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Abstract

In this paper, a form for Frenet equations of all null curves in Minkowski 3-space has been presented. New types
of foldings of curves are obtained. The connection between folding, deformation and Frenet equations of curves
are also deduced.
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1. Introduction
The Minkowski 3-space E; is the Euclidean 3-space E3 provided with the standard flat metric given by

g =dx? +dxi —dx3,
where (x;,x,,x3) is a rectangular coordinate system in E. Since g is an indefinite metric, recall that a
vector v € Ef is said space-like if g(v,v) > 0orv =0, time-like if g(v,v) <0 and null (light-like) if
g(,v) = 0and v # 0. Similarly, an arbitrary curve @ = a(s) in E3 can locally be space-like, time- like or
null(light-like), if all of its velocity vectors a’(s) are respectively, space-like, time-like or null (light-like)
respectively. Space-like or time-like curve a(s) is said to be parameterized by arc length function s,
if g(a'(s),a’(s)) = £1. The velocity of the curve a(s) is given by ||la’(s)|l. A curve a is said to be regular

if @’(t)#0 forall t € I, @ € L" is space-like if its velocity vectors a'are space-like for all t € I, similarly
for time-like and null. If @ is a null curve, we can re-parameterize it such that, {(a'(t),a’(t)) =0 and

a'(t) # 0, recall the norm of a vector v is given by ||v|| = +/|g(v, v)I.

Given a unit speed curve a(s) in Minkowski space
E3 we can possible define a Frenet frame {T(s), N(s), B(s)} associated for each point s. Where
T(s),N(s) and B(s) are the tangent, normal and binormal vector field (A. E. El-Ahmady & A.T.M. Zidan. 2019)
(A. E. El-Ahmady & E. Al-Hesiny. 2013) (R. Lopez. 2008) (R. Aslaner, A. Thsan Boran. 2009).

2. Preliminary Notes

Let a(s) be a curve in E3. Then for the unit speed curve a(s) with non-null frame vectors, we distinguish
three cases depending on the causal character of T'(s) and its Frenet equations are as follows,

T' 0 k 0 T
B’ 0 wut O B

Case 1. If a(s) is time-like curve in E2, then T is time-like vector and T’ is space-like vector. Then
u(1<i<3), read uyy =p, =1, pu3=-1,T,B and N are mutually orthogonal vectors satisfying the
equations, g(N,N) = g(B,B) =1,9(T,T) = —1.

Case 2. If a(s) is space like curve in E3, then T is space like vector, since T'(s) is orthogonal to the space
like vector T(s),T'(s) may be space like, time-like or light like. Thus we distinguish three cases according
to T'(s).

We write the following subcases,
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Case 2.1. If the vector T'(s) is space-like, N is space like vector and B is time-like vector. Then p;(1 <i <
3 read p, = —1,u, = p3 = 1,T, N and Bare mutually orthogonal vectors satisfying g(T,T) =
g(N,N)=1,9(B,B) = —1.

Case 2.2. If the vector T'(s) is time-like, N is time-like vector and B is space-like vector. Then p;(1 <i <
3) read p; = u, = u3 = 1, where the orthogonal vectors T, N and B are satisfying g(T,T) = g(B,B) =
1,g(N,N) = —1.

Case 2.3. If the vector T'(s) is light like for all s, N(s) = T'(s) is light like vector and B(s)is unique light like
vector such that g(N, B) = —1 and it is orthogonal to T. The Frenet equations are

T 01 0 T
(N’) = (0 T 0 )(N)
B’ 1 0 —t/ \B

Case 3. If a(s) is light like curve in Ej, g(N,N) >0, when the parameterization is pseudo- arc so
g(N,N) =1 with g(T,T) =0, g(B,B) =0,9(T,N) =0, and B(s) is unique light like vector such that
g(T,B) = —1 and it is orthogonal to N the pseudo torsion of a(s) be 7 =—(N',B), then the Frenet

equations of a(s) are
T' 0 k O
N |=(t 0 k|=*
B’ 0 7 O

Where the curvature k can take only two values, 0 when « is a straight null line, or 1 in all other cases (J.
Walrave. 1995).

A regular curve a: I > E} is called a null curve if a' is light like, that is {(a’,a’) = 0 (M. P. Docarmo.
1992).

Let M and N be two smooth manifolds of dimensions m and n respectively. Amap f : M — N is said to
be an isometric folding of M into N if and only if for every piecewise geodesic path y : [ - M the induced
path foy : I = N is piecewise geodesic and of the same length as y, if f does not preserve the length it is
called topological folding (A. E. EI-Ahmady. 2007) (A. E. El-Ahmady & E. Al-Hesiny. 2013).

Amap d: M - M* such that M* = d(M) where M and M* are two smooth Riemannian manifolds is called
deformation map if d is differentiable and has differentiable inverse. A deformationmap d: M — M* where M
and M* are two smooth Riemannian manifolds is called regular deformation if V x,ye M, K (x) = K(y)) <
K(d(x)) = K(d (y)),K(x) is the curvature at the point xeM, when (x) = K(d (x)) Vxe M, it is the
identity deformation which is regular deformation (M. P. Docarmo. 1992).

Definition 2.1. Let u = (ul, u, u3) and v = (VLVZ‘ V3‘) be vectors in E3, the vector product in Minkowski
space-time E3 is defined by the determinant

€1 € —é€3
up U Uz |,
Vi V, V3

UAv =

Where e; e, and e; are mutually orthogonal vectors (coordinate direction vectors).
3. Form of Frenet Equations of Null Curves in Minkowski 3-Space

Theorem 3.1. Let £(s) be a null curve in E¥ with the standard flat metric given by g = dx? + dx2 — dx3.
Then the bi-normal vector of £(s) can be calculated by the form,

2
—(1+x3')
2x4

-1 " 1 " I
B(S) = (E(Azs b3 + X2 ),E (A1’3 b3 + xl ) ),Al‘zi 0,X3 * 0.

—_ ! " ! n —_ ! n ! n —_ r n r n
Where Ayz= (x3 x5 —x3x3'),813= (X1 x5 —x3x1') and Dy,= (x1 x5 — x5 %1 ).

Proof. Let £(s) = (x1(s),x,(5),x5(s)), be the parametric equation of any null curve in E} where the tangent
vector T(s) = (x1(s),x5(s),x5(s)) and the normal vector N(s) = T'(s) = (x{'(s),x5(s),x5(s)). To
calculate the bi-normal vector of the curve &(s), let B(s) = (by, by, bs),

since B(s) is unique light like vector, hence
(B,B) =0 and so,

by? + b,® — bs® = 0.(1)
Also, g(T,B) = —1 and so,
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x1 by + x5 by — x5 by = —1.(2)
Since B is orthogonal to N where (N,B) = 0 so we get,
x1 by + x5 by, — x§ by = 0.(3)
Multiply equation (2) by xi' and equation (3) by x; and subtracting the product equations so we get,
1 "
b, = " (Ay3 b3+ x1' ), 01, #0.(4)
Multiply equation 2 by x2"" and equation 3 by x2' and subtracting the product equations. Then,
-1 "
bl = E (A2‘3 b3 + x2 ), Al,Z * 0 (5)

By substituting equations 4 and 5 in equation 1. Then,
(A2’32 + A1’32 - A1'22 )b32 + X{’Z + Xé’z + 2(A1‘3 x{’ + A2’3 xé’ )b3 = 0.
But (A2,32 + A1,32 - A1_22 ) = (0 and so we get,

2 2
—(x{' +x3 )

by= —— 2 ) (6)

2(D,3 %7 +823 x3')

Also, b; can be written in the form,

—[gN N+ 2 ]
= (7
37 2[g(r )XY -g(N,N)xh] ™

In equation (7), when the parameterization is pseudo-arc so g(N,N) = 1,g(T,N) = 0 and we get,

2
_ -+
2x}

by ,x5 # 0.(8)

Where A, 3= (x3 x3' — X3 x5’ ),A13= (X1 x3 —x3 %1 ), and A;,= (x1 x3' — x5 x1" ). Then we get,

-1 1 —(1+ x4
B =—1(A,2b ), — (A2 b M), ———=1.09
(s) (ALZ ( 2,3 b3 + xz) s ( 13 b3+ X1 2 (C))

Where A;,# 0,x3 # 0 with curvature k =1 and torsion 7 = —(N’, B) =% g, a").

Example 3.1. Let a(s) = riz (cosh(rs), s, sinh(rs)) if we calculate 1** and 2™ order derivatives (with respect

to s) of a(s) and so T(s) = %(sinh(rs),l, cosh(rs)). Since (T, T) =0 so a(s) is a null curve and

N(s) =T'(s) = (cosh(rs),0,sinh(rs)) so (N,N) =1, since B(s) is unique light like vector such that
T

g(T,B) = land it is orthogonal to T, by substituting in the equation (9). We get B(s) = 2(sinh(m), —

_r2
1, cosh(rs)) and so (B,B) = 0,N' = r(sinh(rs),0,cosh(rs)). The pseudo torsion is T = —(N',B) =%
where N is space like vector. Then a(s) is a null curve with curvature k = 1 and the Frenet equations of
a(s) are given by

0 1 0 /1
T 0 k O\ /T —r2 0 1 - (sinh(rs), 1, cosh(rs))
(N’) = (‘r 0 k) (N) =| 2 (cosh(rs), 0, sinh(rs))

! 2 r
B 0 = 0778 Tr 0 E(sinh(rs),—l, cosh(rs))
Corollary 3.1 Let &(s) be a null curve in E3 with non-zero curvature and pseudo torsion 7, then the
bi-normal vector of é(s) can be calculate by the form,

B = (N © - ()16 = ()& (1) ).

Such thatt = —g(N',B) or 7 = § g, em.

Theorem 3.2. Let é(s) be a null curve in E} with non-zero curvature and pseudo torsion 7(s). Then
&(s) satisfies a vector dif ferential fourth order as follow,

ﬁ 27 (dzg‘)_ ,dé

st T \gsz) T
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Proof. Since £(s) be anull curve in E3 from the Frenet equation (x). We get,
T'(s) = kN(s),N'(s) = 1T(s) + kB(s) and B'(s) = tN(s),
with k =1 and so we have,

T"(s)=N'(s)=1T+ B(s)andT"'(s)= 7' T+ tT'+ B'(s).Then,

d
T"(s)=1"T+ 2tT' andsoT"'(s)— 2tT'—t'T =0denoting T = d—i,

e (dzf) _Lde_

st “T\asz) T Tas T
4. Folding of Null Curves

Theorem 4.1. Let £(s) be a null curve in E3 with non-zero curvature and w(s) = f (g‘ (s)) be a topological
folding of &(s) for all s where s € Domain (¥(s)) =1 c€ Domain é(s) defined by frame vectors. Then
w(s)=f (f (s)) is a null curve and the Frenet apparatus of the folded curve w(s) can be formed by the Frenet
apparatus of £(s).

Proof. Let & = £(s) be anull curve in E3 with non-zero curvature and w(s) = f (f (s)), s € I c domain é(s)
is a topological folding of {(s) with curvatures kf and 7, and so,

w(s) = f(§(),¥'(s) = f'(©)E'(s) = f'(§) T(s). And we get,

(v, e’y = (f'&'(s), f'E(s)) = f'*(T(s),T(s)) = 0. Since £(s) is a null curve with (T(s),T(s))=0,f%>0
for all s. Then w(s) is a null curve with curvatures kf = k = 1 and Ty = f'(s) T(s) where,

w"(s) =T3f"(§) + 3T Nf"(§) + f'(§)E" (s).
By substituting the value of ¢'"’(s) from the Frenet apparatus of the curve &(s) in corollary 3.1. Then,
Tr =T(s) f' (),
Ny =w"(s) = N(s) f'(§) + T*(s) " (),
B =w""(s) = f'(O)B(s) + T*f""(§) + 3T Nf"(§), 7y =7 =0,
By =w" — 10w = (1—14)f (T + f'(E)B + T3f""(§) + 3T Nf" (&), forall T+ 0 and 7, # 0.

Corollary 4.1. Let £(s) be a null curve in E3 and w(s) = f (E (s)) be a topological folding of &(s). Then the
limit of folding's of &(s) is a null point.

Proof. Let w(s) = f(£(s)) be a topological folding of the null curve &(s) in Ef sow(s) be null curve and we
have,

w,(): F(§() = F(E()), w2(): w1 (F(E))) » w1 (F(E())),
w3 v FEOM = v (v (FE®))).
Wt W) () (o 91 ())) ) = Bty Fnmzy (1 (D)) )

Then lim,,_,,, ¥, =p = (0,0,0), which is a null point.

Definition 4.1. Let £(s) = {x;(5), x,(s),x3(s))} be a null curve in E3. Then w(s) be an isometric folding
defined as follows,

w(s): £(s) = {x1(5), %2(5),x3(s))} = & = {(le(s)l’Ixz(S)I’ng;r(lS)I)} forall s, |/m| >1,m # 0.

m m

Theorem 4.2. Let £(s) = (x,(5), %2(5), X3(s)) be a null curve in Ef and w(g) = (F22 2O 1Ol g,

m m m

T,
f
all s be an isometric folding of é(s),|m| > 1. Then the folding w(s) be a null curve and, | Ny | =

By

20 0\ ,p

m

0o & o (N),(S =1 if x;(s) >0 and 6 = —1 if x;(s) <0,i € {1,2,3}.

m B
om 0
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Proof. Let w(§):é(s) = (xl(s),xz (s), x5 (s)) - (lxln(f)l , lx2(5)] , |x3(s)|), [m| > 1, be an isometric folding of the

m m

null  curve &(s) = (x1(5),x2(5),x3(s)) in  E. If x(s)>0, i€ {1,2,3}, then

"= Z—‘: = % (x1(5), x5(8), x3(s)), since £(s) be a null curve where (T(s),T(s)) = 0 and (T'(s),T'(s)) =0,

for the folded curve &(s)= (xlT(S),sz(s),%(s)) since  (Tr(s),T¢(s)) = #(T(s),T(s)) =0 and
(T'(s), T¢' (s)) = # (T'(s),T'(s)) =0, then the folded curve p(s) is a null curve. Since B(s) is unique
light like vector, also g(T,B) = —1 and B is orthogonal to N. Then,

Tp(s) = w'(s) = —T(s),Ny(s) = Tf = —T'(s) = —N(s) and from theorem(1), we get,

Bs(s) = mB(s).

If x,(s) <0, (€ {1,2,3} and &(s) = (T2, 220 2C)) g5 Ty(s) = —T(s), Np(s)=—N(s) and

m m

Bf(s) = —mB(s). Then the Frenet apparatus of the folding w(¢) can be formed by the Frenet apparatus of
§(s).

Now we introduce a type of folding which make the null curves to be space like curves and time like curves and
the converse as follows,

5. Conditional Fractal Folding of Null Curves
Definition 5.1 Let {(s) be any curve in ET the map which is defined as g: (x1(s), x2(S), ..., x;(8), oo, X)) =
(x1(5), x2(5), v, €%;(5), v, xp(s)) for € <1, # 0 is called conditional fractal folding of the coordinates

X, € depends on the type of the curve &, (space like, time like and null curve) ( M. EL-Ghoul & A. M. Soliman.
2002).

Theorem 5.1. Let &(s) be a null curve in E3. Under the conditional fractal folding w(s): &(s) =
{x105), %2(8), x3(s)) } = & = (x1(5), x2(5),€x3(s)), €# 0 for all s, then & is space like curve if
le] < 1,8 isnull curve if € = 1 and &y is time like curve if |e| > 1.

Proof. Let £(s)= {x,(s),x2(s),x3(s))} be a null curve in E},(T,T) =0, so x,% + x,2 = x3% and w(s) be
conditional folding defined as w(s): §(s) — &g, if & = (x1(s), (x2(s),ex3),e #0, so (T, Tf) = x% +
x,° —€? x3% and then let g(s) = (T, Ty ), then we have g'(s) = 2(T;, T )= 2(Ts, kN; ) = 0 where
ks # 0 is constant, so g'(s) =0 and g(s) = cy,¢; is constant.

If ¢; >0,(T;,T;)>0 and x;% + x> — €2 232 >0 so x32 (1—€2)> 0,2 <1, then & is space- like if
le] < 1.

If ¢; <0 wehave (T;, Ty ) <0 and € > 1, then & is time like curve if |e] > 1.

If ¢; =0, (T, Ty ) = 0 and so 2 =1, then & isnull curve if € = +1.

Corollary 5.1. Let é(s) be anull curve in E3. Under the conditional fractal folding which is defined as,

w(s): £(s)= {x1(5),x2(5),x3(5)) } = & = (x1(5), x2(5),ex3(s)) forall e <1, € # 0.

The Frenet equations of the folded curve ¢ is depends on e.

Corollary 5.2. Let £(s) be a null curve in E} and w(t) be conditional fractal folding defined as w(s):
£(s) = {x1(s), x2(8), x3(5)) } - ér and & = (ex1(5), ex,(8), x3(s)), e # 0,6 < 1 forall s. Then

&r is space like curve if || > 1,&; is time like curve if |e] < 1. and & is null curve if € = +1.

Corollary 5.3. Let é(s) = {xl(s),xz(s), x3(s))} be any curve in E} under the conditional fractal folding

w(s): &(s) —&pép= (sxl(s), xz(s),x3(s)) or & = (x1(5),ex5(s), x3(s)),, € #0,]le| <1, for all s.
Then the limit of a sequence of foldings of &(s) is never being null curve.

Proof. Let the limit of a sequence of foldings of any curve &(s) in Ef be a null curve with
$p = (O,xz(s),x3(s)), or & = (x1(5),0, x3(s)) and &f = (x1(s),x2(s),0), then from theorem 3.1, the
bi-normal vector of the folded curve By undefined, also N; = tT; — kB; undefined. The Frenet equations of
&y cannot appoints and so this contradict with & be null curve. Then &, never being null curve.

Theorem 5.2. Let &(s) = {x;(s),x,(s),x3(s))} be a null curve in E3. Then the conditional folding §p =
(sx1 (s), €x5(8), € x5 (s)), le] <1, of &(s) be null curve. And the Frenet equations of the folded curve ¢ can
be formed by the Frenet equations of &(s).
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Proof. Let &(s) = {x;(5), x2(s), x3(5))}, be null curve in E} and &, = (exl(s),sxz(s),e x3(s)), le] <1 be
a conditional fractal folding of {(s) and so (Tf, Tf) = £2(T(s),T(s)) = 0. Then the folded curve &f is null
curve, with curvature ky =k =1 and torsion 7, = 7, by using the form of Frenet equations in theorem1. Then
we have,

Te(s) = €T(s)
N¢(s) = eN(s)

By (s) = (%) B

Corollary 5.4. Let £(s) = {(x,(s), x5(s),x3(s))} be a null curve in E2. Then the conditional fractal folding
$p = (e21(5), x5 (5), €%3(5)), i €N, |g] <1, & # 0 be anull curve and the limit of a sequence of foldings
of a null curve &(s) be a null point.

Proof. Let &(s) = {x;(5),x2(5),x3(s))} be a null curve in E7. So (T(s),T(s)), since (T¢(s),T;(s)) =
&%(T(s),T(s)) = 0,& # 0, then &, is anull curve.

Let f:&—= && be a conditional fractal folding of the null curve £ such that Vx,yeé, d(x,y)
> d(f(x),f(y)) where é(s) be anull curve. By successive steps of conditional fractal folding's we get,

fir§ = aélal <1,
frr6§ = &(8),& <&,
f3:€2§ = &3(8), 63 <& -,
fatem-1é 2 &) &n <Em-1 K1,
lim, e f,(§) =p where p = (0,0,0) is anull point.

Theorem 5.5. If &(s) and _g (s) are null curves with non-zero curvature in E3 and F.:& — & is an isotorsion
folding, then the torsion of ¢ identically zero if and only if ¢ is a part of the null cubic.

Proof. Let & be anull curve in E} has torsion identically zero. Since F; is an isotorsion folding from ¢ into
&. Then the torsion of ¢ is zero and the Maclaurin series can be written as,
2 3
£(s) = €(0) + & (0)s +¢"(0) 5 +£"(0) -
Since B(s) = —¢&'"(s) when 7 = 0. So we get,
2 3
E(s) = &(0)+T(0)s + N(O)S? — B(0) SZ. With Frenet frame {T,N,B} of &(s) in this case g(T,T) =
g(B,B) =0,9(T,B) = g(N,N) = 1. Without loss of generality,
assume that T(0) = % (1,0,1),N(0) = (0,1,0) and B(0) = % (1,0,—1) so we get,

E(s) = ﬁi (65 —53,3vV2 52,65 + 53). Then &(s) is a part of null cubic. Conversely let the curve £(s) be a part

of the null cubic, then the torsion of &(s) identically zero. Since F, is an isotorsion folding and & has torsion
identically zero.

6. Conditional Deformations of Null Curves in E3

Theorem 6.1. Let £(s) beanull curve in EZ and F(x) = M x + ¢,c € R,M # 0 be a conditional deformation
of é(s) defined as F(s) = (Mx,(s) + ¢, Mx,(s) + ¢, Mx3(s) + ¢).Then the deformation F(s) be a null curve
and,

B 0O 0 —
F M B

Proof. Leté(s) be a null curve in E3 and F(s) be a conditional deformation of &(s) defined as F(s)=
Mé&(s) + ¢, since é(s) isanull curve so (§,&") =0, M # 0 we get,

F'(s) = M&'(s),(F',F') = M?(&',&') = 0. Then F(s) is anull curve with k = k; = 1 and we get,
Tp(s) = F'(s) = M§'(s) = MT(s),
Np(s) = T¢'(s) = MT'(s) = MN(s),
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Bp(s) = iB, where the torsion be 7z = —(Ng', Bg) = 7. Then the Frenet apparatus of F(s) can be formed
by the Frenet apparatus of &(s).

Corollary 6.1. A null curve é(s) in E3 under the conditional deformation F(s)= Mé&(s) + ¢ of &(s),M =0
has the first curvature identically zero if and only if F(¢) be a part of a straight line.

Proof. Assume that the conditional deformation F(&) of the null curve é(s) be F(s) = (Mx,(s) +
c,Mx,(s) + ¢,Mx3(s) + ¢) where M # 0 such that dim F(¢) = dim é(s) and from the Frenet equations
with first curvature k=0, then F"(§) = M N(s) = 0 and this implies that F(§) is a straight line, where
kr = |ITE(S)l, Ne(s) = Ti(s). Conversely, let F(&) be a straight line then F"” (&) = MN(s) =0 and F(§)
has the curvature kr which is identically zero.

Remark 6.1. If a(s) be a light-like curve in E3 with standard flat metric g = —dx? + dy? + dz?,g(N,N) >
0, when the parameterization is pseudo arc so g(N,N) =1 with g(T,T) =0, g(B,B) =0 and g(T,N) =
0, and B(s) is unique light like vector such that g(T,B) = 1 and it is orthogonal to N the pseudo torsion of
a(s) be T = —(N’', B), then the Frenet equations of a(s) are

T' 0 k O T
N |]={t 0 —k]||N]|.10.
B’ 0 -t O B

Where the curvature k can take only two values 0 when « is a straight null line or 1 in all other cases.

Theorem 6.2. Let é(s) be a null curve in E3 with standard flat metric g = dx? + dy?— dz?. Under the
conditional deformation,

D: &(s) = (x(s),y(s),2(s)) = D(&) = (x(s),¥(5),2(s)) = (z(s),y(s),—x(s)) which rotation the
coordinates x and z in x-z plane with rotation angle 6 = nz—n,n € R,n is odd integer. Then D(§) be a null
curve with standard flat metric g = —dx? + dy? + dz>.

Proof. Let £(s) be a null curve in E3 with standard flat metric g = dx? + dy?— dz? since the equation of
which rotation coordinates x and z in x-z plane can be written as,

X\ _ (cos@ sin@\ (x\ _ _ . . . . .
(Z_) = (—sin 0 cos 9) (Z) ,¥ = ¥. Under the conditional deformation D (&) which rotation coordinates x

and z with rotation angle 6 = nz—ﬂ, and n € R,n is odd integer then (JZE) = ( y 1) (x),y =7y, or ()ZE ) =

0 —1\ x -1 0 VA
(1 0 ) (Z),y =Y
D(&) = (x(s),¥(s),2(s)) = (2(s),y(s), —x(s)) also,

g(D',D") = —dx? + dy? + dz?,

(D',D"y = —dx?+dy?+dz? =dx*+dy*—dz? =(&',&') =0. Then the conditional deformation D(§)
be a null curve with standard flat metric g = —d¥? + dy? + dz>.

Theorem 6.3. Let £(s) be anull curve in E3 with the standard flat metric given by g = —dx? + dx2 + dx3.
Then the bi-normal vector of can be calculated by,

2
—(+x3')

1 1
B(s) = (—(x)—=A,2bs ),— (A2 bz —x7" ),———"—=],A 0,x5; # 0.
(s) A1,2( 2 2,3 3):A1’2 ( 1,3 03 1) yA12F 0,x3 #F
Where A, 3= (x3 x3 —x3 %3 ),A13= (%1 x5 —x3x1") and A;,= (x1 x5’ — x5 x1").

Proof. Let &(s) = (x,(s),x,(s),x3(s)) be a null curve in E3 with tangent vector T(s) = (x;(s), x5(s),
x5(s)) and the normal vector N(s) = T'(s) = (x1'(s), x4 (s), x5 (s)), to calculate the bi-normal vector of the
curve &(s), let B(s) = (by, by, b3), since B(s) is unique light-like vector. Then,

(B,B) = 0 and we get,
—b, 2+ b,% 4+ b2 =0.(11)
Alsosince g(T,B) =1 we get,
—x1 by + x5 by, + x5 b3 = 1.(12)
Since B be orthogonal to N, then (N,B) = 0 and we get,
—x1' by + x5 by, + x5 by = 0.(13)

By solving these equations as theorem1, we get the bi-normal vector be
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1 a1 1
B(S): (E (A2’3 b3 +X2 ,E (A1’3 b3+ x ,( 2;‘33 )) A12¢OX3 ¢0 (14’)

Where Ap3= (x5 x3' —x3 x5 ),A13= (%1 x5 —x3x1") and A;,= (x1 X3 — x5 x1' ) and so,

2 2
(=)

2(Ag3 %1 = B3 %7 )"

b1 == i (A2'3 b3 + Xé’), b2 = i (A1‘3 b3 + x{’) and b3 =

Also bs can be written in the form,

[g(N,N) — x° ]
2[ (N, N)x3 - (Tl N)xél]
In equation (15), when the parameterization is pseudo-arc so g(N,N) = 1,g(T,N) = 0. Then,

(1- x”
2 l
Example 6.1. Let a(s) = —(cosh(rs) TS, smh(rs)) be a null curve in E3 with standard flat metric
g =dx*+dy*—dz? and aD(s) —%(smh(rs) rs,cosh(rs) ) be deformation of the null curve a(s) by
rotation coordinates x and z with rotation angle 0=""nis odd integer with standard flat metric g =
—dx + dy? + dz?. If we calculate 1** and 2™ order derivatives (with respect to s) of a,(s) and so T(s) =
—(cosh(rs) 1, sinh(rs)), since (T, T)=0 so a(s) is mnull a curve and N(s)=T'(s) =
(smh(rs) 0, cosh(rs)), so (N,N) =1, since B(s) is unique light like vector such that g(T,B) = 1 and it is

orthogonal to T by substituting in the equation (13). Then B(s) = 7(cosh(rs) 1, smh(rs))
(B,B) = 0,N' = r(cosh(rs),0, sinh(rs)), the pseudo torsion is T = —(N',B) =- g(a”’ a) = - N is
space like vector. Then a(s) is a null curve with curvature k = 1 and the Frenet equatlons of a(s) are given
by

by = .(15)

by = x4 % 0.(16)

0 1 0 1
—(cosh(rs), 1, sinh(rs))

T’ 0 k 0\/T AP | b
N]=|lt 0 —-k|IN]|=| 2 (sinh(rs), 0, cosh(rs))
B’ 0 -t 0/\B 0 r? -r

0l 0 > (cosh(rs),—1,sinh(rs))

Corollary 6.2. Under the conditional deformation which is defined by,

D: &(s) = (x(s),y(s),z(s)) » D() = (Z(s),y(s),x(s)), the Frenet equations of D (&) are invariant.
Proof. The proof is clear from theorem 6.3, the Frenet equations of D(&) calculates from equation (10).
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