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Abstract 

The article aimed at fitting Cox-proportional hazards model to Tuberculosis (TB) data. TB data on 259 patients 
spanning 2010 through 2016 were collected from the Federal Medical Centre, Bida, Nigeria. Covariates involved 
were gender, age, type of TB and occupation. Fifteen different Cox models, representing all possible 
combinations of covariates in question were fitted. Parameters were estimated by method of maximum partial 
likelihood and model selection was based on Akaike information criterion (AIC). Model (G+C), with gender and 
occupation as covariates produced the least AIC of 618.597 and hence, was adjudged the best. That is, gender 
and occupation constituted the best subset of covariates that explained survival of TB patients. The model 
suggested that recovery hazard of a male TB patient was 24.1% lower than that of a female patient possessing 
same occupation. This implies that male patient had higher survival time than the female having same 
occupational status. It further suggested that recovery hazard for patient on technical occupation was 27.46% 
higher than for patient on non-technical job and of same gender. Hence, a patient on technical occupation had 
reduced survival time compared to one of same gender on non-technical occupation. It was concluded that 
gender and occupation explained best, survival of TB patients based on AIC. 
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1. Introduction 

By survival analysis, we mean a collection of methods for analyzing data for which the outcome variable is time 
until an event occurs. The event should of course depend on the area of application. In economics, it may be 
employment, shutdown, economic recession, payment of health insurance, payment of gratuity and so on; in 
medicine, it may mean death, disease incidence, relapse from emission, recovery and so on; in academics, it 
could be completion of a doctoral dissertation while in society at large, it may be marriage, divorce, migration 
and so on. The event is technically regarded as a failure. This does not necessarily imply that the event is of 
negative consequence, although typically in health sciences, it is, but in other areas, it may not. For instance, 
employment and marriages are positive phenomena. 

One major feature of survival data that distinguishes it from other types of numerical data is that the event will 
not necessarily have occurred in all individuals by the time the study ends (Bradburn, Clark, Love & Altman, 
2003). This invariably means that the time to event, which is of primary concern in survival analysis, may not 
have been observed in all subjects at the end of the study. This could be because subject does not experience the 
event before study ends, lost to follow-up or outright withdrawal from the study due to death if event of interest 
is not death. This phenomenon is called censoring and two types exist. 

Observations are said to be censored when information about the survival time is incomplete. That is, although 
we have some information, it is not exact. Survival data may be right- censored or left-censored. It is 
right-censored when an individual’s true survival time is greater than observed survival time and left-censored 
when the contrary is the case. Presence of censoring remains one of the cogent reasons for ruling out use of 
ordinary least squares method for analyzing survival data. The special feature of survival data hence, calls for 
development of special techniques for its handling. These techniques constitute a body of knowledge called 
survival analysis. 
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A lot of research efforts have gone into survival analysis. Such efforts range from development of methods to 
comparisons to applications. These applications are predominantly but not limited to the health sciences. Mayo, 
Korner-Bitensky and Becker (1991) used the Cox model to investigate factors influencing recovery time from 
stroke to full and independent sitting function. They concluded that patients with least degree of perceptional 
impairment recovered more quickly. Cheingsong-Popov et al. (1991) compared the time to progression to stage 
IV disease in patients with AIDS whose gag antibody levels were 1600 or more when survival than those with 
fewer antibodies. They found that the disease of patients with fewer gag antibodies progressed more quickly. 

Lee and Go (1997) reviewed common statistical techniques involved in analyzing survival data in medical 
research. Korenman, Goldman, and Fu (1997) examined the effect of widowhood on mortality using time varying 
covariate model. Cheung (2000) used Cox model to investigate cancer mortality. Ravangard et al. (2001) 
compared Cox model and parametric models in the study of length of stay in a tertiary health teaching hospital in 
Tehran, Iran. Chow et al. (2002) studied the effects of tamoxifen in the treatment of inoperative hepatocellular 
carcinoma as it relates to length of patient survival. Remuzzi et al. (2004) used Cox model to compare the effect of 
two treatments viz: mycophenolate mofetil (MM) and azathioprine (AL) for the prevention of acute rejection in 
renal transplant. They concluded a risk on MM compared to AL as 13.7%. Faradmal, Talebi, Rezaianzadeh, and 
Mahjub (2012) applied Cox- and frailty models to breast cancer. 

Researches on tuberculosis include Gavrilenko (2001), Chang, Leung, and Tam (2004), Ponnuraja and 
Venkatesan (2010), Maciel et al. (2013), and Nwumbeni, Luguterah and Adampah (2014).     Kim (2012), and 
Gogtay and Thatte (2017) reviewed methods in survival analysis from medical science perspective; Baghestani 
et al. (2015) worked on breast cancer data using Weibull model and found out that patients with lymphovascular 
invasion were at 2.13 times greater risk of death due to breast cancer. Veisi, Rezaei and Nadarajah (2018) 
applied parametric and semiparametric models to growth failure of children in Iran; they recommended 
log-normal model. Ghorbani et al. (2019) applied Cox model to study rejection rate of kidney transplants in Iran. 

Although survival models seem mostly applied in health sciences, the application is not limited to this. 
Applications in business environment as they relate to survival of firms include: Demirbag, Apaydin, and Tatoglu 
(2011), Morikawa (2013), Kim and Lee (2016), Moniche, and Morales (2016), and Matsuno and Ito (2018). 

Previous studies have focused much on various types of cancer, tuberculosis (TB), HIV, unemployment duration 
and so on. Most studies on TB have not incorporated occupation as a covariate, the present article does. Other 
covariates involved are gender, TB type and age.  It is the focus of this article to obtain a subset of the 
covariates that best explain survival (recovery) of TB patients. 

The remaining part of the article is organized as follows: Section 2 presents the Theoretical Framework; Section 
3 presents Methodology; Section 4 presents Results and Discussion while the last section concludes the article. 

2. Theoretical Framework 

Several models exist in the literature for handling survival data. These models range from non-parametric 
Kaplan-Meier model, life tables and cumulative hazards estimator to semi-parametric Cox proportional hazards 
model due to Cox (1972) to fully parametric models. The fully nonparametric models are univariate in nature in 
that they describe survival with respect to the factor under investigation and take no cognizance of the possible 
impact of any other factors. Other models however, recognize the impact of covariates on the factor under 
investigation and hence, fall under multivariate methods of survival analysis. 

Let us denote by )(ts , the survivor function which gives the probability that a subject survives longer than 
specified time t. 

That is, 

][)( tTPts >=
                                  (1)

 

Equation 1 is of fundamental importance in survival analysis. 

Theoretically, for a continuous time variable, T 


∞

=
t

duufts )()(  

where f (t) is the density assumed for the time to event variable, T. No matter its form, s (t) has the following 
properties: it is non-increasing; s (0) = 1 and s (∞) = 0 (Kleinbaum & Klein, 2012). 
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The survival time, T has two measures of note in survival studies. These are mean survival time )(μ  and 
median survival time )(τ defined 


∞

=
0

)( duuufμ
                                  (2)

 

and 

τ is defined by                                                                           (3) 

5.0)( =τs  

An important characterization of survival data is the hazard function. Hazard function denoted )(th is also 
called failure rate, conditional failure rate, age-specific failure rate or force of mortality. It is called 
instantaneous rate because it provides instantaneous potential for the event of interest to occur, per unit time, 
given that the subject has survived up to time t. That is, the probability of failing or experiencing the event in the 
next small interval, having already survived to the beginning of the interval (Kleinbaum & Klein, 2012). 

For a continuous random variable,  
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The hazard function )(th  is non-negative and has no upper bound. Although the survival function )(ts  

remains the most important characterization of survival experience, the instantaneous failure rate )(th is also 

very useful. Apart from being an instantaneous measure, )(th may be useful for identifying a particular model 

form that suits a given data set. Interestingly enough, once either of )(ts  and )(th  is known, the other is 

automatically known as the two are related according to the relations: 
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Hence, the probability density, hazard and the survival functions are alternative forms for describing distribution 
of survival times. 
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3. Methodology 

3.1 Data 

The data were collected from Federal Medical Centre, Bida, Niger State, Nigeria. Bida is located in North 
Central Zone of Nigeria and it is the third largest community in the State. The natives of Bida are by tribe Nupes. 
The data were extracted from TB patients’ records (covering 2010 to 2016) at Federal Medical Centre, Bida. 

The covariates of interest in this study were age, gender, type of TB, and occupation. They were coded as 
follows: 

Gender: Male = 1, Female = 0 

Type of TB: Pulmonary TB (PTB) = 1, Respiratory TB (TB) = 0 

Occupation: Technical = 1, Others = 0 

Recovery: Alive = 1, Dead = 0 

Occupations that typically expose the individual to chemicals or any other toxic substance were categorized as 
Technical. Such included farming, welding, agrochemical business, engine oil business and so on. 

3.2 Model 

Cox-Proportional Hazards (PH) model 

The PH model is a multivariate survival analysis tool that utilizes the relationship between survival and 
explanatory variables.  

The mathematical formula of PH model is 

Xethth
/

0 )()( β=
                                     (8)

 

The function )(0 th is called the baseline hazard function and it represents the value of )(th when all 

covariates assume value zero. It is unspecified and hence, estimated nonparametrically. The function )(th is 

therefore, some multiple of the baseline hazard function. The PH model is robust to modest departures from PH 
assumptions and this explains reasons for its popularity among multivariate survival analysis methods. It has 
often proved to be a safe choice when one is not sure of fulfillment of parametric alternatives. An advantage of 

note is that model parameters can be estimated without assuming a distribution form for )(0 th . 

The PH model is a multiple linear regression of ))(log( th on the covariates with log of baseline function, 

))(log( 0 th as the intercept. Proportionality in the PH model means that ieβ
are hazard ratios. A higher 

hazard ratio greater than 1 indicates that increase in the value of the variable is accompanied by increased event 
hazard and hence, decreased length of survival (Bradburn, Clark, Love & Altman, 2003). 

Under proportionality assumption, the log of the hazard ratio for the i-th subject to the reference group is linear 
in the covariates. That is, 

(9)                                                           
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All-possible combination approach that utilizes all combination of covariates was employed. The approach 
produced 15 models consisting of 4 one-variable models, 6 two-variable models, 4 three-variable models and 1 
four-variable model. 

3.2.1 Model Estimation 

The models were estimated by a method known in the literature as maximum partial likelihood method. It is 
partial because the approach requires that only probabilities for subjects who experience the event are 
considered, censored subjects are excluded. 

We shall motivate the estimation procedure by recognizing that: 

An individual censored at ti contributes 



mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020 

103 
 

(10)                                                       ])(exp[          

)()(

0

duuh

tSL
it

i

ii

−=

=β
 

An individual that experiences the event at ti contributes 

(11)                                                          ])(exp[)(          

)()()(

0

duuhth

thtSL
it

iii

iiii

−=

=β
 

Combining the condition of each subject, whether censored or not, into the likelihood, that is combining 
Equations 10 and 11, we have a total likelihood of the form: 
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where iδ is an indicator that assumes 1 when a subject fails and 0, otherwise. 

Multiplying and dividing the total likelihood (Equation 12) by ( ) i
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The first term in this expression contains all of the information about β , while the last terms contain information 
about the baseline function )(0 th (Cox, 1972). 

Focusing on the first term, 
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Taking log of Equation 14, we have 
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where lj is the log-partial likelihood contribution at the j-th ordered death time. Maximum partial likelihood 
estimators can be obtained by solving (for each β  using Equation 15) 

0
)(log =

∂
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3.2.2 Model Selection 

Akaike information criterion (AIC) was the adopted as basis for selection in the article. Proposed by Akaike 
(1974), AIC measures the goodness of fit of an estimated statistical model and it is defined 

( ) klikelihoodAIC 2log2 +−=  

where k is the number of model parameters. The lower the AIC of a model, the better the model. Consequently, 
model with least AIC is the best. 
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4. Results and Discussion 

Parameter estimates, standard errors and AICs of fitted models are presented in Tables 1 to 4 below. 

Table 1. Cox model results for one-variable models 

   Model   
  A G T C 

Variables      
Age      

 β̂  -0.003606 - - - 

 HR 0.996400 - - - 

 se( β̂ ) 0.003326 - - - 

 AIC 1620.322 - - - 
Gender      

 β̂  - -0.2576 - - 

 HR - 0.7729 - - 

 se( β̂ ) - 0.1525 - - 

 AIC - 1618.705 - - 
TB Type      

 β̂  - - -0.07682 - 

 HR - - 0.92606 - 

 se( β̂ ) - - 0.15711 - 

 AIC - - 1621.272 - 
Occupation      

 β̂  - - - 0.2185 

 HR - - - 1.2441 

 se( β̂ ) - - - 0.1639 

 AIC - - - 1619.785 
Table 1 presents parameter estimates, associated standard errors, hazards ratios and AIC for the four one-variable 
models involved. The Cox model (G) involving only gender as the covariate has the least AIC of 1618.705 and is 
hence, the best among the four. 
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Table 2. Cox model results for two-variable models 

    Model    

  A+G A+T A+C G+T G+C T+C 

Variables        

Age        

 β  -0.001989 -0.003674 -0.005205 - -  - 

 HR 0.998013 0.996333 0.994809 - - - 

 se( β ) 0.003532 0.003328 0.003564 - - - 

 AIC - - - - - - 

Gender        

 β  -0.226313 - - -0.2536 -0.2758 - 

 HR 0.797468 - - -0.7760 0.7590 - 

 se( β ) 0.16977 - - -0.1529 0.1531 - 

 AIC 1620.387 - - - - - 

TB Type        

 β  - -0.083728 - -0.0586 - -0.07513 

 HR - 0.919681 - 0.9431 - 0.92762 

 se( β ) - 0.157268 - 0.1576 - 0.15706 

 AIC - 1622.041 - 1620.568 - - 

Occupation        

 β  - - 0.287495 - 0.2427 0.21775 

 HR - - 1.333084 - 1.2746 1.24328 

 se( β ) - - 0.171645 - 0.1644 0.16385 

 AIC - - 1619.595 - 1618.597 1621.558 

Table 2 presents results for the six two-variable models under consideration. Model (G+C), with gender and 
occupation as covariates has the least value of AIC being 1618.597. The model hence, represents the best in the 
category of two-variable models. 
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Table 3. Cox model results for three-variable models 

   Model   

  A+G+T A+G+C G+T+C A+T+C 

Variables      

Age      

 β  -0.002092 -0.003577 - -0.005281 

 HR 0.997910 0.996429 - 0.994733 

 se( β ) 0.003537 0.003760 - 0.003569 

 AIC - - - - 

Gender      

 β  -0.220406 -0.224732 -0.27162 - 

 HR 0.802193 0.798730 0.76215 - 

 se( β ) 0.936715 0.161605 0.15358 - 

 AIC - - - - 

TB Type      

 β  -0.065377 - -0.05311 -0.084667 

 HR 0.936715 - 0.94827 0.994733 

 se( β ) 0.157992 - 0.15770 0.003569 

 AIC 1622.217 - - - 

Occupation      

 β  - 0.286201 0.24120 0.287859 

 HR - 1.331360 1.27277 1.333570 

 se( β ) - 0.171455 0.16441 0.171662 

 AIC - 1619.679 1620.484 1621.308 

Results of modeling of three-variable models are presented in Table 3. Model (A+G+C) with covariates: age, 
gender and occupation, possesses the least AIC of 1619.679. The model is hence, the best in this category. 
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Table 4. Cox model results for four-variable model 

  Model 

  A+G+T+C 

Variables   

Age   

 β  -0.003687 

 HR 0.996320 

 se( β ) 0.003768 

Gender   

 β  -0.21.8312 

 HR 0.803874 

 se( β ) 0.162285 

TB Type   

 β  -0.064563 

 HR 0.937477 

 se( β ) 0.158063 

Occupation   

 β  0.285985 

 HR 1.331073 

 se( β ) 0.171472 

 AIC 1619.513 

Table 4 presents results for the only four-variable model involved. For obvious reasons, there is no choice to 
make in this case. However, considering all the fifteen models in contention, Model (G+C), with gender and 
occupation as covariates has the least value of AIC of 1618.597. It is hence, the overall best. Gender and 
occupation constitute the best subset of covariates that explain survival of TB patients. The two variables can 
therefore, be said to have had greatest influence on time to recovery of TB patients from the infection. The 
model suggests that recovery hazard of a male TB patient is 24.1% lower than that of a female patient that 
possesses same occupational classification. Typically, a male patient has higher survival time than the female 
having same occupational status. It further suggests that recovery hazard for patient on technical occupation is 
27.46% higher than for patient on non-technical job and of same gender. Hence, a patient on technical 
occupation has reduced survival time compared to one of same gender on non-technical occupation. 

5. Conclusion 

The article has performed Cox Proportional Hazards modeling of TB data with four covariates. Typically, a male 
TB patient has higher survival time than the female having same occupational status; a patient on technical 
occupation has reduced survival time compared to one of same gender on non-technical occupation; gender and 
occupation are found to explain best, survival of TB patients based on AIC. 
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