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Abstract 

Image data compression algorithms are essential for getting storage space reduction and, perhaps more 
importantly, to increase their transfer rates, in terms of space-time complexity. Considering that there isn't any 
encoder that gives good results across all image types and contents, this paper proposed an evolvable lossless 
statistical block-based technique for segmentation and compression compound or mixed documents that have 
different content types, such as pictures, graphics, and/or texts. 

Derived from the number of detected colors and to achieve better compression ratios, a new well-organized 
representation of the image is created which nonetheless retains the same image components. With the effort of 
reducing noise or other variations inside the scanned image, some primary operations are implemented. 
Thereafter, the proposed algorithm breaks down the compound document image into equal-size-square blocks. 
Next, inspired by the number of colors detected in each block, these blocks are categorized into a set of 
six-image objects, called classes, where each one contains a set of closely interrelated pixels that share the same 
common relevant attributes like color gamut and number, color occurrence, grey level, and others. After that, a 
new arrangement of these coherent classes is formed using the Lookup Dictionary Table (LUD), which is the 
real essence of this proposed algorithm. In order to form distinguishable labeled regions sharing the same 
attributes, adjacent blocks of similar color features are consolidated together into a single coherent whole entity, 
called segments or regions. After each region is encoded by one of the most off-the-shelf applicable compression 
techniques, these regions are eventually fused together into a single data file which then subjects to another 
compression stage to ensure better compression ratios. After the proposed algorithm has been applied and tested 
on a database containing 3151 24-bit-RGB-bitmap document images, the empirically-based results prove that the 
overall algorithm is efficient in the long run and has superior storage space reduction when compared with other 
existing algorithms. As for the empirical findings, the proposed algorithm has achieved (71.039%) relative 
reduction in the data storage space.  

Keywords: adaptive compression, block-based segmentation, Cloud Computing (CC), Digital Image Processing 
(DIP), image document compression, image segmentation, Lookup Dictionary Table (LUD), lossless image 
compression technique 

1. Introduction 

RGB images, referred to as component images, are the most common model of images. Each image may be 
regarded as a “stack” containing three-equal-size arrays. Working at the level of the pixels which make up 
images, every image has an MxNx3 array of color pixels. This means that the image contains “M” pixels along 
the horizontal direction, called image width, and “N” pixels along the vertical direction, called image length. 
Hence, the total pixel count is “M” multiplied by “N”, namely “MxN”. Moreover, each pixel is associated with 
three integers that correspond to the three color information: Red, Green, and Blue. The number of bits that are 
required to address every integer of these three integers defines the bit depth which is also referred to as “pixel 
depth”, “the number of bits per pixel”, or “grey-scale resolution”. (Kumar et al. 2019)(Gonzalez, Woods, and 
L.Eddins 2009)(Gonzalez and Woods 2017)(MathWorks Inc 2019)  
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Hamada 2019). Besides, they may never satisfy the ever-growing information demands of customers or even 
some of their evident needs (El-Omari 2019)(El-Omari et al. 2012). This is especially true for storing and 
transferring documents containing a huge amount of images. To come up with this focal point and to diminish 
the data storage requirements, in terms of storage space complexity, or to increase their transfer rates, in terms of 
time complexity, there is an essential need for compressing these documents with sophisticated algorithms 
(El-Omari et al. 2017)(Taha et al. 2012)(El-Omari and Awajan 2009)(El-Omari 2008).  

Most data compression techniques generally benefit from the patterns inside the image data to get another 
equivalent less-space representation. And so, random data are so difficult, if not impossible, to be compressed. 
However, conventional mechanisms of compression are commonly involved with certain image types that are 
measured in terms of space-time complexity. Using them with mixed documents may impose many distinctive 
challenges that have to be adequately addressed. And, thus, the so-called segmentation is evolved out to offer a 
conceptual way to break down mixed documents into distinct image objects, called segments or regions, where 
each one of these incorporated parts contains a set of close-related pixels which have “common attributes” like 
color gamut and number, color occurrence, grey level, and others (Sharma 2019). Rather than using one standard 
compression technique for the whole document and to achieve a better compression ratio, each segment is 
extracted alone and then encoded independently (Taha et al. 2012). Thus, this research tackles the problem of 
segmenting mixed digital documents into six parts. Then at the sender side, each incorporated part is compressed 
individually apart from others using the most applicable compression technique, thereby ensuring better 
compression ratios and thence quicker sending data from one machine to another. By this means, the recipient 
can integrate these various image components to regenerate the original document. However, this arrangement 
places an emphasis on direct dialogue between the pair of actors, the sender and the recipient. (El-Omari and 
Awajan 2009)(El-Omari 2008)(El-Omari et al. 2012)  

In order to state a truth, this paper is a continuation of the previous works in the area of document image 
segmentation and compression (El-Omari and Awajan 2009)(El-Omari 2008)(El-Omari et al. 
2017)(El-Omari et al. 2012)(Taha et al. 2012). In order to explore further the arguments set out above, this 
paper is divided into seven sections. After this section provides an introduction to the main theme of the 
paper, Section 2 surveys the literature to look at the related work and, moreover, reviews some fundamental 
concepts and terminology that forms the theoretical background. Section 3 is where the real work begins; it 
presents the current approach developed in this research and then walks through all the different stages 
which would be required to implement this proposed algorithm. The segments formulation and the 
mathematical model of this proposed solution are detailed in Section 4. While the conducted experiments 
and their detailed intensive analysis are discussed in Section 5, Section 6 concludes the project work of this 
research. Finally, to accomplish the discussion of this paper, the last section, Section 7, highlights an ample 
research scope and addresses a fairly broad range of possible research opportunities to be further 
investigated. 

2. Related Work  

Mixed document segmentation, as a well-known research area, aims for dividing a document image into its 
components: pictures, graphics (drawings), texts, and backgrounds. Data compression, on the other hand, is the 
process of rearranging the original information with the sole intention of relatively getting fewer numbers of bits 
which in turn leads to storage space reduction.  

While the algorithms that carry out the data compression process are referred to as encoders, the ones that 
perform the inverse process to reconstruct the original images are referred to as decoders (Kumar et al. 2019). 
However, this whole process is referred to as encoding. Figure 2 is a schematic diagram that depicts the data 
compression and decompression processes for an image having “M” pixels in length and “N” pixels in wide. 
Imagine an input data file, “R(M,N)”, is encoded to be “E(M,N)” and transferred through a network from a 
source computer to a destination one where the file can be decoded back, i.e. decompressed or retrieved back, to 
be “D(M,N)”.  

It is a reality that exaggerative numbers of millions of digital images are being generated every single hour. Not 
only that, but most of these images are rich-mix contents (El-Omari 2019)(El-Omari and Alzaghal 2017). In 
order to face the reality of this truth, many models of segmentation and/or compression are currently available; 
each one has its own specifications and essential requirements. And so, the right decision for a particular model 
selection is no longer an easy duty to be carried out (El-Omari 2019). Besides, the traditional algorithms may no 
longer enough sufficient to upkeep the new needs and then there is a vital need for new efficient techniques.  
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Figure 2. A system block diagram showing the image compression & decompression processes. 

To this aim, the goal of this paper is to get the maximum higher transmission rate at which the data can be 
transferred properly from the source point to the destination. However, this rate is much related to the size of the 
file which, consecutively, depends on its content types. As such, there is certainly a broad group of techniques 
proposed in today’s growing field of compression which makes it difficult to choose from the most appropriate 
model selection especially that most of them provide an adequate style to implement. Depending on many 
relevant aspects, each model has its own specification and, therefore, these techniques can be classified into six 
overlapped categories that Figure 3 demonstrates: 

 
Figure 3. Categories of data compression techniques 

• Redundancy-related categorization: This category is associated with the way of performing the compression 
process. This category can be further grouped into three subgroups: Encoding redundancy, Inter-pixel 
redundancy, and Psycho-visual redundancy. For more information on this category, you can refer to (Taha et al. 
2012).  
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• Ready-Made categorization: By considering the strategy of data compression/decompression, a further 
additional taxonomy can be possible for this group: (Taha et al. 2012)(Gonzalez and Woods 2017) 

- Using off-the-shelf packages that are available on the market for data compression/decompression.  

- Online disk compression: Building the data compression/decompression as a transparent (i.e. real-time) utility 
inside the operating system. By using this strategy, every data file is directly compressed when it is saved. In 
contrast, every data file is automatically decompressed when it is retrieved back (i.e. loaded).  

- To speed up operations, the data compression/decompression can be built internally as a special-purpose 
built-in chip which obviously has its corresponding software driver. Again as stated in the previous 
subcategory, every file is automatically compressed during the saving process, and vice versa.  

• Adaptation-related categorization: Upon the adaptation strategy, image compression algorithms are generally 
categorized into two fields: static and dynamic. Regardless of its content types, the compression process is fixed 
in the static case and thereby there isn't any attempt to capture any more details about the problem of interest 
during the process of encoding, hence the term “data-independent”. In contrast to the static case, the dynamic 
encoding processes changes dynamically depending on the extracted data content, hence the term “adaptive 
compression”. (Taha et al. 2012)(Gonzalez and Woods 2017) 

• Information-preserving categorization: From a classification point of view, “lossless” versus “lossy” is 
utilized in accordance with the quality requirements. Different than the other one, “lossless” guarantees that the 
decoded document and the original one are entirely identical and precisely bit-by-bit alike. Therefore, the 
compression process is reversible. Reasoning from this fact that there may be some image degradation due to the 
process of discarding away some data forever, “lossy” does not guarantee that they are alike. And in turn, the 
process is irreversible and the data are an approximated copy of the original.  

From another point of view, “lossless” achieves a lower compression ratio as compared to “lossy”. Roughly 
speaking, the quality and the compression rate run in the opposite direction from each other where lower data 
quality is much related to a higher compression ratio and versa vice. The degree of quality loss is 
directly proportional to the compression level being applied to the image. Measured in terms of space-time 
complexity, the compression reduction level that can be achieved using lossless techniques is lower than that 
rate of “lossy” techniques and, hence, “lossy” methods typically saves more memory and run-time 
computations without reporting any distinguishable regression related to the image quality. (Taha et al. 
2012)(Gonzalez and Woods 2017)(Boopathiraja, Kalavathi, and Dhanalakshmi 2019)(Kumar et al. 2019) 

As defined for the “lossy” cases and at the expense of getting data storage reduction, some loss of information 
is reasonable and acceptable by an adequate margin of safety, such as small variation of colors or dropping 
insignificant detail and inessential characters, whose loss will not be observed or make a big difference. 
“lossless” compression, by contrast, is the only acceptable mean of data reduction where an exact recovery of 
an encoded image is vitally essential. Medical images, confidential data, legal and historical documents are the 
most dominant examples of this norm of compression. (El-Omari 2008) 

In view of Figure 2, if both the reconstructed image, “D(M,N)”, and the original one, “R(M,N)”, are exactly 
the same, then the data compression technique is “lossless”; otherwise, it is a “lossy”. 

• Content-related categorization: In the direction of solving the problem of segmenting and compressing 
compound documents, this group is divided into three subcategories:  

- Black-white algorithms: These algorithms, such as “Fax Group 3” and “Fax Group 4”, are formally emerged 
for the purpose of converting the images themselves into black-white color and then encode them through 
lossless compression algorithms. Even though these algorithms have more storage space reduction, the 
contrast and the color information are unfortunately lost and, therefore, they are inappropriate for other 
document types such as medical images, historical documents, or colored magazines. They, on the other hand, 
are more suitable for some technical and business documents. (El-Omari et al. 2017)(Gonzalez and Woods 
2017)  

- Single-type content: These algorithms are only designed to encode the documents that have one type of 
content. Taha et al. (2012) and El-Omari et al. (2017) proposed two special-purpose techniques for 
compression documents that have only text contents. 

- Compound images: Rather than uniformly encoding the entire image as reported in the cases of conventional 
image compression algorithms, this style of algorithms is used to encode compound images that may contain 
more than one component, such as pictures and graphics besides texts (Kumar et al. 2019). It is based on 
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building prior knowledge about the images, then uses this knowledge to divide them into their different 
content types, and finally encode every type separately aside from the others (Kumar et al. 2019). Two 
subcategories are forked from these algorithms: Layered encoding and Block-based encoding. Mixed Raster 
Content (MRC) is one of the most dominant examples of layered encoding. As illustrated in Figure 4, MRC 
divides the image into three content types: foreground (FG) of 24-bit color, a binary mask of only one bit for 
each pixel, and background (BG) of 24-bit color. Each identified bit of the binary mask determines that the 
pixel belongs either to the foreground layer, i.e. has a value of 0, or to the background layer, i.e. has a value of 
one (Queiroz, Buckley, and Xu 1999)(El-Omari et al. 2017). 

Another noteworthy example, El-Omari and Awajan  (2009) and El-Omari et al., (2012) utilized the 
Artificial Neural Network (ANN) to exploit some prior knowledge about the images and then they use this 
knowledge as a classifier to segment and compress compound images.  

 
Figure 4. MRC divides images into its relevant components. 

Besides the aforesaid categories, there is still much room for improving and investing these existing algorithms 
or coming up with new effective algorithms and techniques like the one described in this current research.  

3. The Proposed Framework 

The philosophy behind this proposed technique is to store descriptors or pointers that refer to specific references 
within a special-purpose dictionary rather than storing the actual repeated figures for every pixel, which is its 
color information. While the repetitive data of these colors are stored only once, this internal dictionary is 
fabricated specifically for every block/region of the image and it is referred to as Lookup Dictionary Table 
(LUD). This LUD is organized as key-value pairs: the actual data items being looked up and the reference 
pointers that point out to where the data are located. So, the LUD reference list should consist of all the reference 
pointers and the referencing to this dictionary is performed upon coming across any reference pointer 

Through the indexing operation, the value of every index pointer should point out to one and only one LUD 
color item. On the other side, as any reference pointer can point out to exactly one LUD color, any LUD color 
may be referred by many reference pointers. Because the relevant information is declared and stored in the form 
of codes, the mapping operation between the values of the index pointers and the corresponding colors of the 
LUD is guaranteed. Namely, each cited reference has to be cited in advance inside the LUD list and, in turn, 
there is no reason to include uncited references without they originally exist in the LUD entries. (Azad et al. 
2010)(Wikipedia 2016)(El-Omari et al. 2017) 

As reflected in Figure 5 and Figure 6, the proposed technique works in a sequence of seven phases. These phases 
form the roadmap framework of the proposed technique.  

 
Figure 5. The Roadmap framework of the proposed technique 

1) Preliminary 
processing phase 

2) Segmentation & 
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Figure 6. The flowchart of the proposed algorithm 

While Algorithm I of Figure 7 represents the main phases included in this proposed Algorithm, Algorithm II that 
is detailed in Figure 8 is expressed to build the color statistic table (CST).  
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Algorithm I: Color Counts Block-Based Segmentation 

Description  This algorithm contains seven phases and six classes in its essence. Through this algorithm, the 
bitmap table of the original image is divided into six classes based on the number of colors that 
are detected inside. Then through seven phases, the algorithm builds a new two-level compressed 
file. 

Input  “R(M,N)” which represents any BMP image of size MxNx3, where “M”, “N”, and “3” 
correspond to the image length, width, and the three-RGB-component colors, respectively. 

Output “E(M,N)” which represents the compressed image file. 

Method 

1. Initialization: do the followings: 

2. (i) Read the input image, “R(M,N)”.  

3. (ii) Scan the input image, “R(M,N)”, to determine the length, “M”, and the width, “N”.  

4. (iii) Read the block length, “BL”. 

5. Create six empty tables “T1”, “T2”, “T3”, “T4”, “T5”, and “T6”. 

6. 
Do preliminary operations: the required preliminary processing is performed in order to reduce noises 
and/or variations inside the scanned image. 

7. Divide “R(M,N)” into equal-size-square blocks. 

8. For each block, apply the followings:  

9. Using Algorithm II that is detailed in Figure 8, scan the block to build the color statistic table (CST).

10. 
Check the color frequencies of the previous table, “CST”. Then, colors with low frequency may be 
considered as noise and eliminated. 

11. 
Based on identifying the number of colors containing in each block, determine the classes of the 
blocks as “T1”, “T2”, “T3”, “T4”, “T5”, or “T6”; these classes are outlined in Figure 9. 

12. If the block class is of type “T1”, insert a new entry in the table “T1” that contains the followings: 

13. (i) The block length, “BL”.  

14. (ii) Block address: “I” and “J”. 

15. (iii) The values of the three RGB components of the unique detected color of the block. 

16. 
Else If the block class is of type “T2”, i.e. text-based, insert a new entry in the table “T2” that 

contains the following data items: 

17. (i) Block address: “I” and “J”. 

18. (ii) A special-purpose dictionary for the two detected colors. 

19. 
(iii) one-bit-reference-pointer index to designate one of the two colors of the dictionary; using 

zero for the pixels having the first color and one for the second color. One byte can hold the 
information of 8 pixels. 

20. 
Else If the block class is of type “T3”, insert a new entry in the table “T3” with the following data 

items: 

21. (i) Block address: “I” and “J”. 

22. 
(ii) A special-purpose 16-color (each color requires three entries) dictionary is built where the 

detected colors are arranged at first and the remaining unoccupied entries are fulfilled to 16 
colors (i.e. 3*16=48 cells) with null values.  

23. 

(iii) four-bit-reference-pointer index to designate a specific color from the sixteen colors of the 
stored dictionary. Every 2 pixels require one byte to store their indexes. Any reference 
pointer refers to one of the already detected colors and there isn't any pointer that refers to 
one of the unoccupied entries (i.e. colors) that are previously fulfilled to complete the number 
of colors into 16 colors with null values 

24. Else If the block class is of type “T4”, insert a new entry in the table “T4” with the following data: 

25. (i) Block address: “I” and “J”. 

26. (ii) A certain special-purpose 128-color (each color needs three entries) dictionary is built where 
the detected colors are arranged at first and the remaining unoccupied entries are fulfilled to 
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128 colors (i.e. 3*128=384 cells) with null values. 

27. 

(iii) seven-bit-reference-pointer index to designate a specific color from the 128 colors of the 
stored dictionary. Every individual pixel requires seven bits to be stored. Any reference 
pointer refers to one of the previously detected colors and there isn't any pointer that refers to 
one of the unoccupied entries (i.e. colors) that are already fulfilled to complete the number of 
colors into 128 colors with null values. 

28. 
Else If the block class is of type “T5”, insert a new entry in the table “T5” that contains the 

following data items: 

29. (i) Block address: “I” and “J”. 

30. (ii) For each pixel of the block, store its red color component. Each pixel requires a single byte. 

31. 
Else If the block class is of type “T6”, insert a new entry in the table “T6” with the following data 

items: 

32. (i) Block address: “I” and “J”. 

33. (ii) The pixels' data that are detected in that block. Every pixel requires three bytes. 

34. End If 

35. End For-loop // no more blocks 

36. 
Invoke Consolidation: In order to form higher-level regions, blocks of similar color features are 
consolidated together into a higher single coherent whole. 

37. 
Invoke the first-level compression phase: Each region is encoded by one of the most off-the-shelf 
applicable compression techniques. Every region is compressed along with its relevant dictionary. 

38. Invoke Integration: integrate all the six tables into one file containing one table. 

39. 
Invoke the second-level compression phase: Again, intending to achieve a better compression ratio, the 
generated file of the preceding step is going through another stage of compression. 

40. Return the generated file “E(M,N)”. 

Figure 7. Algorithm I, the proposed technique. 

Algorithm II: Image Color Statistic Table (CST) 

Description  This principal algorithm is designed to build a statistic about the detected colors and their relevant 
frequencies that are captured inside a given block. This statistic represents the color map or the 
dictionary of colors. Likewise, this algorithm can be carried out to build a statistic about the 
detected colors and their frequencies of the whole image. 

Input  Either the whole MxNx3-size BMP image, i.e. “R(M,N)”, or one of its blocks. 

Output A color statistic table “CST” of four columns; three of them correspond to the three basic RGB- 
color components of each color and the last one corresponds to the frequency of that color. 
However, every detected color is viewed by one entry.  

Method 

1. Initialization: construct an empty table “CST” of four columns. 

2. Read the input block pixels from left to right and top to bottom. 

3. For every pixel of the input the block:  

4. If the three basic RGB-color components already exist in “CST”  

5.        Add 1 to the frequency that corresponds to that color. 

6. Else   

7.        Insert this new color in the table “CST” with a frequency equals to one. 

8. End If 

9. End For 

10. Return the color statistic table “CST”. 

Figure 8. Algorithm II, generate an Image Color Statistic Table (CST) 
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3.1 Phase I: Preliminary Processing Phase 

As data efficiency is crucially important to be improved before using, the original data representation may 
subject to a set of pre-processing steps that are performed for filtering noise or variations inside the scanned 
images. What's tricky is that the success of this proposed technique is highly depending upon the thoroughness 
of this phase. (Kumar et al. 2019) 

Going forward, the image with the enhanced quality is then divided into equal-size-square blocks. A color map 
of each block that represents the detected colors and their frequencies is generated using Algorithm II that is 
already detailed in Figure 8. This map is referred to as the Color Statistic Table (CST) for these identified colors. 
Within this context, if the pixels of an input block (I, J) of “BL x BL” in size and its pixels are distributed among 
“n” three-RGB-component colors, then Table 1 represents the output of this algorithm. Again, like those that are 
outlined above, colors with low-frequency rates may be considered as noise and excluded from this table. 

Table 1. The structure of the Color Statistic Table (CST) 

Red component Green component Blue component Frequency 

R001 G001 B001 F001 

R002 G002 B002 F002 

R003 G003 B003 F003 

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

Ri-1 Gi-1 Bi-1 Fi-1 

Ri Gi Bi Fi 

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

Rn-1 Gn-1 Bn-1 Fn-1 

Rn Gn Bn Fn 

The total frequency BL2 

It is essential to mention that this table is arranged in descending order according to the last column, 
“Frequency”. At the beginning of this algorithm, an empty 4-column table is created. As the image file is read, 
this table is altered whenever a new color is encountered. If the encountered color already exists in this table, its 
corresponding frequency is increased by one. Otherwise, a new entry corresponding to this new color is inserted 
in this table with a frequency equals to one.  

Table 2 states an example of this CST where the data is viewed in decimal values. The block of this example is 
“32x32” pixels in size. The 1024 pixels are distributed among thirteen three-RGB-component colors. 

Table 2. An example of the Color Statistic Table (CST) 

 Red component Green component Blue component Frequency 

0. 255 244 254 241 

1. 000 006 016 218 

2. 235 204 122 132 

3. 016 008 016 102 

4. 007 008 007 95 

5. 245 245 225 62 

6. 009 026 014 77 

7. 240 240 230 20 

8. 189 189 189 18 

9. 029 001 010 17 

10. 218 218 228 16 

11. 224 224 224 15 

12. 016 014 009 11 
 Total 1024 
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3.2 Phase II: Segmentation and Classification Phase 

After the phase of preliminary operations, each block is assigned a class type based on its CST. All blocks that 
have the same number of colors are given the same label or class. As reported in Table 3 and shown in the 
illustration of Figure 9, block types can be categorized into six classes.    

For the scanned image, “N”, suppose that the numbers of blocks for the classes “T1”, “T2”, “T3”, “T4”, “T5”, 
and “T6” are: NT1, NT2, NT3, NT4, NT5, and NT6, respectively. Then, the total number of blocks is defined as 
shown by Equation 1: N = ∑ Nܑ܂଺୧ୀଵ                                                      (1) 

On the other hand, “N” can be entirely decoded back in a reversible way as shown by Equation 2: ∑ Nܑ܂଺୧ୀଵ 	= 	N                                                    (2) 

Table 3. The description of the six classes of the proposed technique 

Class No. of Colors Note 

“T1” 1 
The number of detected colors is one and only one. Generally, this class of blocks 
represents the background of a document image which is a large expanse of a 
single color. This color is considered as a background. 

“T2” 2 
The number of detected colors is exactly two. This class usually represents the 
text-based data. 

“T3” 3-16 
The number of detected colors is less than 17 and more than two. This class 
generally represents the drawing parts of the documents: graphs, charts, and/or 
curves. 

“T4” 17-128 The number of detected colors is less than 129 and more than 16.  

“T5” 129-256 
The number of detected colors is less than 257 and more than 128. These blocks 
are mainly the grey part of the image. 

“T6” >256 
The blocks of this class generally represent the millions of color pictures found in 
the images. 

 

  
Figure 9. The six classes of the proposed technique 

3.3 Phase III: Rearrangement Phase 

This phase is based on forming newly generated data of each block. The output of this phase is a table where 
each entry contents vary according to the assigned block class. To explore further details, this phase will be 
detailed in the next section (specifically, subsections 4. 1 through 4.6). 

3.4 Phase IV: Consolidation Phase  

In order to form higher-level regions (i.e. sub-images), this phase aims at combining together the adjacent 
neighboring equal-class blocks that have the same dictionary of colors into a larger arrangement of contiguous 
blocks. It is important to realize that the blocks that have the same class don’t essentially have the same colors 
(i.e. dictionary), but they may have the same number of colors (El-Omari et al. 2017)(Kumar et al. 2019). As 
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shown in the illustration of Figure 10, adjacent neighbors of a given block can be defined as either 
four-connectivity, in which the two blocks share a common side, or eight-connectivity, in which the two blocks 
share either a common side or a common corner. 

 
Figure 10. four-Connected & eight-Connected neighbor Blocks (El-Omari et al. 2017) 

3.5 Phase V: First-level Compression Phase  

The data compression process will be carried on two levels. While this phase includes the first level, the second 
one will be in the last phase, Phase VII. Here in this phase, every current region (i.e. sub-images or blocks of 
similar features) is compressed separately with the most off-the-shelf appropriate compression technique. It is 
worth mentioning that every region is compressed along with its corresponding dictionary. 

3.6 Phase VI: Integration Phase 

Although they are developed separately, all the six tables are eventually fused together into one entity using the 
block address, I and j. This incorporated entity is formed as a single data file containing one table that interlinks 
between the six close-related classes. 

3.7 Phase VII: Second-level Compression Phase 

This is the final phase; again, like the fifth phase outlined above, this phase is carried out with the intention of 
achieving a better data compression ratio. Thus, the generated data file of the preceding step is going through 
another noteworthy level of compression. 

4. Solution Formulation & Mathematical Model 

Related to its critical importance, this section goes through detailing the six data classes that are abstracted in the 
preceding section, specifically subsection (3.3). Before reporting this section, it is worth mentioning that the first 
four classes, “T1” through “T4” are built upon the idea of using special dictionaries and pointers for encoding 
data, each dictionary, called Lookup Dictionary Table (LUD), is designed for the corresponding class type. 
However, when the computer at the receiver (i.e. decoder) side and through the inverse decompression (i.e. 
decoding or retrieved back) process read the encoded compressed file and encounters a pointer, it interprets that 
pointer by retrieving the corresponding color from its place in the dictionary index; hence the original image part 
is reconstructed and retrieved up to the last bit.  

In order to evaluate the overall performances of the proposed technique, a mathematical measure “Saving Ratio 
Percentage (SRP)” is calculated to compare the size of the original image with the final encoded image; it can be 
calculated mathematically as expressed by Equation 3: (El-Omari et al. 2017)(Azad et al. 2010)(Kumar et al. 
2019) 																																			SRP = ൤1 − 	size	of	the	encoded	image	(per	bytes)	size	of	the	original	image	(per	bytes)	 	൨ 	∗ 100%																						 

																																																	= ൤1 − 	E(M, N)	R(M, N) ൨ 	∗ 100%	 = 	 ൤1 − 	E(M, N)	3 ∗ BLଶ ൨ 	∗ 100%																												(3)	
Where “R(M,N)” and “E(M,N)” as already stated in Figure 2. 

Being more specific, some references referred to the term “E(M,N)/R(M,N)” as the compression ratio (CR) or 
the relative data redundancy (Gonzalez et al. 2009)(Kumar et al. 2019). It is important to note that when no data 
compression is achieved, SRP will be equal to zero. There’s no doubt that this measure depends on the image 
content that leads to the distribution of the original table upon the six classes. Moreover, the proper size of the 

four-connected neighbors eight-connected neighbors 
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block length has some impact on the SRP measure which will be shown at the evaluation of the experimental 
results, namely Section 5. 

4.1 Class “T1” (One Color) 

This class means that the entire block is a background containing one color. Since class “T1” blocks have only 
one color, the dictionary contains only three cells, one for every basic color component of the single RGB color. 
Rather than saving the same information for every individual pixel that makes up the background, this approach 
stores the color data for the background color only once to refer to all pixels of that block. Figure 11 
demonstrates how the data can be fabricated for this class by only using a dictionary of one 
three-RGB-color-component entry.  

Length Part The Block length, “BL” Block length (1 byte)

Address part 
I value Block address 

(2 bytes) J value 
Data Part: just 3 bytes are enough. Neither 
the special-purpose dictionary (LUD) nor 
the reference pointers are essential here. 

The Red component of the single color 
Foreground (FG) 

color (3 bytes) 
The Green component of the single color 
The Blue component of the single color 

Figure 11. Encoding of a block using a class of type “T1” 

For this class, each block is represented by its address (I, J), and the three RGB components of its sole color. 
Since the image has equal-size-square blocks, there is a need to store an additional one-byte cell to represent the 
block length, “BL”. However, this byte is only stored once in this class of blocks to represent all blocks of the 
image. Moreover, since the blocks of this class have a single color, which is classified as background, there is no 
need to store more data about the pixels contained in the block. Despite that the special dictionary (i.e. LUD) is 
essential in this class, the reference pointers are not. Simply, only six bytes are required to store the whole block 
no matter how much its size. However, this solves one of the drawbacks of layered encoding mentioned in 
Section 2 which is related to storage space reduction. The SRP per block of this class is modeled mathematically 
by Equation 4:  						SRP(“܂૚”) = ൤1 − 	1 + 2 + 3	3 ∗ BLଶ 	൨ 	∗ 100%	 = ൤1 − 63 ∗ BLଶ	൨ 	∗ 100%																														(4) 
The following points analyze the elements of this equation:  

• Number “1” of the numerator indicates that only one byte is required to store the “BL”.  

• Number “2” of the numerator means that two bytes are required to store the address of each block, one byte for 
the “Ith” address and one byte for the “Jth” address.  

• Number “3” in the numerator means that there is a necessity for three bytes to store the three basic RGB 
components of the unique color.  

•  “BL” stands for the block length and is given in pixels.  

• Since the image is divided into equal-size-square blocks, the size of each block is “BL2”. Number “3” in the 
denominator indicates that there are three basic RGB-color components and, therefore, each pixel of “R(M,N)” 
occupies three bytes. Thus, the denominator stands for the size of the original block before the compression 
process.   

• Based on the aforementioned points, the numerator indicates the size of the compressed block of this type and 
size. 

The following example will clarify how this class is stored. Suppose there is a square block (I, J) = (31, 16) of 
size (20 x 20=400) pixels and has the following CST (decimal data):  

(R001, G001, B001, F001) = (254, 019,028, 400) 

Since there is only one color in this block, it is identified as a class of type “T1”. In view of that, this block will 
be represented neither with reference pointers nor with LUD. Table 4 illustrates the data schematic construction 
of this example where only six bytes are required. Based on the above-mentioned discussion, the researcher can 
conclude that: 
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Rather than using 1200 (i.e. 20 * 20 * 3) bytes to store this block of (20x20) pixels in size, six bytes are enough. 
To rephrase this outcome: 

6 / (20 * 20 * 3) * 100 % = 0.005% 

This means that the proposed technique needs only 0.005% of the block size. If Equation 4 is recalculated by 
using BL=20, the same result will be achieved which means that the proposed algorithm is an efficient 
alternative for this class of blocks.  

 

Table 4. A data structure example for the blocks of type “T1” 

Data Type Data in Decimal Byte Sequence

Block length BL ( 031 )10 1 

Block address 
I ( 016 )10 2 
J ( 007 )10 3 

Dictionary Part (LUD) 
A dictionary of one three-RGB-color-component 

entry. The reference pointers are not required here.

R001 ( 254 )10 4 
G001 ( 019 )10 5 
B001 ( 028 )10 6 

 

4.2 Class “T2” (a single pair of colors) 

It is worth remarking that this class depends on storing the detected colors of each block inside a dedicated 
two-entry dictionary constructed specifically for that block. Then, rather than storing the corresponding color out 
of the two detected colors for every pixel inside the block, the reference pointer indexes are used instead. For this 
well-defined reason, a one-bit-reference pointer is used as an indication to determine the corresponding LUD 
color.  

Since class “T2” has two colors, the dictionary contains six cells, one for every basic color component of each 
RGB of the two colors. These blocks are represented by the address (I, J) of each block, the 2-color dictionary, 
called background and foreground colors, and only one bit for every pixel to indicate whether it can be assigned 
to the background color and assigned zero or the foreground color and assigned one. Figure 12 shows the data 
structure representation of this class of blocks. 

Address part 
I value Block address 

(2 bytes) J value 

Dictionary Part (LUD) 
 

A special-purpose dictionary of two 
three-RGB-color-component entries, i.e. 
2 * 3 = 6 cells. 

The Red component of the 1st color Foreground (FG) 
color 

(3 bytes) 
The Green component of the 1st color 
The Blue component of the 1st color 
The Red component of the 2nd color Background (BG) 

color 
(3 bytes) 

The Green component of the 2nd color 
The Blue component of the 2nd color 

Data Part  
Using one-bit-reference pointers (i.e. 
every eight pixels need only one byte to 
store their references). Each reference 
pointer should certainly point out to 
either one of the two colors inside that 
dictionary. 

Pixels 08-01 

Pixels' Data 

Pixels 16-09 
Pixels 24-17 
Pixels 32-25 

⁞    ⁞    ⁞    ⁞    ⁞    ⁞    

The remaining representation of the pixels  
(eight pixels per each byte) 

Figure 12. Encoding of a block using a class of type “T2” 

For the blocks of this class, “T2”, the data compression is done by storing the reference pointers that point out to 
the special dictionary. The SRP per block is mathematically expressed by Equation 5:  

SRP(“܂૛”) = ቎1 −	 	2 + 2 ∗ 3 + ୆୐మ଼ 		3 ∗ BLଶ 	቏ 	∗ 100%																																(5) 
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This equation is different than Equation 4 by the following points: 

• Address part: The first number “2” of the numerator indicates that two bytes are required to store the address of 
each block, one byte for the Ith address and one byte for the Jth address.  

• Dictionary part (LUD): Since there are two identified colors and each of them has three basic RGB color 
components, the expression “2*3=6” of the numerator stands for the number of bytes required to store the LUD. 

• Data part: Since there are only two colors in this class type, each bit can hold either zero or one to point out to the 
foreground (FG) or to the background (BG), respectively. Thus, the number of pixels that can be indicated by a 
single byte is eight. 

For the sake of simplicity, Equation 5 can be redrafted as expressed in Equation 6: 

SRP(“܂૛”) = ቎1 − 	8 + ૛଼ۺ۰ 		3 ∗ BLଶ ቏ 	∗ 100%																																																															(6) 
As an example of this class type, assume that the square block (4, 8) of (30x30=900) pixels in size has the 
two-color CST that is viewed in Table 5 which has been attained as an output of Algorithm II: 

Table 5. A CST example of two colors (decimal data) 

 Red component Green component Blue component Frequency 
0. 254 054 253 544 
1. 000 002 092 356 

 Total 900 

Note that the total number of frequencies of this block are (F001 + F002 = 544 + 356 = 900). Then, these two colors 
are assigned the numbers (0)2, (1)2, respectively. Suppose that the first sixteen pixels of this block contain the 
following RGB-color components:  

(254,054,253)10 (000,002,092)10 (000,002,092)10 (254,054,253)10 (000,002,092)10 
(254,054,253)10 (254,054,253)10 (000,002,092)10 (000,002,092)10 (000,002,092)10 
(254,054,253)10 (254,054,253)10 (254,054,253)10 (254,054,253)10 (000,002,092)10 
(000,002,092)10     

Based on the number of detected colors (i.e. a single pair), the type of the block involved in this example is “T2” 
and, in turn, the corresponding reference pointers for these sixteen pixels are presented in Table 6. On the other 
side, Table 7 illustrates the data schematic construction of this example where a total of 121 bytes are required 
for each block of this type and size. For the remaining 884 pixels, other than these sixteen pixels, the same 
pattern is used.  

Table 6. The corresponding reference pointers of the example on the class type “T2” 

Pixel 
no. 

Pixel data one-bit-reference-pointer
Eight references are stored 

in one byte 
The decimal 
equivalent 

01 ( 254,054,253 )10 ( 0 )2 

( 1001 0110 )2 ( 150 )10 

02 ( 000,002,092 )10 ( 1 )2 
03 ( 000,002,092 )10 ( 1 )2 
04 ( 254,054,253 )10 ( 0 )2 
05 ( 000,002,092 )10 ( 1 )2 
06 ( 254,054,253 )10 ( 0 )2 
07 ( 254,054,253 )10 ( 0 )2 
08 ( 000,002,092 )10 ( 1 )2 
09 ( 000,002,092 )10 ( 1 )2 

( 11000011 )2 ( 195 )10 

10 ( 000,002,092 )10 ( 1 )2 
11 ( 254,054,253 )10 ( 0 )2 
12 ( 254,054,253 )10 ( 0 )2 
13 ( 254,054,253 )10 ( 0 )2 
14 ( 254,054,253 )10 ( 0 )2 
15 ( 000,002,092 )10 ( 1 )2 
16 ( 000,002,092 )10 ( 1 )2 
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With regard to the aforementioned discussion, the researcher concludes that: 

Instead of using 2700 (i.e. 30 * 30 * 3) bytes to store this block of (30x30) pixels in size, only 121 
bytes are enough. Otherwise speaking: 

121 / (30 * 30 * 3) * 100% = 4.481% 

This means that the proposed technique has the capability to encode this class of blocks by using 
only 4.481% of the block size. If Equation 6 is recalculated by using BL=30 and then the result is 
compared with this outcome, they are the same which means that the proposed algorithm is an 
efficient alternative for this class of blocks. 

 
Table 7. A data structure example for the blocks of type “T2” 

Data Type Data in Decimal Byte Sequence

Block address 
I ( 016 )10 1 
J ( 008 )10 2 

Dictionary Part (LUD) 
A special-purpose dictionary of 

two three-RGB-color-component 
entries.  

1st color 
R001 ( 254 )10 3 
G001 ( 054 )10 4 
B001 ( 253 )10 5 

2nd color 
R002 ( 000 )10 6 
G002 ( 002 )10 7 
B002 ( 092 )10 8 

Data Part: a one-bit-reference 
pointer for each pixel of the 
block. Just the first 16 pixels of 
the block are shown here. 

1st byte = ( P08, P07, P06, P05, 
P04, P03, P02, P01 ) 

( 105 )10 9 

2nd byte = ( P16, P15, P14, P13, 
P12, P11, P10, P09 ) 

( 195 )10 10 

The remaining 884 pixels 
⁞     ⁞     ⁞ 

121st byte= ( P900, P899, P898, 
P897, P896, P895, P894, P893 ) 

..…. 900/8+8=121 

 

4.3 Class “T3” (3-16 Colors) 

This class depends on storing the detected colors of each block inside a particular 16-color dictionary dedicated 
particularly to that block. Then, rather than storing the corresponding color out of the sixteen ones for every 
pixel inside the block, the reference pointer indexes are used instead. While these reference pointers are typically 
implemented through using LUD, each four-bit-reference pointer is used as an indication to determine the 
corresponding LUD color. 

Related to this special dictionary and as aforementioned in Algorithm II of Figure 8, this special 16-color 
dictionary is built where the same detected colors are arranged at first and the remaining unoccupied entries of 
colors are fulfilled to 16 colors with null values where each color requires three-null values. Clearly, each 
four-bit-reference pointer should point out to one of the previously detected colors and no reference pointer 
should point out to one of the null entries (i.e. colors) that are originally unoccupied and fulfilled to sixteen 
colors with null values.  

In line with Figure 13, the data representation of this class, “T3”, is similar to that of class “T2”. However, the 
LUD of this class has 16 * 3 = 48 cells. Each block is represented by the pair (I, J), the 16-color dictionary, and a 
four-bit reference pointer for every pixel to designate a specific color from the identified sixteen colors of the 
dictionary. Hence, the value (0000)2 points out to the first color in the dictionary, the value (0001)2 points out to 
the second color, the value (0010)2 points out to the third color, and so on up to the value (1111)2, which is 
corresponding to (15)10, that points out to the last color.  

For the blocks of class “T3”, the data compression process is implemented by storing the four-bit-reference 
pointers that point out to the special-purpose dictionary. Therefore, Equation 7 is proposed in this regard: 

SRP(“܂૜”) = ቎1 − 	2 + 3 ∗ 16 + ୆୐మଶ 	3 ∗ BLଶ 	቏ 	∗ 100%	 = ቎1 − 	50 + ୆୐మଶ 	3 ∗ BLଶ 	቏ 	∗ 100%																											(7)									 
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Where the following points clarify this equation: 

• Dictionary part (LUD): Since there are sixteen colors and each of them has three basic RGB color components, 
“3*16=48” stands for the number of bytes requested to store the LUD. 

• Data part: As there is a maximum of sixteen RGB colors and each of them required four bits to be coded, the 
number of pixels that can be stored in a single byte is (8 / 4 = 2). Hence, the expression (BL2/ 2) is used to 
determine the number of bytes that are required to store the four-bit-reference pointers of each block. 

• The rest of this equation is similar to Equation 4. 

Address part 
I value Block Address 

(2 bytes) J value 

  
 

Dictionary Part (LUD) 
A special-purpose dictionary of 16 
three-RGB-color-component entries (i.e. 
16 * 3 = 48 cells). 
 

 

The Red component of the 1st color 
1st color 
(3 bytes) The Green component of the 1st color 

The Blue component of the 1st color 
The Red component of the 2nd color 

2nd color 
(3 bytes) The Green component of the 2nd color 

The Blue component of the 2nd color 

⁞     ⁞     ⁞     ⁞     ⁞     ⁞   

The Red component of the 16th color 
16th color 
(3 bytes) The Green component of the 16th color 

The Blue component of the 16th color 

Data Part  
Using four-bit-reference pointers (i.e. 
every two pixels need only one byte to 
store their references). Each reference 
pointer should definitely refer to one 
and only one of the sixteen related 
colors (i.e. entries) of the dictionary. 

Pixel 002 Pixel 001 

Pixels' Data 

Pixel 004 Pixel 003 
Pixel 006 Pixel 005 

⁞     ⁞     ⁞    ⁞     ⁞     ⁞    

The remaining representation of the pixels, 
using four-bit-reference pointers to point 
out to the sixteen dictionary entries; two 
pointers are stored per each byte. 

Figure 13. Encoding of a block using a class of type “T3” 

To explain the compression process of this class type in a simple way, the following example clarifies how this 
class is fabricated. Suppose that the square block (I, J) = (1, 12) of (30 x 30=900) pixels in size has a nine-color 
CST that is viewed in Table 8. This CST has been achieved as an output of Algorithm II of Figure 8. 

So the first color takes the number (0000)2 in the LUD, the second color takes (0001)2, the third color takes 
(0010)2, and the last color takes (0011)2 . In order to complete the LUD entries, the remaining unoccupied (i.e. 
unfilled) entries of colors, from the 10th color to the 16th color, are fulfilled with null values and, obviously, there 
isn't any reference pointer that points out to one of them. Suppose that the first twenty-two pixels of this block 
contain the following three-RGB-color components: 

(000,002,092)10 (000,000,000)10 (254,054,253)10 (000,002,092)10 (000,000,000)10 
(000,002,092)10 (000,002,092)10 (255,255,254)10 (120,100,199)10 (120,100,199)10 
(000,002,092)10 (000,002,092)10 (000,002,092)10 (000,002,092)10 (120,104,196)10 
(120,104,196)10 (120,104,196)10 (118,106,191)10 (118,106,191)10  (118,106,191)10 
(120,104,196)10 (120,104,196)10    

Based on the number of colors detected in this block, this technique treats this block as a class of type “T3”. 
Accordingly, the corresponding reference pointers for these twenty-two pixels are described in Table 9. In this 
regard, Table 10 illustrates the data schematic construction of this example where a total of 500 bytes are 
required for each block of this type and size. For the remaining 878 pixels, other than these twenty-two pixels, 
the same pattern is used.  

Based on the aforementioned discussion, the researcher concludes that: 
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Rather than consuming 2700 (i.e. 30 * 30 *3) bytes to store this block of (30x30) pixels in size, only 500 
bytes are enough. To rephrase this outcome: 

500 / (30 * 30 * 3) * 100% = 18.519% 

Another time, this means that the proposed technique is capable to encode this class of blocks by using 
only 18.519% of the block size. If Equation 7 is recalculated by using BL=30, the same result will be 
achieved which proves that the outcome is consistent with the research findings. And so, this proposed 
algorithm is an efficient alternative for this class of blocks. 

Table 8. A CST example of nine colors (data in decimal) 

 Red component Green component Blue component Frequency 

0. 255 255 254 191 

1. 254 054 253 190 

2. 000 000 000 190 

3. 000 002 092 189 

4. 120 100 199 050 

5. 120 105 193 040 

6. 118 106 191 020 

7. 119 105 200 017 

8. 120 104 196 013 
 Total 900 

Table 9. The corresponding reference pointers of the example on the class type “T3” 

Pixel 
no. 

Pixel data 
Decimal 

LUD 
reference 

four-bit-reference
pointer 

Eight references 
are stored in one 
byte 

The 
decimal 

equivalent

01 ( 000,002,092 )10 ( 03 )10 ( 0011 )2 
( 0010 0011 )2 ( 035 )10 

02 ( 000,000,000 )10 ( 02 )10 ( 0010 )2 

03 ( 254,054,253 )10 ( 01 )10 ( 0001 )2 
( 0011 0001 )2 ( 049 )10 

04 ( 000,002,092 )10 ( 03 )10 ( 0011 )2 

05 ( 000,000,000 )10 ( 02 )10 ( 0010 )2 
( 0011 0010 )2 ( 050 )10 

06 ( 000,002,092 )10 ( 03 )10 ( 0011 )2 

07 ( 000,002,092 )10 ( 03 )10 ( 0011 )2 
( 0000 0011 )2 ( 003 )10 

08 ( 255,255,254 )10 ( 00 )10 ( 0000 )2 

09 ( 120,100,199 )10 ( 04 )10 ( 0100 )2 
( 0100 0100 )2 ( 068 )10 

10 ( 120,100,199 )10 ( 04 )10 ( 0100 )2 

11 ( 000,002,092 )10 ( 03 )10 ( 0011 )2 
( 0011 0011 )2 ( 051 )10 

12 ( 000,002,092 )10 ( 03 )10 ( 0011 )2 

13 ( 000,002,092 )10 ( 03 )10 ( 0011 )2 
( 0011 0011 )2 ( 051 )10 

14 ( 000,002,092 )10 ( 03 )10 ( 0011 )2 

15 ( 120,104,196 )10 ( 08 )10 ( 1000 )2 
( 1000 1000 )2 ( 136 )10 

16 ( 120,104,196 )10 ( 08 )10 ( 1000 )2 

17 ( 120,104,196 )10 ( 08 )10 ( 1000 )2 
( 0110 1000 )2 ( 104 )10 

18 ( 118,106,191 )10 ( 06 )10 ( 0110 )2 

19 ( 118,106,191 )10 ( 06 )10 ( 0110 )2 
( 0110 0110 )2 ( 102 )10 

20 ( 118,106,191 )10 ( 06 )10 ( 0110 )2 

21 ( 120,104,196 )10 ( 08 )10 ( 1000 )2 
( 1000 1000 )2 ( 136 )10 

22 ( 120,104,196 )10 ( 08 )10 ( 1000 )2 
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Table 10. A data structure example for the blocks of type “T3” 

Data Type Data in Decimal Byte Sequence

Block address 
I ( 001 )10 01 
J ( 012 )10 02 

 

1st color 
R001 ( 255 )10 03 
G001 ( 255 )10 04 
B001 ( 254 )10 05 

2nd color 
R002 ( 254 )10 06 
G002 ( 054 )10 07 
B002 ( 253 )10 08 

3rd color 
R003 ( 000 )10 09 
G003 ( 000 )10 10 
B003 ( 000 )10 11 

4th color 
R004 ( 000 )10 12 
G004 ( 002 )10 13 
B004 ( 092 )10 14 

5th color 
R005 ( 120 )10 15 
G005 ( 100 )10 16 
B005 ( 199 )10 17 

6th color 
R006 ( 120 )10 18 
G006 ( 105 )10 19 
B006 ( 193 )10 20 

7th color 
R007 ( 118 )10 21 
G007 ( 106 )10 22 
B007 ( 191 )10 23 

8th color 
R008 ( 119 )10 24 
G008 ( 105 )10 25 
B008 ( 200 )10 26 

9th color 
R009 ( 120 )10 27 
G009 ( 104 )10 28 
B009 ( 196 )10 29 

  ⁞   ⁞   ⁞   ⁞   ⁞   ⁞   
The colors from 10 to 16 are fulfilled with null values. 

  ⁞   ⁞   ⁞   ⁞   ⁞   ⁞    

16th color 
R016 null 49 
G016 null 50 
B016 null 48+2=50 

Data Part 
 A four-bit-reference pointer for 
each pixel of the block. Just the first 
ten pixels of this block are shown 
here. 

1st byte = ( P2, P1 ) ( 035 )10 51 
2nd byte = ( P4, P3 ) ( 049 )10 52 
3rd byte = ( P6, P5 ) ( 050 )10 53 
4th byte = ( P8, P7 ) ( 003 )10 54 
5th byte = ( P10, P9 ) ( 068 )10 55 
6th byte = ( P12, P11 ) ( 051 )10 56 
7th byte = ( P14, P13 ) ( 051 )10 57 
8th byte = ( P16, P15 ) ( 136 )10 58 
9th byte = ( P18, P17 ) ( 104 )10 59 

10th byte = ( P20, P19 ) ( 102 )10 60 
11th byte = ( P22, P21 ) ( 136 )10 61 

The remaining 878 pixels 

⁞   ⁞   ⁞ ⁞   ⁞   ⁞ ⁞   ⁞   ⁞ 

⁞   ⁞   ⁞ ⁞   ⁞   ⁞ ⁞   ⁞   ⁞ 

450th byte = ( P900, P899 ) ..…. 450+50=500 
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4.4 Class “T4” (17-128 Colors) 

Over again, this class is based on storing the detected colors of each block inside a dedicated 128-color 
dictionary constructed dedicatedly for each block of that type. Then, instead of storing the corresponding color 
out of the 128 ones for every pixel inside the block, the reference pointer indexes are used instead. While these 
reference pointers are typically implemented through using LUD, each seven-bit-reference pointer is used as an 
indication to determine the corresponding LUD color out of the 128 ones. 

Related to this special dictionary and as aforementioned in Algorithm II of Figure 8, this special-purpose 
128-color dictionary is built and the detected colors are arranged at first and the remaining unoccupied entries 
are fulfilled to 128 colors with null values where each color needs three-null values. Any reference pointer points 
out to one of the already detected colors and, surely, each pointer refers to one of the actual detected colors and 
there isn't any pointer points out to one of the null entries (i.e. colors) that are originally unoccupied and fulfilled 
to 128 colors with null values. 

Figure 14 illustrates the data structure representation of this class of blocks. Accordingly, the dictionary concept 
of this class, “T4”, is similar to that of “T2” and “T3”. Conversely, the dictionary of this class has (128 * 3 = 
384) entries (i.e. 384 bytes). Each block is represented by the pair (I, J), the 128-color dictionary, and a 
seven-bit-reference pointer for each pixel to designate a specific color among the 128 colors of the dictionary. 
For instance, the value (000 0000)2 points out to the first color, the value (000 0001)2 points out to the second 
color, the value (000 0010)2 points out to the third color, and so on up to the last value (111 1111)2, which is 
equivalent to (127)10, that points out to the last color. 

Address part 
I value Block address 

(2 bytes) J value 

Dictionary Part (LUD) 
A special-purpose dictionary of 128 
three-RGB-color-component entries 
(i.e. 128 * 3 = 384 cells). 
 
 

The Red component of the 1st color 
1st color 
(3 bytes) The Green component of the 1st color 

The Blue component of the 1st color 
The Red component of the 2nd color 

2nd color 
(3 bytes) The Green component of the 2nd color 

The Blue component of the 2nd color 
⁞     ⁞     ⁞     ⁞     ⁞     ⁞  
The Red component of the 127th color 

127th color 
(3 bytes) The Green component of the 127th color 

The Blue component of the 127th color 
The Red component of the 128th color 

128th color 
(3 bytes) The Green component of the 128th color 

The Blue component of the 128th color 

Data Part 
Using seven-bit-reference pointers. 
Each seven-bit-reference pointer 
refers to one and only one of the 128 
entries of colors 

Pixel Representation 
Using seven-bit-reference pointers to point 
out to one of the 128 dictionary entries 
(Every individual pixel requires only seven 
bits to store its reference) 

Pixels' Data 

Figure 14. Encoding of a block using a class of type “T4” 

Over again, the data compression of this block class can be constructed by utilizing reference pointers that point 
out to a special LUD. In this regard, the SRP measure is modeled mathematically by Equation 8:  

SRP(“܂૝”) = ቎1 − 	2 + 3 ∗ 2଻ + ୆୐మ଼ ଻⁄ 	3 ∗ BLଶ 	቏ 	∗ 100%	 = ቎1 − 	386 + BLଶ ∗ ଻଼	3 ∗ BLଶ 	቏ 	∗ 100%																					(8) 
This equation is similar to Equation 4 except the following differences: 

• Dictionary part (LUD): Since there are (28=128) colors, the expression “3*27” of the numerator stands for the 
number of bytes that are required to store the RGB dictionary (i.e. LUD). 

• Data part: Since there are (128) colors and each of them required seven bits to code, the number of pixels that 
can be stored in a single byte should be divided by (8/7) or be multiplied by (7/8). So the expression “BL2/ (8/7)” 



mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020 

72 
 

is used to determine the number of bytes that are essential to store the seven-bit-reference pointers of each block 
of this class. 

For further clarification, a complete example of this type is introduced at “Appendix A” at the end of this paper. 
Besides that this example explains the compression process in a simple way, it gives experimental proof to 
support the validity of Equation 8. 

4.5 Class “T5” (129-256 Colors) 

A block is identified as grey if the values of the corresponding three basic RGB components of all pixels of the 
block are almost equal. Rather than repeating the same information for the three repeated RGB color components, 
one component is enough to represent the other two components. Though, the red component is selected to 
represent the other two color components. 

Compared with the previous four classes, neither the special dictionary (i.e. LUD) nor the reference pointers are 
required for the blocks of this class. Rather, the actual red component of the original block is selected and 
directly stored as it is without any reshaping or rearrangement. Figure 15 illustrates how the data can be 
constructed for this class of blocks. Each block is just represented by its address (I, J) and the actual red 
components of its pixels where each pixel needs a single byte. 

Address part I value Block address 
(2 bytes) J value 

Data Part 
Pixels' data contain only Red 
components. Neither the 
special-purpose dictionary 
(LUD) nor the reference 
pointers are essential here. 
Each pixel occupies only one 
byte to be stored.  

The Red component of the 1st color 1st color (1 byte) 
The Red component of the 2nd color 2nd color (1 byte) 
The Red component of the 3rd color 3rd color (1 byte) 

The Red component of the 4th color 4th color (1 byte) 

The Red component of the 5th color 5th color (1 byte) 

⁞     ⁞     ⁞     ⁞     ⁞     ⁞  Pixels' data Using 
pointers.  

Since they are grey colors, 
the red components are 
enough to be stored. 

Pixels' representation of the remaining 
pixels (1 byte per pixel) 

&  
(only the Red components are stored) 

Figure 15. Encoding of a block using a class of type “T5” 

Since class “T5” is considered as grey, the dictionary is needless and the SRP per block is defined using 
Equation 9:  

SRP(“܂૞”) = ቈ1 − 	2 + BLଶ	3 ∗ BLଶ 	቉ 		∗ 100%																																																									(9) 
The basic difference between the last two Equations, 8 and 9, is that the dictionary is needless in the latter one. 
Given that there are (28=256) colors, each color takes up just one byte, hence (BL2/1= BL2). For a complete 
example of this class type, see Appendix B at the end of this paper. This example, on the other hand, gives an 
empirical proof about its validity. 

 

4.6 Class “T6” (more than 256 Colors) 

Different than class “T5” which only stores the red component, all the three basic RGB components of the 
original block are stored in class “T6” and, therefore, each pixel occupies three bytes. The representation of these 
blocks is saved by storing the address (I, J) of the block and the actual pixels' data where each pixel requires 
three bytes. Figure 16 shows the data structure representation of this class of blocks. 

The SRP per block is represented by Equation 10: SRP(“܂૟”) = ቈ1 − 	2 + 3 ∗ BLଶ	3 ∗ BLଶ 	቉ 		∗ 100%																																															(10) 
The following points clarify this equation: 
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• The dictionary and pointers are needless. 
• In any case, this equation gives negative results for this class. But the result is approaching zero value and, 

therefore, the counter loss of storage space can be easily affordable and then disregard without making a big 
difference. 

• The rest of this equation is similar to Equation 4. 

For further clarification and understanding, Appendix C at the end of this paper gives a complete example of this 
type and gives real empirical proof about the validity of Equation 10. 

Address part 
I value Block address 

(2 bytes) J value 

Data Part 
(i.e. Pixels' data) 

Pixels are stored as it is. 
Each pixel occupies 
three bytes to be stored. 

The Red component of the 1st color 
1st color 
(3 bytes) The Green component of the 1st color 

The Blue component of the 1st color 
The Red component of the 2nd color 

2nd color 
(3 bytes) The Green component of the 2nd color 

The Blue component of the 2nd color 
The Red component of the 3rd color  

The Green component of the 3rd color  
The Blue component of the 3rd color  

⁞     ⁞     ⁞     ⁞     ⁞     ⁞    

The Red component of the last pixel 
The color 

of the last pixel The Green component of the last pixel 
The Blue component of the last pixel 

Figure 16. Encoding of a block using a class of type “T6” 

5. Experimental Results & Evaluation 

To assist in compare and contrast, a short outline of the six different classes is outlined in Table 11. It is worth 
remembering that the block length, “BL”, is only stored once at the first byte of class “T1”. Since it is reserved as 
a single byte, the maximum block length is “255”. Otherwise, there is a necessity to change the size of the block 
length. 

Table 11. Compare and contrast between the six classes 

Class 
Type 

“BL” 
Block 

Address 
Max. No. of 

Colors 
Dictionary Size 

(byte) 
LUD

Reference 
pointer width 

Every three bytes 
are stored as: 

“T1”   1 1*3=3   Zero bit 

“T2”   2 2*3= 6  1 bit One bit 

“T3”   16 16*3=48  4 bits Four bits 

“T4”   128 128*3=384  7 bits 7 bits 
“T5”   256  (i.e. zero)   8 bits 

“T6”   >256  (i.e. zero)   24 bits 

Since a reliable system should be experimented and analyzed on a great number of samples, a certain 
special-purpose database contains different image types were created as reported in Table 12. This database 
contains a dataset of 3151 24-bit-RGB-bitmap images of various resolutions distributed among eight categories 
of three-RGB-component colors. AS it is creative and has a productive service environment, the experiments 
have been carried out and tested empirically using MATLAB® 9.4 (R2018a) environments. (MathWorks Inc 
2019) 

After this proposed algorithm has been conducted upon this database, a proportionate reduction in the 
compression level has been achieved and this empirically-based evidence, on the other hand, shows 
rapprochement between theoretical and experimental results. To put it another way, all the ten equations stated in 
this research are proved both theoretically and empirically as being correct. The result is therefore worthy and 
the saving percentage (SRP) for the whole dataset in terms of storage space reduction is significant, which is 



mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020 

74 
 

(71.039%). On the way to compare and contrast, this admirable result is totally better than the previous result of 
El-Omari et al. (2017) which is (87%) but for the documents that contain only texts and graphics”  (El-Omari et 
al. 2017). For further clear investigation and evaluation, Table 13 illustrates these remarks and results for 
different block classes and block lengths. The strikethrough bolded cells in the last column of this table are 
introduced to show the cases where the compression ratio is poor due to the fact that:  

If the data block is of class “T6”, then the current data are stored as it is along 
with its block address (I, J) which is a two-byte length. 

Table 12. A special-purpose database created for the purpose of testing. 

Type no. Image content Number of images 

1 Pure backgrounds 218 
2 Pure texts   556 
3 Pure graphics 388 
4 Pure pictures 414 
5 Graphs and pictures without texts 218 
6 Texts and pictures without graphics 286 

7 Texts and graphics without pictures 369 

8 Mixed images 702 

Total number of images 3151  

Table 13. A numeric example showing the SRP measure for the six classes using one-byte block length 

  Class  
 

“BL” 

“T1” 
Single color 
Equation 4 

“T2” 
2 colors 

Equation 6 

“T3” 
3-16 colors
Equation 7

“T4” 
17-128 colors
Equation 8 

“T5” 
129-256 colors 

Equation 9 

“T6” 
>256 colors
Equation 10

25 99.680 95.407 80.667 50.247 66.560 -0.107 
35 99.837 95.616 81.973 60.330 66.612 -0.054 
45 99.901 95.702 82.510 64.479 66.634 -0.033 
55 99.934 95.745 82.782 66.580 66.645 -0.022 
65 99.953 95.770 82.939 67.788 66.651 -0.016 
75 99.964 95.786 83.037 68.546 66.655 -0.012 
85 99.972 95.796 83.103 69.052 66.657 -0.009 
95 99.978 95.804 83.149 69.408 66.659 -0.007 

105 99.982 95.809 83.182 69.666 66.661 -0.006 
115 99.985 95.813 83.207 69.860 66.662 -0.005 
125 99.987 95.816 83.227 70.010 66.662 -0.004 
135 99.989 95.819 83.242 70.127 66.663 -0.004 
145 99.990 95.821 83.254 70.221 66.663 -0.003 
155 99.992 95.822 83.264 70.298 66.664 -0.003 
165 99.993 95.824 83.272 70.361 66.664 -0.002 
175 99.993 95.825 83.279 70.413 66.664 -0.002 
185 99.994 95.826 83.285 70.457 66.665 -0.002 
195 99.995 95.826 83.290 70.495 66.665 -0.002 
205 99.995 95.827 83.294 70.527 66.665 -0.002 
215 99.996 95.828 83.297 70.555 66.665 -0.001 
225 99.996 95.828 83.300 70.579 66.665 -0.001 
235 99.996 95.829 83.303 70.600 66.665 -0.001 
245 99.997 95.829 83.306 70.619 66.666 -0.001 
255 99.997 95.829 83.308 70.635 66.666 -0.001 

Average 99.962 95.783 83.020 68.411 66.654 -0.013 
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Connected with Table 13, Figure 17 is a graphical evaluation that presents clearly the relation between the block 
class and the average SRP measure. As clearly shown in this Figure, the overall saving ratio of the proposed 
algorithm is based on recognizing the class of the block.  

By analyzing Table 13 and its associated Figure 17, it can be concluded that the best results of the storage space 
reduction can be achieved with classes of type “T1” where the average compression ratio is (99.962%), which 
means that the entire image is a background containing one color. The next best results can be extracted with the 
class of type “T2” which is (95.783%). Then, the next one is achieved by the class of type “T3” which has 
(83.020%). Next, classes of types “T4” and “T5” with the percentages (68.411%), (66.654%), respectively.   

Due to the fact that additional two-byte storage is required, the worst case is whenever the blocks are of the class 
of type “T6”, which means that the entire image is a picture. In this case, the encoding of this approach is not 
appropriate and the proposed system is dynamic enough to cancel the encoding process and use another proper 
encoder. But, this worst-case (i.e. “T6”) has an average losing percentage that is around zero (precisely 0.013 %) 
which can be neglected at the expense of the other worthy percentages. 

 
 

 
Figure 17. Per class-type compression ratios (using one-byte block length). 

On the basis of the above-stated analyses, the block class type has a great impact on the SRP measure. Stated in 
other words, this measure is highly relying on the image content that leads to the distribution of the original table 
upon the six classes. By comparing the whole advantages and benefits of this proposed algorithm, it is proved 
that it is a very efficient alternative and able to produce comparably competitive results.  

By a further evaluation of Table 13, the block length, “BL”, has an impact on the received results. When the 
block length is increased, the SRP measure is increased, as well. This proves that SRP is directly proportional to 
the block length. Hence, duplicating this length is maybe imperative particularly for large-size images. In order 
to prove this truth, Table 14 and it is a related demonstration of Figure 18 use a two-byte block length. From 
another point of view, this table assures that the proposed algorithm is a significant one for segmentation and 
compression compound images. 

Similar to the investigation of Table 13 and Figure 17, it can be concluded from Table 14 and Figure 18 that this 
proposed technique gives the best results for the first five classes. The best results can be achieved with the class 
of type “T1” where the SRP is (99.999%). The next best results that can be achieved are with the classes, “T2”, 
“T3”, “T4”, and “T5” with the percentages (95.832%), (83.327%), (70.786%), (66.666%), respectively. Again, 
the worst case is of the class of type “T6” which is around zero (precisely 0.0002446 %). Since this loss is too 
small to be observed, it can be neglected without making a big difference. 
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Table 14. A numeric example showing SRP for the six classes using two-byte block lengths 

 

     Class 
“BL”  

 “T1” 
Single color 
Equation 4 

 “T2”  
2 colors 

Equation 6

 “T3” 
 3-16 colors
Equation 7

 “T4”  
17-128 colors
Equation 8 

 “T5” 
129-256 colors 

Equation 9 

 “T6” 
>256 colors
Equation 10

280 99.997 95.830 83.312 70.669 66.666 -0.001 

305 99.998 95.830 83.315 70.695 66.666 -0.001 

330 99.998 95.831 83.318 70.715 66.666 -0.001 

355 99.998 95.831 83.320 70.731 66.666 -0.001 

380 99.999 95.831 83.322 70.744 66.666 0.000 

405 99.999 95.832 83.323 70.755 66.666 0.000 

430 99.999 95.832 83.324 70.764 66.666 0.000 

455 99.999 95.832 83.325 70.771 66.666 0.000 

480 99.999 95.832 83.326 70.777 66.666 0.000 

505 99.999 95.832 83.327 70.783 66.666 0.000 

530 99.999 95.832 83.327 70.788 66.666 0.000 

555 99.999 95.832 83.328 70.792 66.666 0.000 

580 99.999 95.833 83.328 70.795 66.666 0.000 

605 99.999 95.833 83.329 70.798 66.666 0.000 

630 99.999 95.833 83.329 70.801 66.666 0.000 

655 100.000 95.833 83.329 70.803 66.667 0.000 

680 100.000 95.833 83.330 70.806 66.667 0.000 

705 100.000 95.833 83.330 70.807 66.667 0.000 

730 100.000 95.833 83.330 70.809 66.667 0.000 

755 100.000 95.833 83.330 70.811 66.667 0.000 

780 100.000 95.833 83.331 70.812 66.667 0.000 

805 100.000 95.833 83.331 70.813 66.667 0.000 

830 100.000 95.833 83.331 70.815 66.667 0.000 

855 100.000 95.833 83.331 70.816 66.667 0.000 

880 100.000 95.833 83.331 70.817 66.667 0.000 

905 100.000 95.833 83.331 70.818 66.667 0.000 

930 100.000 95.833 83.331 70.818 66.667 0.000 

955 100.000 95.833 83.332 70.819 66.667 0.000 

980 100.000 95.833 83.332 70.820 66.667 0.000 

1005 100.000 95.833 83.332 70.821 66.667 0.000 

Average 99.999 95.832 83.327 70.786 66.666 0.000 

 
Compared with the other approaches, the most important advantage of this proposed algorithm is its simplicity 
(less than five operations per pixel), clarity and directness, dependency on just a few parameters And, above all, 
its reliability. Furthermore, this proposed approach combines different compression concepts in order to achieve 
better compression ratios of the scanned documents; its basic scope is based upon hybridizing the following 
methods that are already demonstrated in Figure 3:  

• Dynamic Algorithms: Since it is relying on capturing more details about the problem of interest, it’s a dynamic 
and content-based algorithm. 

• Statistical-based: It is a local statistical thresholding approach where the blocks classification can be achieved 
by exploiting some prior knowledge relevant to the number of colors that originally exist within the image or 
one of its blocks. 
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• Dictionary-based: For the reason that the dictionary of colors is included inside the internal data representation, 
it is a dictionary-based-compression scheme. 

• Block-based encoding: It is a block-based approach where the input image is divided into equal-size-square 
blocks. 

• Multi-layered encoding: As each input image is divided into six regions in view of the number of the detected 
colors, it is a region-based approach, as well.  

• Lossless encoding: When the final image of Phase VII is retrieved back and compared with the original one, the 
two images are entirely the same and precisely bit-by-bit alike. This guarantees that every bit can be retrieved 
back precisely to its original value without any level of distortion and hence the process is reversible. This also 
implies that the proposed algorithm can be recognized as a lossless one or at least near-lossless. 

Above and beyond that, not only this approach crosses the aforesaid models but also it is a two-level 
compression technique (i.e. Phase V and Phase VII). Finally, to conclude the discussion of this section, if the 
logical operation “XOR” is accomplished on both the encoded input images and the decoded output images, the 
result is zero (i.e. off or false) which means that both the images are alike. Therefore, the output quality of this 
phase is (100%) which also reinsures the above-stated conclusion that says: this technique is a lossless one. 

 

Figure 18. Per class-type compression ratios (using a two-byte block length). 

6. Conclusion 

An increase in the demand of numerous millions of computer users for storing more numerous millions of 
images paved the way for viewing segmentation and compression techniques and seeing them as 
more intertwined than ever. And so, the present work proposes a lossless statistical block-based segmentation 
technique that works in conjunction with other encoding techniques to segment compound or mixed documents 
that have different content types, such as pictures, graphics, texts, and/or backgrounds. Furthermore, this 
research has disclosed very stimulating and deep-insight findings that can significantly improve the mechanisms 
by which the segmentation and compression of compound images are currently evaluated. 

With regard to the number of colors detected in each part of the image, this paper involves a seven-phase 
approach in which an incoming compound document is segmented into a set of multiple image objects, each 
compressed by the most off-the-shelf applicable compression technique. This approach hybridizes different 
compression concepts to achieve better compression in terms of space-time complexity. It is a block-based 
approach where the input image is divided into equal-size-square blocks. It is a region-based approach where the 
input image is divided into homogeneous regions according to the number of colors. Besides it’s a dynamic and 
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content-based algorithm, it is a threshold approach where the blocks classification is carried out by exploiting the 
number of colors that exist within the block or the image. Since the lookup dictionary of colors is included in the 
internal representation of the third phase (i.e. Rearrangement phase) and in the external representation of the sixth 
phase (i.e. Integrating phase), it is a dictionary-based-compression scheme.  

Motivated by the purpose of testing the performance of the proposed algorithm, a special database was created. It 
contains a dataset of 3151 24-bit-RGB-bitmap document images with different image types and rich-mix 
contents. In view of the empirical findings, the outcomes of the conducted experiments are admirable and the 
overall average saving rate that has been achieved is (71.039%) for the whole dataset. The important thing is that 
the relevant matching analysis between the theorizing (i.e. Equations 1 through 10) and the empirically-based 
results show rapprochement without any discrepancies. Thus, the algorithm is efficient, robust, and has the 
capability of handling compound documents that have different content types. However, the performance of this 
solution, like most other image compression algorithms, depends on the content of the file to be compressed. 
Finally, as the input encoded image and the output decoded image are recognized as the same and recorded as 
identical up to the last bit, this technique is a lossless one. 

7. Future Work and Outlook 

In order to realize the potential advantages of this proposed technique upon this significant area, further 
experimental and simulation researches should be carried out and, in turn, several significant issues can be 
extended for future work to support the achievements of this work. These issues may lead to further 
improvement related to more storage space reduction and, furthermore, bring to light a great number of new 
research opportunities that need to be further investigated. On the whole, the research scope can be extended to 
introduce the following perspectives:  

• In the way of maximizing the existing compression ratios, the grey-scale resolution (i.e. bit-depth) can be 
increased from 24-bit to other values. Then the impact of this modification upon the six-SRP classes should be 
investigated.  

• Because some regions may have more relative importance than the others, this algorithm may take further 
direction related to the preservation of information. For instance, the regions of the vehicle plates might be more 
significant to be verified precisely than the other parts of the vehicle (Alghyaline et al. 2019). And, therefore, a 
“lossless” algorithm is applied to vehicle plates and “lossy” compression is applied for the rest of the image. 
Hence, “lossless” and “lossy” are used upon this importance. 

• According to analysts and specialists, it is extremely rare to see these current days anyone living without 
Internet access and, above and beyond that, it is foreseen in the next few coming years that there isn't any 
running business without the innovative Cloud Computing (CC) services (El-Omari 2019). As most Digital 
Image Processing (DIP) applications are high-productivity and could be deployed remotely with the new vision 
of the smart world, there is an utmost need to integrate the DIP paradigm to be activated within the CC 
environment (Yuzhong and Lei 2014)(El-Omari 2019). This is especially true for hosting and delivering this 
proposed solution; the following motivations reinforces this relevant point and truly ensure that CC is the most 
tolerable place for hosting DIP systems: 

- The majority of these systems are typically sophisticated and entail high-end communicational capabilities, 
high-level computational power, well-developed applications, and large mass data storage capacities (Kumar 
et al. 2019) (M Gokilavani, GP Mannickathan, and MA. Dorairangaswamy 2018)(El-Omari 2019). 

- Most DIP systems require application-specific platforms and real-time or near-real-time applications 
(El-Omari 2019)(Yuzhong and Lei 2014).  

- Given that CC is moving in the direction of providing highest Quality of Service (QoS) at a lower expense, the 
underlying hardware of these systems is usually very expensive to be single-owned by the enterprise itself 
(Mirarab, Fard, and Shamsi 2014)(El-Omari 2019)(Qin et al. 2018).  

- Moreover, the three-field integration (CC, Big Data, and DIP) has recently become the most desirable 
platform for hosting and delivering DIP functions (El-Omari and Alzaghal 2017)(Mirarab et al. 2014)(Kang 
and Lee 2016). 

By this, segmentation and compression compound images based on utilizing CC might become a 
wildly-popular simple practice among ordinary users.  

• Since image compression has a positive leading contribution in the security area (Kumar et al. 2019), the data 
inside the Lookup Dictionary Table (LUD) and the reference pointers can be encrypted at the third phase (i.e. 
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Phase III: Rearrangement phase) of this proposed algorithm which, as a result, leads to an encrypted integrated 
file as an output of phase 6. 

• In the foreseeable future, there may be many possible arrangements that can be arranged to rapidly accelerate 
the compression/decompression progress of this proposed technique; some of them have been already 
highlighted in Figure 3. Followings are two of these arrangements: 

- Building the data compression/decompression process as real-time utility software that may be considered as 
part of the operating system. By using this strategy, every data file is directly encoded when it is stored and, in 
contrast, it is automatically decoded when it is retrieved back (i.e. loaded).  

- Building the data compression/decompression mechanism internally as a special-purpose built-in chip. Again 
as have been stated in the previous point, every file is automatically compressed during the saving process, 
and vice versa.  

Equally important, both arrangements should be designed to be operated automatically without the users' 
interferences. In addition, these arrangements should be worked without the end-users' awareness of their 
existence. 
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Appendix A: An example of the “T4” blocks (17-128 colors) 

This example aims at putting a focus on how the class of type “T4” is fabricated. Suppose that a square block (I, 
J) = (48, 67) of 64x64 pixels in size has the 39-color CST that is viewed in Table 15. This table is achieved 
based on Table 1 and as an output of Algorithm II of Figure 8. This table contains four columns, the first three 
columns are for the RGB components and the last one is for the frequencies of colors that are found within this 
block. Since the size of the block is 4096 pixels, the total sum of the last column of this table is 4096 pixels.  

Note how these 64*64=4096 pixels are distributed among 39 three-RGB-component colors and they are ordered 
in descending order according to their frequencies. Since this dictionary has 39 (i.e. from sequence 0 to sequence 
38) colors, it is of type “T4” and so each pixel needs a seven-bit reference to point out to one of the 128 
dictionary entries. When the LUD dictionary is built, the first color takes the number (000)10 = (000 0000)2, the 
second color takes (001)10 = (000 0001)2, the third color takes (002)10 = (000 0010)2, the fourth color takes 
(003)10 = (000 0011)2 , and so on until the last color that takes (127)10 = (111 1111)2 . In order to complete the 
LUD entries, the remaining unoccupied (i.e. unfilled) entries of colors, from the 40th color to the 128th color, are 
fulfilled with null values and there isn't any reference pointer that points out to one of them. 

Now, assume that the first twenty pixels of this block contain the following color components RGB: 

(255,100,150)10 (000,010,050)10 (000,010,050)10 (077,015,080)10 (167,100,200)10 
(255,100,150)10 (000,010,050)10 (013,023,033)10 (255,100,150)10 (153,153,153)10 
(000,010,050)10 (255,100,150)10 (241,100,111)10 (233,200,200)10 (241,100,111)10 
(018,000,000)10 (000,010,050)10 (000,010,050)10 (109,100,209)10 (109,100,209)10 

Inspired by the number of colors detected in this block, this technique treats this block as a class “T4”. So, the 
corresponding reference pointers for these twenty pixels are described in Table 16. On the other side, Table 17 
illustrates the data schematic construction of this example where a total of 3970 bytes are required for each block 
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of this type and size. For the remaining 4076 pixels, other than these twenty pixels, the same pattern is used. 
Related to Table 17, it is vitally important to mention that to simplify the viewing of the seven-bit-reference 
pointers, eight-bit-reference pointers are viewed instead. In terms of this, the total occupied bytes of the data part 
is multiplied by (7/8), i.e. 4096*7/8+386=3970. 

Table 15. A CST example of 39 colors (data in decimal) 

 Red component Green component Blue component Frequency 

0. 255 100 150 969 
1. 000 010 050 816 
2. 077 015 080 395 
3. 167 100 200 392 
4. 155 105 113 289 
5. 100 050 090 199 
6. 007 017 027 166 
7. 099 100 105 81 
8. 016 017 018 59 
9. 012 024 036 49 
10. 013 023 033 49 
11. 225 100 150 49 
12. 140 160 190 40 
13. 189 189 189 40 
14. 208 208 208 40 
15. 124 124 124 39 
16. 199 199 199 39 
17. 198 200 200 39 
18. 197 197 197 32 
19. 240 240 240 32 
20. 241 100 111 28 
21. 244 200 200 28 
22. 102 111 111 24 
23. 153 153 153 20 
24. 104 104 104 20 
25. 154 154 154 20 
26. 217 200 200 19 
27. 178 100 100 18 
28. 233 200 200 17 
29. 001 002 003 16 
30. 002 004 006 16 
31. 011 113 111 16 
32. 017 027 037 12 
33. 018 000 000 8 
34. 109 100 209 7 
35. 255 90 100 4 
36. 255 95 110 3 
37. 255 90 120 3 
38. 255 90 130 3 
 Total 4096 
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Finally, to conclude the discussion of this example, an important conclusion that should be stated here: 

Rather than spending 12288 (i.e. 64 * 64 * 3) bytes in storing this block of (64x64) pixels in 
size, 4482 bytes are enough. Namely: 

3970 / (64 * 64 * 3) * 100% = 32.308% 

This means that this proposed technique has the capability to encode this class of blocks by 
using only 32.308% of the block size. If Equation 8 is recalculated by using BL=64, the result 
is the same without any discrepancies. 

Table 16. The corresponding reference pointers of the example on the class type “T4” 

Pixel no. Pixel data Decimal color reference 7-bit binary color reference 

01 ( 255,100,150 )10 ( 00 )10 ( 000 0000 )2 
02 ( 000,010,050 )10 ( 01 )10 ( 000 0001 )2 
03 ( 000,010,050 )10 ( 01 )10 ( 000 0001 )2 
04 ( 077,015,080 )10 ( 02 )10 ( 000 0010 )2 
05 ( 167,100,200 )10 ( 03 )10 ( 000 0011 )2 
06 ( 255,100,150 )10 ( 00 )10 ( 000 0000 )2 
07 ( 000,010,050 )10 ( 01 )10 ( 000 0001 )2 
08 ( 013,023,033 )10 ( 10 )10 ( 000 1010 )2 
09 ( 255,100,150 )10 ( 00 )10 ( 000 0000 )2 
10 ( 153,153,153 )10 ( 23 )10 ( 001 0111 )2 
11 ( 000,010,050 )10 ( 01 )10 ( 000 0001 )2 
12 ( 255,100,150 )10 ( 00 )10 ( 000 0000 )2 
13 ( 241,100,111 )10 ( 20 )10 ( 001 0100 )2 
14 ( 233,200,200 )10 ( 28 )10 ( 001 1100 )2 
15 ( 241,100,111 )10 ( 20 )10 ( 001 0100 )2 
16 ( 018,000,000 )10 ( 33 )10 ( 010 0001 )2 
17 ( 018,000,000 )10 ( 33 )10 ( 010 0001 )2 

18 ( 018,000,000 )10 ( 33 )10 ( 010 0001 )2 

19 ( 109,100,209 )10 ( 34 )10 ( 010 0010 )2 
20 ( 109,100,209 )10 ( 34 )10 ( 010 0010 )2 

 

Table 17. A data structure example for the blocks of type “T4” 

Data Type Decimal Data Byte Sequence 

Block address 
I ( 048 )10 001 

J ( 067 )10 002 

Dictionary Part (LUD) 
A special-purpose dictionary of 
128 three-RGB-color-component 
entries (i.e. 128 * 3 = 384 cells). 

 

1st color 
R001 ( 255 )10 003 
G001 ( 100 )10 004 
B001 ( 150 )10 005 

2nd color 
R002 ( 000 )10 006 
G002 ( 010 )10 007 
B002 ( 050 )10 008 

3rd color 
R003 ( 077 )10 009 
G003 ( 015 )10 010 
B003 ( 080 )10 011 

4th color 
R016 ( 167 )10 012 
G016 ( 100 )10 013 
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Data Type Decimal Data Byte Sequence 

B016 ( 200 )10 014 

5th color 
R005 ( 155 )10 015 
G005 ( 105 )10 016 
B005 ( 113 )10 017 

6th color 
R006 ( 100 )10 018 
G006 ( 050 )10 019 
B006 ( 090 )10 020 

7th color 
R007 ( 007 )10 021 
G007 ( 017 )10 022 
B007 ( 027 )10 023 

8th color 
R008 ( 099 )10 024 
G008 ( 100 )10 025 
B008 ( 105 )10 026 

9th color 
R009 ( 016 )10 027 
G009 ( 017 )10 028 
B009 ( 018 )10 029 

10th color
R010 ( 012 )10 030 
G010 ( 024 )10 031 
B010 ( 036 )10 032 

11th color
R011 ( 013 )10 033 
G011 ( 023 )10 034 
B011 ( 033 )10 035 

12th color
R012 ( 225 )10 036 
G012 ( 100 )10 037 
B012 ( 150 )10 038 

13th color
R013 ( 140 )10 039 
G013 ( 160 )10 040 
B013 ( 190 )10 041 

14th color
R014 ( 189 )10 042 
G014 ( 189 )10 043 
B014 ( 189 )10 044 

15th color
R015 ( 208 )10 045 
G015 ( 208 )10 046 
B015 ( 208 )10 047 

16th color
R016 ( 124 )10 048 
G016 ( 124 )10 049 
B016 ( 124 )10 050 

17th color
R017 ( 199 )10 051 
G017 ( 199 )10 052 
B017 ( 199 )10 053 

18th color
R018 ( 198 )10 054 
G018 ( 200 )10 055 
B018 ( 200 )10 056 

19th color
R019 ( 197 )10 057 
G019 ( 197 )10 058 
B019 ( 197 )10 059 

20th color
R020 ( 240 )10 060 
G020 ( 240 )10 061 
B020 ( 240 )10 062 

21st color 
R021 ( 241 )10 063 
G021 ( 100 )10 064 
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Data Type Decimal Data Byte Sequence 

B021 ( 111 )10 065 

22nd color
R022 ( 244 )10 066 
G022 ( 200 )10 067 
B022 ( 200 )10 068 

23rd color
R023 ( 102 )10 069 
G023 ( 111 )10 070 
B023 ( 111 )10 071 

24th color
R024 ( 153 )10 072 
G024 ( 153 )10 073 
B024 ( 153 )10 074 

25th color
R025 ( 104 )10 075 
G025 ( 104 )10 076 
B025 ( 104 )10 077 

26th color
R026 ( 154 )10 078 
G026 ( 154 )10 079 
B026 ( 154 )10 080 

27th color
R027 ( 217 )10 081 
G027 ( 200 )10 082 
B027 ( 200 )10 083 

28th color
R028 ( 178 )10 084 
G028 ( 100 )10 085 
B028 ( 100 )10 086 

29th color
R029 ( 233 )10 087 
G029 ( 200 )10 088 
B029 ( 200 )10 089 

30th color
R030 ( 001 )10 090 
G030 ( 002 )10 091 
B030 ( 003 )10 092 

31st color 
R031 ( 002 )10 093 
G031 ( 004 )10 094 
B031 ( 006 )10 095 

32nd color
R032 ( 011 )10 096 
G032 ( 113 )10 097 
B032 ( 111 )10 098 

33rd color
R033 ( 017 )10 099 
G033 ( 027 )10 100 
B033 ( 037 )10 101 

34th color
R034 ( 018 )10 102 
G034 ( 000 )10 103 
B034 ( 000 )10 104 

35th color
R035 ( 109 )10 105 
G035 ( 100 )10 106 
B035 ( 209 )10 107 

36th color
R036 ( 255 )10 108 
G036 ( 090 )10 109 
B036 ( 100 )10 110 

37th color
R037 ( 255 )10 111 
G037 ( 095 )10 112 
B037 ( 110 )10 113 

38th color
R038 ( 255 )10 114 
G038 ( 090 )10 115 
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Data Type Decimal Data Byte Sequence 

B038 ( 120 )10 116 

39th color
R039 ( 255 )10 117 
G039 ( 090 )10 118 
B039 ( 130 )10 119 

Colors 
from 40th 
to 128th are 
fulfilled 
with null 
values. 

⁞     ⁞     ⁞ 
R127 null 381 
G127 null 382 
B127 null 383 
R128 null 384 

 
G128 null 385 
B128 null 128*3+2=386 

Data Part  
Pointer references for the first 15 
pixels of the block. 
In terms of simplicity, 
eight-bit-reference pointers are 
viewed instead of a 
seven-bit-reference. Hence, the 
number of the total bytes is 
multiplied by (7/8). 
 

1st byte = P1 ( 00 )10 387 
2nd byte = P2 ( 01 )10 388 
3rd byte = P3 ( 01 )10 389 
4th byte = P4 ( 02 )10 390 
5th byte = P5 ( 03 )10 391 
6th byte = P6 ( 00 )10 392 
7th byte = P7 ( 01 )10 393 
8th byte = P8 ( 10 )10 394 
9th byte = P9 ( 00 )10 395 

10th byte = P10 ( 23 )10 396 
11th byte = P11 ( 01 )10 397 
12th byte = P12 ( 00 )10 398 
13th byte = P13 ( 20 )10 399 
14th byte = P14 ( 28 )10 400 
15th byte = P15 ( 20 )10 401 
16th byte = P16 ( 33 )10 402 
17th byte = P17 ( 33 )10 403 
18th byte = P18 ( 33 )10 404 
19th byte = P19 ( 34 )10 405 
20th byte = P20 ( 34 )10 406 

The remaining 12268 pixels 
⁞     ⁞     ⁞ ⁞     ⁞     ⁞ ⁞     ⁞     ⁞ 

12288th byte = ( P12288 ) ..…. 4096*7/8+386=3970 

 

Appendix B: An example of the “T5” blocks (129-256 colors) 

This example is viewed to clarify the class of type “T5”. Suppose that a square block (I, J) = (34, 50) of 64x64 
pixels in size has the CST that is viewed in Table 18. This table is achieved based on Table 1 and as an output of 
Algorithm II of Figure 8. Since the size of the block is 64x64=4096 pixels, the total number of all the colors is 
4096 pixels.  

Note how these 4096 pixels are distributed among 145 three-RGB-component colors and they are ordered 
starting from the color that has the highest frequency (here white). Because the three RGB-component values of 
each row of this table are the same, all the pixels of this range are considered as grey pixels. Since this CST has 
145 grey colors, it is of type “T5”. Now, assume that the first twenty-five pixels of this block contain the 
following three-RGB-component colors:  

(255,255,255)10 (000,000,000)10 (000,000,000)10 (077,077,077)10 (167,167,167)10 
(255,255,255)10 (000,000,000)10 (013,013,013)10 (255,255,255)10 (153,153,153)10 
(000,000,000)10 (255,255,255)10 (140,140,140)10 (109,109,109)10 (178,178,178)10 
(140,140,140)10 (001,001,001)10 (109,109,109)10 (140,140,140)10 (140,140,140)10 
(208,208,208)10 (208,208,208)10 (208,208,208)10 (208,208,208)10 (208,208,208)10 
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Table 18. A CST example of 145 colors (data in decimal)  

 Red component Green component Blue component Frequency 

0. 255 255 255 206 
1. 000 000 000 201 
2. 077 077 077 200 
3. 167 167 167 189 
4. 155 155 155 188 
5. 100 100 100 180 
6. 007 007 007 177 
7. 099 099 099 163 
8. 004 004 004 163 
9. 012 012 012 140 
10. 013 013 013 139 
11. 225 225 225 137 
12. 140 140 140 137 
13. 189 189 189 132 
14. 208 208 208 123 
15. 124 124 124 121 
16. 199 199 199 119 
17. 198 198 198 119 
18. 197 197 197 118 
19. 240 240 240 114 
20. 241 241 241 113 
21. 244 244 244 77 
22. 102 102 102 67 
23. 153 153 153 58 
24. 104 104 104 58 
25. 154 154 154 55 
26. 217 217 217 38 
27. 178 178 178 22 
28. 233 233 233 21 
29. 001 001 001 14 
30. 002 002 002 14 
31. 011 011 011 14 
32. 017 017 017 13 
33. 018 018 018 13 
34. 109 109 109 13 
⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

130. 251 251 251 5 
131. 222 222 222 3 
132. 224 224 224 3 
133. 205 205 205 3 
134. 223 223 223 3 
135. 229 229 229 3 
136. 003 011 063 3 
137. 004 010 064 3 
138. 006 011 066 3 
139. 004 012 067 3 
140. 005 015 061 3 
141. 235 235 235 2 
142. 245 245 245 2 
143. 211 211 211 2 
144. 219 219 219 2 

 Total 4096 
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Based on the number of detected colors that are viewed in Table 18, the type of the block involved in this 
example is “T5”. Table 19 illustrates the data schematic construction of this example where a total of 4098 bytes 
are required for each block of this type and size. For the remaining 4071 pixels, other than these twenty-five 
pixels, the same pattern is utilized. With regard to the aforesaid discussion, the researcher concludes that: 

Rather than using 12288 (i.e. 64 * 64 * 3) bytes to store this three-RGB-component-color block 
of (64x64) pixels in size, 4098 bytes are enough. To be specific: 

4098 / (64 * 64 * 3) * 100% = 33.349% 

Another time, this means that this proposed technique is capable to encode this class of blocks 
by using only 33.349% of the block size. If Equation 9 is recalculated by using BL=64, the 
same result will be achieved which means that the proposed algorithm is an efficient alternative 
for this class of blocks and, above all, this outcome shows a rapprochement between the 
theorizing (i.e. Equations 9) and the empirically-based results. 

 
Table 19. A data structure example for the blocks of type “T5” 

Data Type Data in Decimal Byte Sequence

Block address 
I ( 034 )10 001 

J ( 050 )10 002 

Dictionary of Colors Not needed 

Data Part  
Every pixel needs only one byte 
to be stored. There is no 
special-purpose dictionary.  
 
 

1st byte = P1 ( 255 )10 003 

2nd byte = P2 ( 000 )10 004 

3rd byte = P3 ( 000 )10 005 

4th byte = P4 ( 077 )10 006 

5th byte = P5 ( 167 )10 007 

6th byte = P6 ( 255 )10 008 

7th byte = P7 ( 000 )10 009 

8th byte = P8 ( 013 )10 010 

9th byte = P9 ( 255 )10 011 

10th byte = P10 ( 153 )10 012 

11th byte = P11 ( 000 )10 013 

12th byte = P12 ( 255 )10 014 

13th byte = P13 ( 140 )10 015 

14th byte = P14 ( 109 )10 016 

15th byte = P15 ( 178 )10 017 

16th byte = P16 ( 140 )10 018 

17th byte = P17 ( 001 )10 019 

18th byte = P18 ( 109 )10 020 

19th byte = P19 ( 140 )10 021 

20th byte = P20 ( 140 )10 022 

21st byte = P21 ( 208 )10 023 

22nd byte = P22 ( 208 )10 024 

23rd byte = P23 ( 208 )10 025 

24th byte = P24 ( 208 )10 026 

25th byte = P25 ( 208 )10 027 

⁞    ⁞    ⁞ ⁞    ⁞    ⁞ ⁞    ⁞    ⁞ 

4096th byte   = ( P4096 ) ..…. 4096 + 2 =4098
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Appendix C. An example of the “T6” blocks (more than 256 colors) 

This example is reported here in order to understand how the blocks of class type “T6” are fabricated. Assume 
that the square block (I, J) = (27, 57) of 195x195=38025 pixels in size has a color table with more than 256 
colors. Suppose that the first fifteen pixels of this block contain the following color components RGB.  

(209,211,239)10 (255,255,254)10 (020,050,090)10 (254,054,253)10 (055,055,055)10 
(101,101,133)10 (003,009,255)10 (255,255,255)10 (255,255,255)10 (101,101,133)10 
(000,000,000)10 (255,255,255)10 (199,188,191)10 (197,180,193)10 (192,187,189)10 

 
Inspired by the number of colors detected in this block, this technique treats this block as a class “T6”. Hence, 
Table 20 illustrates the data schematic construction of this example where a total of 114077 bytes are required 
for each block of this type and size. This means that there are only two bytes more than the original size of the 
block. For the remaining 38010 pixels, other than these fifteen pixels, the same pattern is utilized. Based on the 
above-mentioned discussion, the researcher can conclude that: 

Rather than using 114075 (i.e. 195 * 195 * 3 * 3) bytes in storing this block of (195x195) pixels in 
size, 114077 bytes are required. This is due to the fact that additional two-byte storage is required in 
terms of storing the block address. Namely: 

114077 / (195 * 195 * 3 + 2) * 100% = 0.00175% 

Another time, this means that this proposed technique needs only 0.00175% as an extra space to 
store this block. This is relatively very small and can be ignored at the expense of the other worthy 
percentages. If Equation 10 is recalculated by using BL=195, the same result will be achieved. And 
so, this outcome is consistent with the theorizing (Equation 10) without any discrepancies.  

 

Table 20. A data structure example for the blocks of type “T6” 

Data Type Data in Decimal Byte Sequence 

Block address 
I ( 027 )10 01 

J ( 057 )10 02 

Dictionary of Colors Not needed. 

Data Part  
 

Every pixel of the 
block takes three 
bytes. 
Just the first 15 
pixels of the block 
are shown here. 
There is no 
special-purpose 
dictionary.  

 

1st Pixel 
R001 ( 209 )10 03 
G001 ( 211 )10 04 
B001 ( 239 )10 05 

2nd Pixel 
R002 ( 255 )10 06 
G002 ( 255 )10 07 
B002 ( 254 )10 08 

3rd Pixel 
R003 ( 020 )10 09 
G003 ( 050 )10 10 
B003 ( 090 )10 11 

4th Pixel 
R016 ( 254 )10 12 
G016 ( 054 )10 13 
B016 ( 253 )10 14 

5th Pixel 
R005 ( 055 )10 15 
G005 ( 055 )10 16 
B005 ( 055 )10 17 

6th Pixel 
R006 ( 101 )10 18 
G006 ( 101 )10 19 
B006 ( 133 )10 20 

7th Pixel 
R007 ( 003 )10 21 
G007 ( 009 )10 22 
B007 ( 255 )10 23 
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Data Type Data in Decimal Byte Sequence 

8th Pixel 
R008 ( 255 )10 24 
G008 ( 255 )10 25 
B008 ( 255 )10 26 

9th Pixel 
R009 ( 255 )10 27 
G009 ( 255 )10 28 
B009 ( 255 )10 29 

10th Pixel 
R010 ( 101 )10 30 
G010 ( 101 )10 31 
B010 ( 133 )10 32 

11th Pixel 
R011 ( 000 )10 33 
G011 ( 000 )10 34 
B011 ( 000 )10 35 

12th Pixel 
R012 ( 255 )10 36 
G012 ( 255 )10 37 
B012 ( 255 )10 38 

13th Pixel 
R013 ( 199 )10 39 
G013 ( 188 )10 40 
B013 ( 191 )10 41 

14th Pixel 
R014 ( 197 )10 42 
G014 ( 180 )10 43 
B014 ( 193 )10 44 

15th Pixel 
R015 ( 192 )10 45 
G015 ( 187 )10 46 
B015 ( 189 )10 47 

The remaining 
38010 pixels 

⁞  ⁞  ⁞ ⁞  ⁞  ⁞ ⁞  ⁞  ⁞ ⁞  ⁞  ⁞ 

Pixel 38025 ..…. ..…. 38025*3+2=114077 
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