motivated by the Figueiredo method, Xiao and Zhu then suggested alternative method of 
solving the model (1) using the spectral gradient and the method of projection of the conjugate gradient  (Xiao 
et al., 2011; Xiao & Zhu, 2013). Unlike IST and FISTA, the model (1) was first reformulated to become a 
monotone system of equations. This reformulation procedure can be found in many literature (Ibrahim, Kumam, 
Abubakar, Abubakar, et al., 2020; Ibrahim, Kumam, Abubakar, Jirakitpuwapat, et al., 2020). Afterwards, an 
algorithm to solve the problem is then constructed (Abubakar, Rilwan, et al., 2020; Abubakar & Kumam, 2018, 
2019; Ibrahim et al., 2019). It should be noted that with the reformulation of the model (1) into a monotone 
equation system, the model (1) is now equivalent to the following nonlinear convex constrained equation, ( ) = 0, ∈ ,                                            (2) 



mas.ccsenet.org Modern Applied Science Vol. 14, No. 5; 2020 

87 
 

where : → ℝ  is a continuous mapping and ⊆ ℝ  is a convex set. Thus, solving (2) is equivalent to 
solving (1). 

In this paper, we aim to present an innovative iterative approach for solving the compressive sensing problem of ℓ1-norm regularization. Motivated by the spectral parameters in the work of (Yuan et al., 2020) and (Amini et al., 
2019), we propose a spectral gradient approach for solving the ℓ1- regularized convex minimization problem (1) 
using the hyperplane projection technique. The spectral parameter is determined as a convex combination of the 
spectral parameters proposed in (Yuan et al., 2020) and (Amini et al., 2019) respectively. Under suitable 
conditions, the proposed method globally converges. Numerical results show that the proposed approach is 
effective and reliable compared to existing methods in terms of its efficiency in reconstructing sparse signal with 
low computational costs. 

This paper is structured as follows: Section 1 introduce an algorithm to solve model (2) which is equivalent to 
solving (1). In Section 2, we establish the global convergence of the proposed algorithm. In Section 3, we 
illustrate the good practical behaviour our algorithm in reconstructing sparse signal. Finally, the last Section 
gives the conclusion. 

2. Algorithm 
This section begin by defining the projection map together with some appropriate assumptions. Finally a 
description of the proposed algorithm is given with some remarks. 

Suppose  is a nonempty, closed and convex subset of ℝ . Then for any ∈ ℝ , its projection onto , 
denoted by ( ) is  ( ) = argmin{∥ − ∥	∶ ∈ }. 
The projection map is nonexpansive, that is  ∥ ( ) − ( ) ∥≤∥ − ∥, ∀ , ∈ ℝ .                       (3) 

Throughout we make the following assumptions   

    (H1) The set of solution to (2), denoted by , , is nonempty.  

    (H2)  is monotone, that is,  

 〈 ( ) − ( ), ( − )〉 ≥ 0,				∀ , ∈ ℝ . 
    (H3)  is Lipschitz continuous, that is there exists > 0 such that  

 ∥ ( ) − ( ) ∥≤ ∥ − ∥, ∀ , ∈ ℝ . 
Motivated by the work of (Abubakar, Kumam, et al., 2020) We propose the following search direction 

 : = − ,										 = 0,− ,				 > 0,                                                 (4) 

where = ( ) and   is a convex combination of ∗  and ∗∗ given respectively by  

 = ∗ + (1 − ) ∗∗,                                                    (5) 

 ∗ = 1 − 〈 , 〉∥ ∥ ∥ ∥ , ∗∗ = ∥ ∥〈 , ̃ 〉 , ∈ [0,1],                                (6) ̃ = + max 0,− 〈 , 〉∥ ∥ , = − , = ( ) − ( ).             (7) 

The step by step implementation of our algorithm is illustrated below. 

2.1 Algorithm  

Step 0. Select ∈ ⊆ ℝ , , , , and	 ∈ (0,1). Set : = 0. 

Step 1. Terminate whenever ∥ ∥≤ . Else go to Step 2.  

Step 2. Find  using (4)-(7). 

Step 3. Find =  where  is the smallest non-negative integer such that  −〈 ( + ), 〉 ≥ ∥ ∥ .                                             (8) 

Step 4. Find = + . Terminate when ∈  and ∥ ( ) ∥≤ . Else find  = [ − ( )]                                                          (9) 



mas.ccsenet.org Modern Applied Science Vol. 14, No. 5; 2020 

88 
 

where  = 〈( ), ( )〉∥ ( )∥ .                                                        (10) 

Step 5. Set = + 1 and go to Step 1.  

2.2 Remark  

By Cauchy-Schwartz inequality, we have  

 0 ≤ |〈 , 〉| ≤∥ ∥∥ ∥, 
which implies  

 0 ≤ 1 − 〈 , 〉∥ ∥ ∥ ∥ ≤ 1. 
Therefore, ∗ ∈ (0,1).  

2.3 Remark  

Using definition of ̃  and ,  

 〈 , ̃ 〉 ≥ max{〈 , 〉, ∥ ∥ } ≥∥ ∥ > 0, 
which implies 

 0 ≤ ∥ ∥〈 , ̃ 〉 ≤ 1. 
Therefore, ∗∗ ∈ (0,1).  

3. Global Convergence  
In this section, we use the following Lemmas to prove Theorem 3.5.   

3.1 Lemma  

Suppose that assumptions ( ) − ( ) hold and the sequence { } is generated by Algorithm 2.1, then { } 
is sufficiently descent and bounded. That is 

(i)  〈 , 〉 ≤ −∥ ∥ , and 

(ii) ∥ ∥≤∥ ∥, ∀ ≥ 0. 
 Proof. ( ) For = 0,  

 〈 , 〉 = −∥ ∥ . 
For ≥ 1, using the definition of , Remark 2.2 and 2.3,  

 = 1 − 〈 , 〉∥ ∥ ∥ ∥ + (1 − ) ∥ ∥〈 , ̃ 〉≥ 0.                               (11) 

 Therefore,  

 〈 , 〉 = − ∥ ( ) ∥  

 ≤ 0, 
 since ∈ (0,1). Hence, we have  

 〈 , 〉 ≤ −∥ ∥ , ∀ .                                                  (12) 

 For the ( ) part, if = 0, then  

 ∥ ∥=∥ − ( ) ∥=∥ ∥. 
If ≥ 1, then using the definition of , Remark 2.2 and Remark 2.3 we have,  

 ∥ ∥=∥ − ∥ 
 = | | ∥ ∥ 
 = 1 − 〈 , 〉∥ ∥ ∥ ∥ + (1 − ) ∥ ∥〈 , ̃ 〉 ∥ ( ) ∥ 
 ≤ ( + (1 − )) ∥ ( ) ∥ 
 =∥ ∥. 
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3.2 Lemma  

Let assumptions ( ) − ( ) be fulfilled, then there exists =  satisfying (8) for some ∈ ℕ ∪ {0} and  ∀ ≥ 0.   

Proof. Let ≥ 0 such that (8) is not true for every non-negative integer , that is,  

 −〈 ( + ), 〉 < ∥ ∥ . 
Since  is continuous, then allowing → ∞ in the above inequality,  

 −〈 ( ), 〉 ≤ 0.                                                        (14) 

Likewise by (13), we have  

 −〈 , 〉 > 0. 
This contradicts with (14).  

3.3 Lemma  

Suppose assumptions ( )-( ) are fulfilled, { } and { } generated by Algorithm 2.1. Then  

 ≥ max 1, ∥ ∥( )∥ ∥ .                                                    (15) 

Proof. Suppose ≠ 1. Then ∗ =  does not satisfy (8), that is  

 −〈 ( + ∗ ), 〉 < ∗ ∥ ∥ . 
From Lemma 3.1(i) and assumption ( ),  

 
∥ ∥ ≤ −〈 , 〉= 〈 ( + ∗ ) − ), 〉 − 〈 ( + ∗ ), 〉≤ ∗ ( + ) ∥ ∥ .  

Lemma 3.4 

Suppose that assumptions ( ) − ( ) are fulfilled. If { } and { } are obtained from Algorithm 2.1, then { } and { } have bound. Moreover, lim → ∥ − ∥= 0.   

Proof. Suppose that ∥ ∥≠ 0and ∥ ( ) ∥≠ 0 for all . Then an infinite sequence is generated. From Step 3 of Algorithm 2.1  

 〈 ( ), ( − )〉 = − 〈 ( ), 〉 
 ≥ ∥ ∥  

 = ∥ − ∥                                                         (16) 

 > 0. 
 If ∈ ,  such that ( ) = 0, then by assumption ( ),  

 〈 ( ), ( − )〉 = 〈 ( ), ( − )〉 + 〈 ( ), ( − )〉 
 ≥ 〈 ( ), ( − )〉 + 〈 ( ), ( − )〉 
 = 〈 ( ), ( − )〉.                                                     (17) 

 From (3), (9), (16) and (17),  

 ∥ − ∥ =∥ [ − ( )] − ( ) ∥  

 ≤∥ − ( ) − ∥  

 =∥ − ∥ − 2 		〈 ( ), ( − )〉+∥ ( ) ∥  

 ≤∥ − ∥ − 〈 ( ),( )〉∥ ( )∥  

 ≤∥ − ∥ − ∥ ( )∥ ∥ ∥∥ ( )∥  

 =∥ − ∥ − ∥ ∥∥ ( )∥ .                                                 (18) 

Thus, the sequence {∥ − ∥} is convergent since it is decreasing and bounded below, and therefore { } is 
also bounded. Also, by (18),  
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 ∥ − ∥ ≤∥ − ∥ , 
which implies that ∀ ≥ 0,  

 ∥ − ∥ ≤∥ − ∥ . 
Accordingly, by assumption ( ) and chosing : = ∥ − ∥,  

 ∥ ∥=∥ − ( ) ∥≤ ∥ − ∥≤ . 
By (16), assumption ( ) and Cauchy Schwartz inequality,  

 ∥ − ∥≤ ∥ ∥∥ ∥ ≤ 〈 ( ),( )〉∥ ∥ ≤ 〈 ( ),( )∥ ∥ ≤∥ ( ) ∥, 
which implies that  

 ∥ − ∥≤∥ ∥.                                                      (19) 

Thus, from (19) we have that the sequence { } is bounded. 

Now, by (18),  

 ∑ 	∥ − ∥ ≤ ∑ 	(∥ − ∥ −∥ − ∥ ) < ∞.                  (20) 

which implies  

 lim→ ∥ − ∥= 0.                                                      (21) 

From (21), then  

 lim→ ∥ ∥= 0.                                                        (22) 

Theorem 3.5 

Suppose that assumptions ( )-( ) are fulfilled. If the sequence { } is obtained from Algorithm 2.1, then  

 liminf→ ∥ ∥= 0.                                                          (23) 

Proof. Suppose to the contrary the relation (23) is untrue. Then there exist a positive constant  such that ∀ ≥ 0,  

 ∥ ∥≥ .                                                              (24) 

By relation (24) and Lemma 3.1 (i), we have that ∀ ≥ 0,  

 ∥ ∥≥ .                                                              (25) 

Multiplying both sides of (15) with ∥ ∥ together with (24) and Lemma 3.1 (ii), we get  

 
∥ ∥ ≥ max 1, ∥ )∥( )∥ ∥ ∥ ∥≥ max 	, ( ) .  

The above inequality contradicts with (22). Therefore (23) must hold.  

4. Numerical Experiment 
Reconstruction of sparse signal in compressive sensing is shown in this section to illustrate the performance of 
Algorithm 2.1. We compared Algorithm 2.1 to the following methods in the literature to demonstrate the 
efficiency of our proposed method in signal reconstruction: SGCS (Xiao et al., 2011), CGD (Xiao & Zhu, 2013), 
and PSGM (Abubakar, Kumam, et al., 2020). In Matlab R2019b the four algorithms were programmed and run 
on a PC with a 2.40GHZ CPU processor and 8.00 GB RAM. 

In this experiment, our aim is to recover a length  sparse signal from a Gaussian noise sampling measurement 
of , where the number of samples is normally smaller than the original signal. The efficiency of the restored 
signal is measured by squared error (MSE) mean:  

 = ∥ − ∗ ∥ , 
where  is the original signal and ∗ is the signal restored. We set the signal size as = 2 , = 2 . The 
original signal  contains 2  randomly nonzero elements. During the experiment, a random matrix  is 
generated. This is done using the Matlab command rand(n,m). In addition, the observed date  is computed by = + , where  is the Gaussian noise which we set as (0,10 ). 
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We set the parameters for Algorithm 2.1 as follows: = 0.8, = 10 , = ( ) .. The parameters for 

the compared methods (SGCS, CGD, PSGM) are set as in their respective papers. In order to be fair in 

comparing the methods, we made use of the same initial point and terminate when 
∥ ∥∥ ∥ < 10 , where = ∥ − ∥ + ∥ ∥  is the objective function. In what follows, we refer to Algorithm 2.1 as Algo.1.  

 

Figure 1. Sparse signal Reconstruction. From top to bottom: the original signal, the measurement and four 
algorithms of the reconstructed signals 

 

 
Figure 1. Comparison performance with the method Algo.1, SGCS, CGD, and PSGM. From left to right: MSE's 
changed trend goes hand in hand with the number of iterations or CPU time in seconds, and the changed trend in 

the objective function values follows the number 
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Figure 1 above shows the original signal , the observed data  and the signal ∗ reconstructed using the four 
algorithms. From figure 1 it is clear that all tested methods were able to reconstruct the signal. However, it can 
be observed that, Algo.1 shows to be more efficient in reconsructing the sparse signals. This is reflected by less 
MSE, number of iterations and CPU time. Figure 2 illustrates the change trend of MSE and objective function 
values in terms of number of iterations and respective CPU time. To further highlight the efficiency of the Algo.1, 
we repeat the experiment ten more times. Each time the experiment is repeated, Algo.1 outperforms the 
compared methods. From Table 1 below, we have reported the numerical result for the ten experiments. On the 
average,  Algo.1 require 76.9 iterations to recover the sparse signal, SGCS, CGD and PSGM requires an 
average of 128.7, 122 and 107.9 iterations respectively. For the CPU time, Algo.1 was the fastest in 
reconstructing the sparse signal. Algo.1 recorded an average CPU time of 2.148 seconds while SGCS, CGD and 
PSGM reconstructed the sparse signal at an average of  3.639, 3.505 and 3.092 seconds respectively. Finally, 
with respect to the quality of recontruction, Algo.1 recorded less mean squared error compared to SGCS, CGD 
and PSGM.  

 

Table 1. The experimental results of compressed sensing problem via Algo.1, SGCS, CGD and PSGM method 

  Algo.1 SGCS CGD PSGM 

  ITER TIME MSE ITER TIME MSE ITER TIME MSE ITER TIME MSE 

79 2.09 2.93E-06 127 3.63 3.49E-06 129 3.48 2.92E-06 111 3.06 2.81E-06

74 2.27 3.15E-06 131 4.09 3.63E-06 117 3.7 3.03E-06 103 4 1.08E-05

72 1.98 2.98E-06 117 3.14 3.89E-06 101 2.72 3.27E-06 104 2.77 3.19E-06

75 1.94 2.86E-06 132 3.23 3.33E-06 104 2.64 2.45E-05 114 2.92 2.64E-06

81 2.45 3.01E-06 131 4.17 4.04E-06 151 4.69 3.45E-06 113 3.44 3.23E-06

73 1.88 2.78E-06 127 3.27 3.20E-06 112 2.94 3.56E-06 116 3.05 2.60E-06

72 1.98 2.07E-06 127 3.27 2.58E-06 125 3.52 2.15E-06 91 2.59 3.47E-06

79 2.14 4.53E-06 133 3.73 5.52E-06 138 3.88 4.37E-06 119 3.11 4.19E-06

74 1.94 1.87E-06 126 3.48 2.25E-06 123 3.67 3.47E-06 100 2.7 3.21E-06

90 2.81 3.66E-06 136 4.38 4.91E-06 120 3.81 1.37E-05 108 3.28 8.17E-06

Average 76.9 2.148 2.98E-06 128.7 3.639 3.68E-06 122 3.505 6.44E-06 107.9 3.092 4.43E-06

 
5. Conclusion 
This paper presents a spectral gradient projection algorithm to solve the regularized problems with the ℓ −norm for reconstruction of sparse signal in compressive sensing. The method combines the line search 
method with a spectral parameter computed as a convex combination of two different spectral parameters of 
some conjugate gradient methods. Furthermore, we have shown that the proposed mehtod converges globally. To 
highlight the details of our contribution, we have presented numerical experiment in recovery sparse signal. 
These experiments illustrate clearly the effectiveness of our approach in reconstructing sparse signal in 
compressive sensing. 
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