
Modern Applied Science; Vol. 14, No. 4; 2020
ISSN 1913-1844 E-ISSN 1913-1852

Published by Canadian Center of Science and Education

52

An Efficient Two-level Dictionary-based Technique for Segmentation
and Compression Compound Images

Dr. Nidhal Kamel Taha El-Omari1
1Department of Software Engineering, Faculty of Information Technology, The World Islamic Sciences and
Education University (WISE), Amman – Jordan

Correspondence: Dr. Nidhal Kamel Taha El-Omari, Department of Software Engineering, Faculty of Information
Technology, The World Islamic Sciences and Education University (WISE), Amman – Jordan.

E-mail: nidhal.omari@wise.edu.jo; omari_nidhal@yahoo.com

Received: February 22, 2019 Accepted: March 22, 2020 Online Published: March 24, 2020

doi:10.5539/mas.v14n4p52 URL: https://doi.org/10.5539/mas.v14n4p52

Abstract

Image data compression algorithms are essential for getting storage space reduction and, perhaps more
importantly, to increase their transfer rates, in terms of space-time complexity. Considering that there isn't any
encoder that gives good results across all image types and contents, this paper proposed an evolvable lossless
statistical block-based technique for segmentation and compression compound or mixed documents that have
different content types, such as pictures, graphics, and/or texts.

Derived from the number of detected colors and to achieve better compression ratios, a new well-organized
representation of the image is created which nonetheless retains the same image components. With the effort of
reducing noise or other variations inside the scanned image, some primary operations are implemented.
Thereafter, the proposed algorithm breaks down the compound document image into equal-size-square blocks.
Next, inspired by the number of colors detected in each block, these blocks are categorized into a set of
six-image objects, called classes, where each one contains a set of closely interrelated pixels that share the same
common relevant attributes like color gamut and number, color occurrence, grey level, and others. After that, a
new arrangement of these coherent classes is formed using the Lookup Dictionary Table (LUD), which is the
real essence of this proposed algorithm. In order to form distinguishable labeled regions sharing the same
attributes, adjacent blocks of similar color features are consolidated together into a single coherent whole entity,
called segments or regions. After each region is encoded by one of the most off-the-shelf applicable compression
techniques, these regions are eventually fused together into a single data file which then subjects to another
compression stage to ensure better compression ratios. After the proposed algorithm has been applied and tested
on a database containing 3151 24-bit-RGB-bitmap document images, the empirically-based results prove that the
overall algorithm is efficient in the long run and has superior storage space reduction when compared with other
existing algorithms. As for the empirical findings, the proposed algorithm has achieved (71.039%) relative
reduction in the data storage space.

Keywords: adaptive compression, block-based segmentation, Cloud Computing (CC), Digital Image Processing
(DIP), image document compression, image segmentation, Lookup Dictionary Table (LUD), lossless image
compression technique

1. Introduction

RGB images, referred to as component images, are the most common model of images. Each image may be
regarded as a “stack” containing three-equal-size arrays. Working at the level of the pixels which make up
images, every image has an MxNx3 array of color pixels. This means that the image contains “M” pixels along
the horizontal direction, called image width, and “N” pixels along the vertical direction, called image length.
Hence, the total pixel count is “M” multiplied by “N”, namely “MxN”. Moreover, each pixel is associated with
three integers that correspond to the three color information: Red, Green, and Blue. The number of bits that are
required to address every integer of these three integers defines the bit depth which is also referred to as “pixel
depth”, “the number of bits per pixel”, or “grey-scale resolution”. (Kumar et al. 2019)(Gonzalez, Woods, and
L.Eddins 2009)(Gonzalez and Woods 2017)(MathWorks Inc 2019)

mas.ccsenet

As illustra
overlapped
2009):

• Image E
“R(M,N
for a sp
docume
depends
some im

• Image R
problem
knowled

While b
Restorat
Image E
reverse

• Automa
domains
And so,
human
“Compu
close-re
“R(M,N
into sma

• Image C
“R(M,N

As they ar
determinin
compressio
linkage be

Most scann
of a mixtu
2008)(El-O
storage cap
connectivi

Th

thi

t.org

ated in Figure
d cases that sy

Enhancement
N)”. The idea is
pecific applica
ent image qua
s on that speci

mages and degr

Restoration: I
m of image res
dge that is asso

both of them a
tion is to imp

Enhancement i
specific dama

atic Vision: By
s try to come u
, automatic vis
intelligence. I
uter Vision” o
elated to the ca
N)”. Image seg
aller segments

Compression
N)”, then the fo

re intertwined
ng where the
on, are the sco

etween them.

ned document
ure of pictures
Omari et al. 2
pacities and, p
ity, and extens

his paper is in

is intersection.

Original
Image

R(M,N)

e 1, Digital Im
ynergistically

t: This is the c
s to manipulate

ation. Unfortun
lity. The enha
ified applicatio
rade others.

If the output im
storation. It is
ociated with th

are referred to
rove image qu
is trying to imp
ge suffered by

y mimicking th
up with new go
sion is that fiel
n some refere

or “Artificial V
ase when the o

gmentation is cl
s, called region

: If the output
ormer one is ca

in many ways
aforementione
ope area of th

ts are what is c
s, graphics (dr

2017). Using th
perhaps more i
sive input/outp

E

I
Com

Modern

mage processin
interact with

case when the
e an input imag
nately, there is
ancement is a
on. However,

mage, “D(M,N)
the process o

he degradation

o as image de
uality in some
prove the imag
y the image, us

he behaviours o
oal-oriented op
ld of DIP whic
ences, it is also
Vision”. The
output image,
lassified as an

ns.

t image, “D(M
alled a compre

s and with resp
ed cases start
his research an

Figure 1. Ima

called compoun
rawings), texts
hese documen
importantly, so
put operations

Image
Enhancement

mage
mpression

n Applied Scienc

53

ng (DIP) aims
each other (P

e output image
ge so that the fi
s no single im
problem-orie

depending on

)”, is a recover
of retrieving de
n experiences.

formation, the
e sense in orde
ge using subjec
sing objective c

of human bein
erating method
ch targets towa
o referred to a
problem of p
“D(M,N)”, gr
early stage of

M,N)”, is viewe
essed version o

pect to the fact
and stop, the

nd, in turn, the

ge Processing

nd or mixed do
s, and backgro
nts without com
ome "expensiv
to store and t

R

A

ce

s to solve one
Petrou and Bo

e, “D(M,N)”,
final image is m
mage processin
ented to impro

the applicatio

r image of an in
egraded or de

e aim of both
er to reproduc
ctive criteria, t
criteria.

ngs in solving p
ds to solve man
ard making co
as “Machine V

preparation an
rasps some cer
this category.

ed by fewer bi
of the later one

t that there are
last two tack

e proposed solu

Purpose

ocuments, whi
ounds (El-Om
mpressing the

ve" run-time co
transmit data (

Image
Restoration

Artificial
Vision

e or more of
sdogianni 201

is “better” tha
more suitable th
ng method tha
ove the quality
on, such transf

nput image, “R
stroyed image

Image Enhan
ce the original
the Image Rest

problems, scien
ny important re
omputers imita
Vision”, “Mac

image for Au
rtain features o
It is used to br

its than the or
e.

e no clear-cut b
kled problems,
ution has been

ich means that
mari and Awaja
em requires a
omputations, h
(Kumar et al. 2

Vol. 14, No. 4;

the following
10)(Gonzalez

an the input im
han the origina
at always impr
y of an image
formations imp

R(M,N)”, this i
s using some

ncement and Im
image. But, w

toration is tryi

ntists from diff
eal-world prob

ate human visio
chine Intelligen
utomatic Visio
of the input im
reak down an im

riginal input im

boundaries tha
, segmentation
n evolved from

t the images co
an 2009)(El-O
large mass of

high-speed net
2019)(Rahman

Final
Image

D(M,N)

2020

four
et al.

mage,
al one
roves
e and
prove

is the
prior

mage
while
ng to

ferent
blems.
on or
nce”,
on is

mage,
mage

mage,

at are
n and
m the

onsist
Omari
f data
work
n and

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

54

Hamada 2019). Besides, they may never satisfy the ever-growing information demands of customers or even
some of their evident needs (El-Omari 2019)(El-Omari et al. 2012). This is especially true for storing and
transferring documents containing a huge amount of images. To come up with this focal point and to diminish
the data storage requirements, in terms of storage space complexity, or to increase their transfer rates, in terms of
time complexity, there is an essential need for compressing these documents with sophisticated algorithms
(El-Omari et al. 2017)(Taha et al. 2012)(El-Omari and Awajan 2009)(El-Omari 2008).

Most data compression techniques generally benefit from the patterns inside the image data to get another
equivalent less-space representation. And so, random data are so difficult, if not impossible, to be compressed.
However, conventional mechanisms of compression are commonly involved with certain image types that are
measured in terms of space-time complexity. Using them with mixed documents may impose many distinctive
challenges that have to be adequately addressed. And, thus, the so-called segmentation is evolved out to offer a
conceptual way to break down mixed documents into distinct image objects, called segments or regions, where
each one of these incorporated parts contains a set of close-related pixels which have “common attributes” like
color gamut and number, color occurrence, grey level, and others (Sharma 2019). Rather than using one standard
compression technique for the whole document and to achieve a better compression ratio, each segment is
extracted alone and then encoded independently (Taha et al. 2012). Thus, this research tackles the problem of
segmenting mixed digital documents into six parts. Then at the sender side, each incorporated part is compressed
individually apart from others using the most applicable compression technique, thereby ensuring better
compression ratios and thence quicker sending data from one machine to another. By this means, the recipient
can integrate these various image components to regenerate the original document. However, this arrangement
places an emphasis on direct dialogue between the pair of actors, the sender and the recipient. (El-Omari and
Awajan 2009)(El-Omari 2008)(El-Omari et al. 2012)

In order to state a truth, this paper is a continuation of the previous works in the area of document image
segmentation and compression (El-Omari and Awajan 2009)(El-Omari 2008)(El-Omari et al.
2017)(El-Omari et al. 2012)(Taha et al. 2012). In order to explore further the arguments set out above, this
paper is divided into seven sections. After this section provides an introduction to the main theme of the
paper, Section 2 surveys the literature to look at the related work and, moreover, reviews some fundamental
concepts and terminology that forms the theoretical background. Section 3 is where the real work begins; it
presents the current approach developed in this research and then walks through all the different stages
which would be required to implement this proposed algorithm. The segments formulation and the
mathematical model of this proposed solution are detailed in Section 4. While the conducted experiments
and their detailed intensive analysis are discussed in Section 5, Section 6 concludes the project work of this
research. Finally, to accomplish the discussion of this paper, the last section, Section 7, highlights an ample
research scope and addresses a fairly broad range of possible research opportunities to be further
investigated.

2. Related Work

Mixed document segmentation, as a well-known research area, aims for dividing a document image into its
components: pictures, graphics (drawings), texts, and backgrounds. Data compression, on the other hand, is the
process of rearranging the original information with the sole intention of relatively getting fewer numbers of bits
which in turn leads to storage space reduction.

While the algorithms that carry out the data compression process are referred to as encoders, the ones that
perform the inverse process to reconstruct the original images are referred to as decoders (Kumar et al. 2019).
However, this whole process is referred to as encoding. Figure 2 is a schematic diagram that depicts the data
compression and decompression processes for an image having “M” pixels in length and “N” pixels in wide.
Imagine an input data file, “R(M,N)”, is encoded to be “E(M,N)” and transferred through a network from a
source computer to a destination one where the file can be decoded back, i.e. decompressed or retrieved back, to
be “D(M,N)”.

It is a reality that exaggerative numbers of millions of digital images are being generated every single hour. Not
only that, but most of these images are rich-mix contents (El-Omari 2019)(El-Omari and Alzaghal 2017). In
order to face the reality of this truth, many models of segmentation and/or compression are currently available;
each one has its own specifications and essential requirements. And so, the right decision for a particular model
selection is no longer an easy duty to be carried out (El-Omari 2019). Besides, the traditional algorithms may no
longer enough sufficient to upkeep the new needs and then there is a vital need for new efficient techniques.

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

55

Figure 2. A system block diagram showing the image compression & decompression processes.

To this aim, the goal of this paper is to get the maximum higher transmission rate at which the data can be
transferred properly from the source point to the destination. However, this rate is much related to the size of the
file which, consecutively, depends on its content types. As such, there is certainly a broad group of techniques
proposed in today’s growing field of compression which makes it difficult to choose from the most appropriate
model selection especially that most of them provide an adequate style to implement. Depending on many
relevant aspects, each model has its own specification and, therefore, these techniques can be classified into six
overlapped categories that Figure 3 demonstrates:

Figure 3. Categories of data compression techniques

• Redundancy-related categorization: This category is associated with the way of performing the compression
process. This category can be further grouped into three subgroups: Encoding redundancy, Inter-pixel
redundancy, and Psycho-visual redundancy. For more information on this category, you can refer to (Taha et al.
2012).

Encoding
Models

Redundancy-based

Encoding

Inter pixel

Psycho-visual

Ready-made

Compression Packages

Utility Software

built-in storage

Content-based category

Compound images

block-based
encoding

multi-layered
encoding

Single-type content
pure text
images

pure picture
images

black-white content

Adaptation strategy
Static Algorithm

Dynamic Algorithms

ReductionWay
Dictionary-based

Statistical-based

Information preserving

Lossless Algorithm

Lossy Algorithms

Near lossless

Decoder
(Data decompression processes)

Original
Image

R(M,N)

Encoded
Image
E(M,N)

Final
Decoded

Image
D(M,N)

Encoder
(Data compression process)

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

56

• Ready-Made categorization: By considering the strategy of data compression/decompression, a further
additional taxonomy can be possible for this group: (Taha et al. 2012)(Gonzalez and Woods 2017)

- Using off-the-shelf packages that are available on the market for data compression/decompression.

- Online disk compression: Building the data compression/decompression as a transparent (i.e. real-time) utility
inside the operating system. By using this strategy, every data file is directly compressed when it is saved. In
contrast, every data file is automatically decompressed when it is retrieved back (i.e. loaded).

- To speed up operations, the data compression/decompression can be built internally as a special-purpose
built-in chip which obviously has its corresponding software driver. Again as stated in the previous
subcategory, every file is automatically compressed during the saving process, and vice versa.

• Adaptation-related categorization: Upon the adaptation strategy, image compression algorithms are generally
categorized into two fields: static and dynamic. Regardless of its content types, the compression process is fixed
in the static case and thereby there isn't any attempt to capture any more details about the problem of interest
during the process of encoding, hence the term “data-independent”. In contrast to the static case, the dynamic
encoding processes changes dynamically depending on the extracted data content, hence the term “adaptive
compression”. (Taha et al. 2012)(Gonzalez and Woods 2017)

• Information-preserving categorization: From a classification point of view, “lossless” versus “lossy” is
utilized in accordance with the quality requirements. Different than the other one, “lossless” guarantees that the
decoded document and the original one are entirely identical and precisely bit-by-bit alike. Therefore, the
compression process is reversible. Reasoning from this fact that there may be some image degradation due to the
process of discarding away some data forever, “lossy” does not guarantee that they are alike. And in turn, the
process is irreversible and the data are an approximated copy of the original.

From another point of view, “lossless” achieves a lower compression ratio as compared to “lossy”. Roughly
speaking, the quality and the compression rate run in the opposite direction from each other where lower data
quality is much related to a higher compression ratio and versa vice. The degree of quality loss is
directly proportional to the compression level being applied to the image. Measured in terms of space-time
complexity, the compression reduction level that can be achieved using lossless techniques is lower than that
rate of “lossy” techniques and, hence, “lossy” methods typically saves more memory and run-time
computations without reporting any distinguishable regression related to the image quality. (Taha et al.
2012)(Gonzalez and Woods 2017)(Boopathiraja, Kalavathi, and Dhanalakshmi 2019)(Kumar et al. 2019)

As defined for the “lossy” cases and at the expense of getting data storage reduction, some loss of information
is reasonable and acceptable by an adequate margin of safety, such as small variation of colors or dropping
insignificant detail and inessential characters, whose loss will not be observed or make a big difference.
“lossless” compression, by contrast, is the only acceptable mean of data reduction where an exact recovery of
an encoded image is vitally essential. Medical images, confidential data, legal and historical documents are the
most dominant examples of this norm of compression. (El-Omari 2008)

In view of Figure 2, if both the reconstructed image, “D(M,N)”, and the original one, “R(M,N)”, are exactly
the same, then the data compression technique is “lossless”; otherwise, it is a “lossy”.

• Content-related categorization: In the direction of solving the problem of segmenting and compressing
compound documents, this group is divided into three subcategories:

- Black-white algorithms: These algorithms, such as “Fax Group 3” and “Fax Group 4”, are formally emerged
for the purpose of converting the images themselves into black-white color and then encode them through
lossless compression algorithms. Even though these algorithms have more storage space reduction, the
contrast and the color information are unfortunately lost and, therefore, they are inappropriate for other
document types such as medical images, historical documents, or colored magazines. They, on the other hand,
are more suitable for some technical and business documents. (El-Omari et al. 2017)(Gonzalez and Woods
2017)

- Single-type content: These algorithms are only designed to encode the documents that have one type of
content. Taha et al. (2012) and El-Omari et al. (2017) proposed two special-purpose techniques for
compression documents that have only text contents.

- Compound images: Rather than uniformly encoding the entire image as reported in the cases of conventional
image compression algorithms, this style of algorithms is used to encode compound images that may contain
more than one component, such as pictures and graphics besides texts (Kumar et al. 2019). It is based on

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

57

building prior knowledge about the images, then uses this knowledge to divide them into their different
content types, and finally encode every type separately aside from the others (Kumar et al. 2019). Two
subcategories are forked from these algorithms: Layered encoding and Block-based encoding. Mixed Raster
Content (MRC) is one of the most dominant examples of layered encoding. As illustrated in Figure 4, MRC
divides the image into three content types: foreground (FG) of 24-bit color, a binary mask of only one bit for
each pixel, and background (BG) of 24-bit color. Each identified bit of the binary mask determines that the
pixel belongs either to the foreground layer, i.e. has a value of 0, or to the background layer, i.e. has a value of
one (Queiroz, Buckley, and Xu 1999)(El-Omari et al. 2017).

Another noteworthy example, El-Omari and Awajan (2009) and El-Omari et al., (2012) utilized the
Artificial Neural Network (ANN) to exploit some prior knowledge about the images and then they use this
knowledge as a classifier to segment and compress compound images.

Figure 4. MRC divides images into its relevant components.

Besides the aforesaid categories, there is still much room for improving and investing these existing algorithms
or coming up with new effective algorithms and techniques like the one described in this current research.

3. The Proposed Framework

The philosophy behind this proposed technique is to store descriptors or pointers that refer to specific references
within a special-purpose dictionary rather than storing the actual repeated figures for every pixel, which is its
color information. While the repetitive data of these colors are stored only once, this internal dictionary is
fabricated specifically for every block/region of the image and it is referred to as Lookup Dictionary Table
(LUD). This LUD is organized as key-value pairs: the actual data items being looked up and the reference
pointers that point out to where the data are located. So, the LUD reference list should consist of all the reference
pointers and the referencing to this dictionary is performed upon coming across any reference pointer

Through the indexing operation, the value of every index pointer should point out to one and only one LUD
color item. On the other side, as any reference pointer can point out to exactly one LUD color, any LUD color
may be referred by many reference pointers. Because the relevant information is declared and stored in the form
of codes, the mapping operation between the values of the index pointers and the corresponding colors of the
LUD is guaranteed. Namely, each cited reference has to be cited in advance inside the LUD list and, in turn,
there is no reason to include uncited references without they originally exist in the LUD entries. (Azad et al.
2010)(Wikipedia 2016)(El-Omari et al. 2017)

As reflected in Figure 5 and Figure 6, the proposed technique works in a sequence of seven phases. These phases
form the roadmap framework of the proposed technique.

Figure 5. The Roadmap framework of the proposed technique

1) Preliminary
processing phase

2) Segmentation &
classification phase

3) Rearrangement &
Encryption phase

4) Consolidation
phase

5) first-level
Compression phase

6) Integrating phase

7) second-level
compression phase

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

58

Figure 6. The flowchart of the proposed algorithm

While Algorithm I of Figure 7 represents the main phases included in this proposed Algorithm, Algorithm II that
is detailed in Figure 8 is expressed to build the color statistic table (CST).

Phase II

I=0

I++

True

I=last block?
False

first-level Compressing phase: Encode each region by one of
the most off-the-shelf applicable compression techniques.

Preliminary Processing phase: Reducing noise and/or variations of “R(M,N)”.

Split “R(M,N)” into a set of equal-size-square blocks.

Consolidation phase: Adjacent blocks of similar color
features are consolidated together into a single
coherent whole entity, called segments or regions.

Construct the color matrix for the ith block by using Algorithm II (Figure 8).

Phase 3: Data Rearrangement of the ith block.

In reference to the number of colors detected in each block, define
the class of the ith block as: “T1”, “T2”, “T3”, “T4”, “T5”, or “T6”.

End

Start

Integrating phase: Regions are integrated
together into one file containing one table.

second-level compression phase: Encode the file by one of
the most off-the-shelf applicable compression techniques.

Read the input image “R(M,N)” and the block length “BL”.

Phase III

Phase IV

Phase VII

Phase V

Phase VI

Inspect the image to determine its length, “M”, and its width, “N”.

Phase I

Phase 0

Read the ith block of the “R(M,N)”

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

59

Algorithm I: Color Counts Block-Based Segmentation

Description This algorithm contains seven phases and six classes in its essence. Through this algorithm, the
bitmap table of the original image is divided into six classes based on the number of colors that
are detected inside. Then through seven phases, the algorithm builds a new two-level compressed
file.

Input “R(M,N)” which represents any BMP image of size MxNx3, where “M”, “N”, and “3”
correspond to the image length, width, and the three-RGB-component colors, respectively.

Output “E(M,N)” which represents the compressed image file.

Method

1. Initialization: do the followings:

2. (i) Read the input image, “R(M,N)”.

3. (ii) Scan the input image, “R(M,N)”, to determine the length, “M”, and the width, “N”.

4. (iii) Read the block length, “BL”.

5. Create six empty tables “T1”, “T2”, “T3”, “T4”, “T5”, and “T6”.

6.
Do preliminary operations: the required preliminary processing is performed in order to reduce noises
and/or variations inside the scanned image.

7. Divide “R(M,N)” into equal-size-square blocks.

8. For each block, apply the followings:

9. Using Algorithm II that is detailed in Figure 8, scan the block to build the color statistic table (CST).

10.
Check the color frequencies of the previous table, “CST”. Then, colors with low frequency may be
considered as noise and eliminated.

11.
Based on identifying the number of colors containing in each block, determine the classes of the
blocks as “T1”, “T2”, “T3”, “T4”, “T5”, or “T6”; these classes are outlined in Figure 9.

12. If the block class is of type “T1”, insert a new entry in the table “T1” that contains the followings:

13. (i) The block length, “BL”.

14. (ii) Block address: “I” and “J”.

15. (iii) The values of the three RGB components of the unique detected color of the block.

16.
Else If the block class is of type “T2”, i.e. text-based, insert a new entry in the table “T2” that

contains the following data items:

17. (i) Block address: “I” and “J”.

18. (ii) A special-purpose dictionary for the two detected colors.

19.
(iii) one-bit-reference-pointer index to designate one of the two colors of the dictionary; using

zero for the pixels having the first color and one for the second color. One byte can hold the
information of 8 pixels.

20.
Else If the block class is of type “T3”, insert a new entry in the table “T3” with the following data

items:

21. (i) Block address: “I” and “J”.

22.
(ii) A special-purpose 16-color (each color requires three entries) dictionary is built where the

detected colors are arranged at first and the remaining unoccupied entries are fulfilled to 16
colors (i.e. 3*16=48 cells) with null values.

23.

(iii) four-bit-reference-pointer index to designate a specific color from the sixteen colors of the
stored dictionary. Every 2 pixels require one byte to store their indexes. Any reference
pointer refers to one of the already detected colors and there isn't any pointer that refers to
one of the unoccupied entries (i.e. colors) that are previously fulfilled to complete the number
of colors into 16 colors with null values

24. Else If the block class is of type “T4”, insert a new entry in the table “T4” with the following data:

25. (i) Block address: “I” and “J”.

26. (ii) A certain special-purpose 128-color (each color needs three entries) dictionary is built where
the detected colors are arranged at first and the remaining unoccupied entries are fulfilled to

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

60

128 colors (i.e. 3*128=384 cells) with null values.

27.

(iii) seven-bit-reference-pointer index to designate a specific color from the 128 colors of the
stored dictionary. Every individual pixel requires seven bits to be stored. Any reference
pointer refers to one of the previously detected colors and there isn't any pointer that refers to
one of the unoccupied entries (i.e. colors) that are already fulfilled to complete the number of
colors into 128 colors with null values.

28.
Else If the block class is of type “T5”, insert a new entry in the table “T5” that contains the

following data items:

29. (i) Block address: “I” and “J”.

30. (ii) For each pixel of the block, store its red color component. Each pixel requires a single byte.

31.
Else If the block class is of type “T6”, insert a new entry in the table “T6” with the following data

items:

32. (i) Block address: “I” and “J”.

33. (ii) The pixels' data that are detected in that block. Every pixel requires three bytes.

34. End If

35. End For-loop // no more blocks

36.
Invoke Consolidation: In order to form higher-level regions, blocks of similar color features are
consolidated together into a higher single coherent whole.

37.
Invoke the first-level compression phase: Each region is encoded by one of the most off-the-shelf
applicable compression techniques. Every region is compressed along with its relevant dictionary.

38. Invoke Integration: integrate all the six tables into one file containing one table.

39.
Invoke the second-level compression phase: Again, intending to achieve a better compression ratio, the
generated file of the preceding step is going through another stage of compression.

40. Return the generated file “E(M,N)”.

Figure 7. Algorithm I, the proposed technique.

Algorithm II: Image Color Statistic Table (CST)

Description This principal algorithm is designed to build a statistic about the detected colors and their relevant
frequencies that are captured inside a given block. This statistic represents the color map or the
dictionary of colors. Likewise, this algorithm can be carried out to build a statistic about the
detected colors and their frequencies of the whole image.

Input Either the whole MxNx3-size BMP image, i.e. “R(M,N)”, or one of its blocks.

Output A color statistic table “CST” of four columns; three of them correspond to the three basic RGB-
color components of each color and the last one corresponds to the frequency of that color.
However, every detected color is viewed by one entry.

Method

1. Initialization: construct an empty table “CST” of four columns.

2. Read the input block pixels from left to right and top to bottom.

3. For every pixel of the input the block:

4. If the three basic RGB-color components already exist in “CST”

5. Add 1 to the frequency that corresponds to that color.

6. Else

7. Insert this new color in the table “CST” with a frequency equals to one.

8. End If

9. End For

10. Return the color statistic table “CST”.

Figure 8. Algorithm II, generate an Image Color Statistic Table (CST)

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

61

3.1 Phase I: Preliminary Processing Phase

As data efficiency is crucially important to be improved before using, the original data representation may
subject to a set of pre-processing steps that are performed for filtering noise or variations inside the scanned
images. What's tricky is that the success of this proposed technique is highly depending upon the thoroughness
of this phase. (Kumar et al. 2019)

Going forward, the image with the enhanced quality is then divided into equal-size-square blocks. A color map
of each block that represents the detected colors and their frequencies is generated using Algorithm II that is
already detailed in Figure 8. This map is referred to as the Color Statistic Table (CST) for these identified colors.
Within this context, if the pixels of an input block (I, J) of “BL x BL” in size and its pixels are distributed among
“n” three-RGB-component colors, then Table 1 represents the output of this algorithm. Again, like those that are
outlined above, colors with low-frequency rates may be considered as noise and excluded from this table.

Table 1. The structure of the Color Statistic Table (CST)

Red component Green component Blue component Frequency

R001 G001 B001 F001

R002 G002 B002 F002

R003 G003 B003 F003

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

Ri-1 Gi-1 Bi-1 Fi-1

Ri Gi Bi Fi

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

Rn-1 Gn-1 Bn-1 Fn-1

Rn Gn Bn Fn

The total frequency BL2

It is essential to mention that this table is arranged in descending order according to the last column,
“Frequency”. At the beginning of this algorithm, an empty 4-column table is created. As the image file is read,
this table is altered whenever a new color is encountered. If the encountered color already exists in this table, its
corresponding frequency is increased by one. Otherwise, a new entry corresponding to this new color is inserted
in this table with a frequency equals to one.

Table 2 states an example of this CST where the data is viewed in decimal values. The block of this example is
“32x32” pixels in size. The 1024 pixels are distributed among thirteen three-RGB-component colors.

Table 2. An example of the Color Statistic Table (CST)

 Red component Green component Blue component Frequency

0. 255 244 254 241

1. 000 006 016 218

2. 235 204 122 132

3. 016 008 016 102

4. 007 008 007 95

5. 245 245 225 62

6. 009 026 014 77

7. 240 240 230 20

8. 189 189 189 18

9. 029 001 010 17

10. 218 218 228 16

11. 224 224 224 15

12. 016 014 009 11
 Total 1024

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

62

3.2 Phase II: Segmentation and Classification Phase

After the phase of preliminary operations, each block is assigned a class type based on its CST. All blocks that
have the same number of colors are given the same label or class. As reported in Table 3 and shown in the
illustration of Figure 9, block types can be categorized into six classes.

For the scanned image, “N”, suppose that the numbers of blocks for the classes “T1”, “T2”, “T3”, “T4”, “T5”,
and “T6” are: NT1, NT2, NT3, NT4, NT5, and NT6, respectively. Then, the total number of blocks is defined as
shown by Equation 1: N = ∑ Nܑ܂଺୧ୀଵ (1)

On the other hand, “N” can be entirely decoded back in a reversible way as shown by Equation 2: ∑ Nܑ܂଺୧ୀଵ 	= 	N (2)

Table 3. The description of the six classes of the proposed technique

Class No. of Colors Note

“T1” 1
The number of detected colors is one and only one. Generally, this class of blocks
represents the background of a document image which is a large expanse of a
single color. This color is considered as a background.

“T2” 2
The number of detected colors is exactly two. This class usually represents the
text-based data.

“T3” 3-16
The number of detected colors is less than 17 and more than two. This class
generally represents the drawing parts of the documents: graphs, charts, and/or
curves.

“T4” 17-128 The number of detected colors is less than 129 and more than 16.

“T5” 129-256
The number of detected colors is less than 257 and more than 128. These blocks
are mainly the grey part of the image.

“T6” >256
The blocks of this class generally represent the millions of color pictures found in
the images.

Figure 9. The six classes of the proposed technique

3.3 Phase III: Rearrangement Phase

This phase is based on forming newly generated data of each block. The output of this phase is a table where
each entry contents vary according to the assigned block class. To explore further details, this phase will be
detailed in the next section (specifically, subsections 4. 1 through 4.6).

3.4 Phase IV: Consolidation Phase

In order to form higher-level regions (i.e. sub-images), this phase aims at combining together the adjacent
neighboring equal-class blocks that have the same dictionary of colors into a larger arrangement of contiguous
blocks. It is important to realize that the blocks that have the same class don’t essentially have the same colors
(i.e. dictionary), but they may have the same number of colors (El-Omari et al. 2017)(Kumar et al. 2019). As

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

63

shown in the illustration of Figure 10, adjacent neighbors of a given block can be defined as either
four-connectivity, in which the two blocks share a common side, or eight-connectivity, in which the two blocks
share either a common side or a common corner.

Figure 10. four-Connected & eight-Connected neighbor Blocks (El-Omari et al. 2017)

3.5 Phase V: First-level Compression Phase

The data compression process will be carried on two levels. While this phase includes the first level, the second
one will be in the last phase, Phase VII. Here in this phase, every current region (i.e. sub-images or blocks of
similar features) is compressed separately with the most off-the-shelf appropriate compression technique. It is
worth mentioning that every region is compressed along with its corresponding dictionary.

3.6 Phase VI: Integration Phase

Although they are developed separately, all the six tables are eventually fused together into one entity using the
block address, I and j. This incorporated entity is formed as a single data file containing one table that interlinks
between the six close-related classes.

3.7 Phase VII: Second-level Compression Phase

This is the final phase; again, like the fifth phase outlined above, this phase is carried out with the intention of
achieving a better data compression ratio. Thus, the generated data file of the preceding step is going through
another noteworthy level of compression.

4. Solution Formulation & Mathematical Model

Related to its critical importance, this section goes through detailing the six data classes that are abstracted in the
preceding section, specifically subsection (3.3). Before reporting this section, it is worth mentioning that the first
four classes, “T1” through “T4” are built upon the idea of using special dictionaries and pointers for encoding
data, each dictionary, called Lookup Dictionary Table (LUD), is designed for the corresponding class type.
However, when the computer at the receiver (i.e. decoder) side and through the inverse decompression (i.e.
decoding or retrieved back) process read the encoded compressed file and encounters a pointer, it interprets that
pointer by retrieving the corresponding color from its place in the dictionary index; hence the original image part
is reconstructed and retrieved up to the last bit.

In order to evaluate the overall performances of the proposed technique, a mathematical measure “Saving Ratio
Percentage (SRP)” is calculated to compare the size of the original image with the final encoded image; it can be
calculated mathematically as expressed by Equation 3: (El-Omari et al. 2017)(Azad et al. 2010)(Kumar et al.
2019) 																																			SRP = ൤1 − 	size	of	the	encoded	image	(per	bytes)	size	of	the	original	image	(per	bytes)	 	൨ 	∗ 100%																						

																																																	= ൤1 − 	E(M, N)	R(M, N) ൨ 	∗ 100%	 = 	 ൤1 − 	E(M, N)	3 ∗ BLଶ ൨ 	∗ 100%																												(3)	
Where “R(M,N)” and “E(M,N)” as already stated in Figure 2.

Being more specific, some references referred to the term “E(M,N)/R(M,N)” as the compression ratio (CR) or
the relative data redundancy (Gonzalez et al. 2009)(Kumar et al. 2019). It is important to note that when no data
compression is achieved, SRP will be equal to zero. There’s no doubt that this measure depends on the image
content that leads to the distribution of the original table upon the six classes. Moreover, the proper size of the

four-connected neighbors eight-connected neighbors

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

64

block length has some impact on the SRP measure which will be shown at the evaluation of the experimental
results, namely Section 5.

4.1 Class “T1” (One Color)

This class means that the entire block is a background containing one color. Since class “T1” blocks have only
one color, the dictionary contains only three cells, one for every basic color component of the single RGB color.
Rather than saving the same information for every individual pixel that makes up the background, this approach
stores the color data for the background color only once to refer to all pixels of that block. Figure 11
demonstrates how the data can be fabricated for this class by only using a dictionary of one
three-RGB-color-component entry.

Length Part The Block length, “BL” Block length (1 byte)

Address part
I value Block address

(2 bytes) J value
Data Part: just 3 bytes are enough. Neither
the special-purpose dictionary (LUD) nor
the reference pointers are essential here.

The Red component of the single color
Foreground (FG)

color (3 bytes)
The Green component of the single color
The Blue component of the single color

Figure 11. Encoding of a block using a class of type “T1”

For this class, each block is represented by its address (I, J), and the three RGB components of its sole color.
Since the image has equal-size-square blocks, there is a need to store an additional one-byte cell to represent the
block length, “BL”. However, this byte is only stored once in this class of blocks to represent all blocks of the
image. Moreover, since the blocks of this class have a single color, which is classified as background, there is no
need to store more data about the pixels contained in the block. Despite that the special dictionary (i.e. LUD) is
essential in this class, the reference pointers are not. Simply, only six bytes are required to store the whole block
no matter how much its size. However, this solves one of the drawbacks of layered encoding mentioned in
Section 2 which is related to storage space reduction. The SRP per block of this class is modeled mathematically
by Equation 4: 						SRP(“܂૚”) = ൤1 − 	1 + 2 + 3	3 ∗ BLଶ 	൨ 	∗ 100%	 = ൤1 − 63 ∗ BLଶ	൨ 	∗ 100%																														(4)
The following points analyze the elements of this equation:

• Number “1” of the numerator indicates that only one byte is required to store the “BL”.

• Number “2” of the numerator means that two bytes are required to store the address of each block, one byte for
the “Ith” address and one byte for the “Jth” address.

• Number “3” in the numerator means that there is a necessity for three bytes to store the three basic RGB
components of the unique color.

• “BL” stands for the block length and is given in pixels.

• Since the image is divided into equal-size-square blocks, the size of each block is “BL2”. Number “3” in the
denominator indicates that there are three basic RGB-color components and, therefore, each pixel of “R(M,N)”
occupies three bytes. Thus, the denominator stands for the size of the original block before the compression
process.

• Based on the aforementioned points, the numerator indicates the size of the compressed block of this type and
size.

The following example will clarify how this class is stored. Suppose there is a square block (I, J) = (31, 16) of
size (20 x 20=400) pixels and has the following CST (decimal data):

(R001, G001, B001, F001) = (254, 019,028, 400)

Since there is only one color in this block, it is identified as a class of type “T1”. In view of that, this block will
be represented neither with reference pointers nor with LUD. Table 4 illustrates the data schematic construction
of this example where only six bytes are required. Based on the above-mentioned discussion, the researcher can
conclude that:

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

65

Rather than using 1200 (i.e. 20 * 20 * 3) bytes to store this block of (20x20) pixels in size, six bytes are enough.
To rephrase this outcome:

6 / (20 * 20 * 3) * 100 % = 0.005%

This means that the proposed technique needs only 0.005% of the block size. If Equation 4 is recalculated by
using BL=20, the same result will be achieved which means that the proposed algorithm is an efficient
alternative for this class of blocks.

Table 4. A data structure example for the blocks of type “T1”

Data Type Data in Decimal Byte Sequence

Block length BL (031)10 1

Block address
I (016)10 2
J (007)10 3

Dictionary Part (LUD)
A dictionary of one three-RGB-color-component

entry. The reference pointers are not required here.

R001 (254)10 4
G001 (019)10 5
B001 (028)10 6

4.2 Class “T2” (a single pair of colors)

It is worth remarking that this class depends on storing the detected colors of each block inside a dedicated
two-entry dictionary constructed specifically for that block. Then, rather than storing the corresponding color out
of the two detected colors for every pixel inside the block, the reference pointer indexes are used instead. For this
well-defined reason, a one-bit-reference pointer is used as an indication to determine the corresponding LUD
color.

Since class “T2” has two colors, the dictionary contains six cells, one for every basic color component of each
RGB of the two colors. These blocks are represented by the address (I, J) of each block, the 2-color dictionary,
called background and foreground colors, and only one bit for every pixel to indicate whether it can be assigned
to the background color and assigned zero or the foreground color and assigned one. Figure 12 shows the data
structure representation of this class of blocks.

Address part
I value Block address

(2 bytes) J value

Dictionary Part (LUD)

A special-purpose dictionary of two
three-RGB-color-component entries, i.e.
2 * 3 = 6 cells.

The Red component of the 1st color Foreground (FG)
color

(3 bytes)
The Green component of the 1st color
The Blue component of the 1st color
The Red component of the 2nd color Background (BG)

color
(3 bytes)

The Green component of the 2nd color
The Blue component of the 2nd color

Data Part
Using one-bit-reference pointers (i.e.
every eight pixels need only one byte to
store their references). Each reference
pointer should certainly point out to
either one of the two colors inside that
dictionary.

Pixels 08-01

Pixels' Data

Pixels 16-09
Pixels 24-17
Pixels 32-25

⁞ ⁞ ⁞ ⁞ ⁞ ⁞

The remaining representation of the pixels
(eight pixels per each byte)

Figure 12. Encoding of a block using a class of type “T2”

For the blocks of this class, “T2”, the data compression is done by storing the reference pointers that point out to
the special dictionary. The SRP per block is mathematically expressed by Equation 5:

SRP(“܂૛”) = ቎1 −	 	2 + 2 ∗ 3 + ୆୐మ଼ 		3 ∗ BLଶ 	቏ 	∗ 100%																																(5)

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

66

This equation is different than Equation 4 by the following points:

• Address part: The first number “2” of the numerator indicates that two bytes are required to store the address of
each block, one byte for the Ith address and one byte for the Jth address.

• Dictionary part (LUD): Since there are two identified colors and each of them has three basic RGB color
components, the expression “2*3=6” of the numerator stands for the number of bytes required to store the LUD.

• Data part: Since there are only two colors in this class type, each bit can hold either zero or one to point out to the
foreground (FG) or to the background (BG), respectively. Thus, the number of pixels that can be indicated by a
single byte is eight.

For the sake of simplicity, Equation 5 can be redrafted as expressed in Equation 6:

SRP(“܂૛”) = ቎1 − 	8 + ૛଼ۺ۰ 		3 ∗ BLଶ ቏ 	∗ 100%																																																															(6)
As an example of this class type, assume that the square block (4, 8) of (30x30=900) pixels in size has the
two-color CST that is viewed in Table 5 which has been attained as an output of Algorithm II:

Table 5. A CST example of two colors (decimal data)

 Red component Green component Blue component Frequency
0. 254 054 253 544
1. 000 002 092 356

 Total 900

Note that the total number of frequencies of this block are (F001 + F002 = 544 + 356 = 900). Then, these two colors
are assigned the numbers (0)2, (1)2, respectively. Suppose that the first sixteen pixels of this block contain the
following RGB-color components:

(254,054,253)10 (000,002,092)10 (000,002,092)10 (254,054,253)10 (000,002,092)10
(254,054,253)10 (254,054,253)10 (000,002,092)10 (000,002,092)10 (000,002,092)10
(254,054,253)10 (254,054,253)10 (254,054,253)10 (254,054,253)10 (000,002,092)10
(000,002,092)10

Based on the number of detected colors (i.e. a single pair), the type of the block involved in this example is “T2”
and, in turn, the corresponding reference pointers for these sixteen pixels are presented in Table 6. On the other
side, Table 7 illustrates the data schematic construction of this example where a total of 121 bytes are required
for each block of this type and size. For the remaining 884 pixels, other than these sixteen pixels, the same
pattern is used.

Table 6. The corresponding reference pointers of the example on the class type “T2”

Pixel
no.

Pixel data one-bit-reference-pointer
Eight references are stored

in one byte
The decimal
equivalent

01 (254,054,253)10 (0)2

(1001 0110)2 (150)10

02 (000,002,092)10 (1)2
03 (000,002,092)10 (1)2
04 (254,054,253)10 (0)2
05 (000,002,092)10 (1)2
06 (254,054,253)10 (0)2
07 (254,054,253)10 (0)2
08 (000,002,092)10 (1)2
09 (000,002,092)10 (1)2

(11000011)2 (195)10

10 (000,002,092)10 (1)2
11 (254,054,253)10 (0)2
12 (254,054,253)10 (0)2
13 (254,054,253)10 (0)2
14 (254,054,253)10 (0)2
15 (000,002,092)10 (1)2
16 (000,002,092)10 (1)2

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

67

With regard to the aforementioned discussion, the researcher concludes that:

Instead of using 2700 (i.e. 30 * 30 * 3) bytes to store this block of (30x30) pixels in size, only 121
bytes are enough. Otherwise speaking:

121 / (30 * 30 * 3) * 100% = 4.481%

This means that the proposed technique has the capability to encode this class of blocks by using
only 4.481% of the block size. If Equation 6 is recalculated by using BL=30 and then the result is
compared with this outcome, they are the same which means that the proposed algorithm is an
efficient alternative for this class of blocks.

Table 7. A data structure example for the blocks of type “T2”

Data Type Data in Decimal Byte Sequence

Block address
I (016)10 1
J (008)10 2

Dictionary Part (LUD)
A special-purpose dictionary of

two three-RGB-color-component
entries.

1st color
R001 (254)10 3
G001 (054)10 4
B001 (253)10 5

2nd color
R002 (000)10 6
G002 (002)10 7
B002 (092)10 8

Data Part: a one-bit-reference
pointer for each pixel of the
block. Just the first 16 pixels of
the block are shown here.

1st byte = (P08, P07, P06, P05,
P04, P03, P02, P01)

(105)10 9

2nd byte = (P16, P15, P14, P13,
P12, P11, P10, P09)

(195)10 10

The remaining 884 pixels
⁞ ⁞ ⁞

121st byte= (P900, P899, P898,
P897, P896, P895, P894, P893)

..…. 900/8+8=121

4.3 Class “T3” (3-16 Colors)

This class depends on storing the detected colors of each block inside a particular 16-color dictionary dedicated
particularly to that block. Then, rather than storing the corresponding color out of the sixteen ones for every
pixel inside the block, the reference pointer indexes are used instead. While these reference pointers are typically
implemented through using LUD, each four-bit-reference pointer is used as an indication to determine the
corresponding LUD color.

Related to this special dictionary and as aforementioned in Algorithm II of Figure 8, this special 16-color
dictionary is built where the same detected colors are arranged at first and the remaining unoccupied entries of
colors are fulfilled to 16 colors with null values where each color requires three-null values. Clearly, each
four-bit-reference pointer should point out to one of the previously detected colors and no reference pointer
should point out to one of the null entries (i.e. colors) that are originally unoccupied and fulfilled to sixteen
colors with null values.

In line with Figure 13, the data representation of this class, “T3”, is similar to that of class “T2”. However, the
LUD of this class has 16 * 3 = 48 cells. Each block is represented by the pair (I, J), the 16-color dictionary, and a
four-bit reference pointer for every pixel to designate a specific color from the identified sixteen colors of the
dictionary. Hence, the value (0000)2 points out to the first color in the dictionary, the value (0001)2 points out to
the second color, the value (0010)2 points out to the third color, and so on up to the value (1111)2, which is
corresponding to (15)10, that points out to the last color.

For the blocks of class “T3”, the data compression process is implemented by storing the four-bit-reference
pointers that point out to the special-purpose dictionary. Therefore, Equation 7 is proposed in this regard:

SRP(“܂૜”) = ቎1 − 	2 + 3 ∗ 16 + ୆୐మଶ 	3 ∗ BLଶ 	቏ 	∗ 100%	 = ቎1 − 	50 + ୆୐మଶ 	3 ∗ BLଶ 	቏ 	∗ 100%																											(7)									

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

68

Where the following points clarify this equation:

• Dictionary part (LUD): Since there are sixteen colors and each of them has three basic RGB color components,
“3*16=48” stands for the number of bytes requested to store the LUD.

• Data part: As there is a maximum of sixteen RGB colors and each of them required four bits to be coded, the
number of pixels that can be stored in a single byte is (8 / 4 = 2). Hence, the expression (BL2/ 2) is used to
determine the number of bytes that are required to store the four-bit-reference pointers of each block.

• The rest of this equation is similar to Equation 4.

Address part
I value Block Address

(2 bytes) J value

Dictionary Part (LUD)
A special-purpose dictionary of 16
three-RGB-color-component entries (i.e.
16 * 3 = 48 cells).

The Red component of the 1st color
1st color
(3 bytes) The Green component of the 1st color

The Blue component of the 1st color
The Red component of the 2nd color

2nd color
(3 bytes) The Green component of the 2nd color

The Blue component of the 2nd color

⁞ ⁞ ⁞ ⁞ ⁞ ⁞

The Red component of the 16th color
16th color
(3 bytes) The Green component of the 16th color

The Blue component of the 16th color

Data Part
Using four-bit-reference pointers (i.e.
every two pixels need only one byte to
store their references). Each reference
pointer should definitely refer to one
and only one of the sixteen related
colors (i.e. entries) of the dictionary.

Pixel 002 Pixel 001

Pixels' Data

Pixel 004 Pixel 003
Pixel 006 Pixel 005

⁞ ⁞ ⁞ ⁞ ⁞ ⁞

The remaining representation of the pixels,
using four-bit-reference pointers to point
out to the sixteen dictionary entries; two
pointers are stored per each byte.

Figure 13. Encoding of a block using a class of type “T3”

To explain the compression process of this class type in a simple way, the following example clarifies how this
class is fabricated. Suppose that the square block (I, J) = (1, 12) of (30 x 30=900) pixels in size has a nine-color
CST that is viewed in Table 8. This CST has been achieved as an output of Algorithm II of Figure 8.

So the first color takes the number (0000)2 in the LUD, the second color takes (0001)2, the third color takes
(0010)2, and the last color takes (0011)2 . In order to complete the LUD entries, the remaining unoccupied (i.e.
unfilled) entries of colors, from the 10th color to the 16th color, are fulfilled with null values and, obviously, there
isn't any reference pointer that points out to one of them. Suppose that the first twenty-two pixels of this block
contain the following three-RGB-color components:

(000,002,092)10 (000,000,000)10 (254,054,253)10 (000,002,092)10 (000,000,000)10
(000,002,092)10 (000,002,092)10 (255,255,254)10 (120,100,199)10 (120,100,199)10
(000,002,092)10 (000,002,092)10 (000,002,092)10 (000,002,092)10 (120,104,196)10
(120,104,196)10 (120,104,196)10 (118,106,191)10 (118,106,191)10 (118,106,191)10
(120,104,196)10 (120,104,196)10

Based on the number of colors detected in this block, this technique treats this block as a class of type “T3”.
Accordingly, the corresponding reference pointers for these twenty-two pixels are described in Table 9. In this
regard, Table 10 illustrates the data schematic construction of this example where a total of 500 bytes are
required for each block of this type and size. For the remaining 878 pixels, other than these twenty-two pixels,
the same pattern is used.

Based on the aforementioned discussion, the researcher concludes that:

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

69

Rather than consuming 2700 (i.e. 30 * 30 *3) bytes to store this block of (30x30) pixels in size, only 500
bytes are enough. To rephrase this outcome:

500 / (30 * 30 * 3) * 100% = 18.519%

Another time, this means that the proposed technique is capable to encode this class of blocks by using
only 18.519% of the block size. If Equation 7 is recalculated by using BL=30, the same result will be
achieved which proves that the outcome is consistent with the research findings. And so, this proposed
algorithm is an efficient alternative for this class of blocks.

Table 8. A CST example of nine colors (data in decimal)

 Red component Green component Blue component Frequency

0. 255 255 254 191

1. 254 054 253 190

2. 000 000 000 190

3. 000 002 092 189

4. 120 100 199 050

5. 120 105 193 040

6. 118 106 191 020

7. 119 105 200 017

8. 120 104 196 013
 Total 900

Table 9. The corresponding reference pointers of the example on the class type “T3”

Pixel
no.

Pixel data
Decimal

LUD
reference

four-bit-reference
pointer

Eight references
are stored in one
byte

The
decimal

equivalent

01 (000,002,092)10 (03)10 (0011)2
(0010 0011)2 (035)10

02 (000,000,000)10 (02)10 (0010)2

03 (254,054,253)10 (01)10 (0001)2
(0011 0001)2 (049)10

04 (000,002,092)10 (03)10 (0011)2

05 (000,000,000)10 (02)10 (0010)2
(0011 0010)2 (050)10

06 (000,002,092)10 (03)10 (0011)2

07 (000,002,092)10 (03)10 (0011)2
(0000 0011)2 (003)10

08 (255,255,254)10 (00)10 (0000)2

09 (120,100,199)10 (04)10 (0100)2
(0100 0100)2 (068)10

10 (120,100,199)10 (04)10 (0100)2

11 (000,002,092)10 (03)10 (0011)2
(0011 0011)2 (051)10

12 (000,002,092)10 (03)10 (0011)2

13 (000,002,092)10 (03)10 (0011)2
(0011 0011)2 (051)10

14 (000,002,092)10 (03)10 (0011)2

15 (120,104,196)10 (08)10 (1000)2
(1000 1000)2 (136)10

16 (120,104,196)10 (08)10 (1000)2

17 (120,104,196)10 (08)10 (1000)2
(0110 1000)2 (104)10

18 (118,106,191)10 (06)10 (0110)2

19 (118,106,191)10 (06)10 (0110)2
(0110 0110)2 (102)10

20 (118,106,191)10 (06)10 (0110)2

21 (120,104,196)10 (08)10 (1000)2
(1000 1000)2 (136)10

22 (120,104,196)10 (08)10 (1000)2

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

70

Table 10. A data structure example for the blocks of type “T3”

Data Type Data in Decimal Byte Sequence

Block address
I (001)10 01
J (012)10 02

1st color
R001 (255)10 03
G001 (255)10 04
B001 (254)10 05

2nd color
R002 (254)10 06
G002 (054)10 07
B002 (253)10 08

3rd color
R003 (000)10 09
G003 (000)10 10
B003 (000)10 11

4th color
R004 (000)10 12
G004 (002)10 13
B004 (092)10 14

5th color
R005 (120)10 15
G005 (100)10 16
B005 (199)10 17

6th color
R006 (120)10 18
G006 (105)10 19
B006 (193)10 20

7th color
R007 (118)10 21
G007 (106)10 22
B007 (191)10 23

8th color
R008 (119)10 24
G008 (105)10 25
B008 (200)10 26

9th color
R009 (120)10 27
G009 (104)10 28
B009 (196)10 29

 ⁞ ⁞ ⁞ ⁞ ⁞ ⁞
The colors from 10 to 16 are fulfilled with null values.

 ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

16th color
R016 null 49
G016 null 50
B016 null 48+2=50

Data Part
 A four-bit-reference pointer for
each pixel of the block. Just the first
ten pixels of this block are shown
here.

1st byte = (P2, P1) (035)10 51
2nd byte = (P4, P3) (049)10 52
3rd byte = (P6, P5) (050)10 53
4th byte = (P8, P7) (003)10 54
5th byte = (P10, P9) (068)10 55
6th byte = (P12, P11) (051)10 56
7th byte = (P14, P13) (051)10 57
8th byte = (P16, P15) (136)10 58
9th byte = (P18, P17) (104)10 59

10th byte = (P20, P19) (102)10 60
11th byte = (P22, P21) (136)10 61

The remaining 878 pixels

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

450th byte = (P900, P899) ..…. 450+50=500

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

71

4.4 Class “T4” (17-128 Colors)

Over again, this class is based on storing the detected colors of each block inside a dedicated 128-color
dictionary constructed dedicatedly for each block of that type. Then, instead of storing the corresponding color
out of the 128 ones for every pixel inside the block, the reference pointer indexes are used instead. While these
reference pointers are typically implemented through using LUD, each seven-bit-reference pointer is used as an
indication to determine the corresponding LUD color out of the 128 ones.

Related to this special dictionary and as aforementioned in Algorithm II of Figure 8, this special-purpose
128-color dictionary is built and the detected colors are arranged at first and the remaining unoccupied entries
are fulfilled to 128 colors with null values where each color needs three-null values. Any reference pointer points
out to one of the already detected colors and, surely, each pointer refers to one of the actual detected colors and
there isn't any pointer points out to one of the null entries (i.e. colors) that are originally unoccupied and fulfilled
to 128 colors with null values.

Figure 14 illustrates the data structure representation of this class of blocks. Accordingly, the dictionary concept
of this class, “T4”, is similar to that of “T2” and “T3”. Conversely, the dictionary of this class has (128 * 3 =
384) entries (i.e. 384 bytes). Each block is represented by the pair (I, J), the 128-color dictionary, and a
seven-bit-reference pointer for each pixel to designate a specific color among the 128 colors of the dictionary.
For instance, the value (000 0000)2 points out to the first color, the value (000 0001)2 points out to the second
color, the value (000 0010)2 points out to the third color, and so on up to the last value (111 1111)2, which is
equivalent to (127)10, that points out to the last color.

Address part
I value Block address

(2 bytes) J value

Dictionary Part (LUD)
A special-purpose dictionary of 128
three-RGB-color-component entries
(i.e. 128 * 3 = 384 cells).

The Red component of the 1st color
1st color
(3 bytes) The Green component of the 1st color

The Blue component of the 1st color
The Red component of the 2nd color

2nd color
(3 bytes) The Green component of the 2nd color

The Blue component of the 2nd color
⁞ ⁞ ⁞ ⁞ ⁞ ⁞
The Red component of the 127th color

127th color
(3 bytes) The Green component of the 127th color

The Blue component of the 127th color
The Red component of the 128th color

128th color
(3 bytes) The Green component of the 128th color

The Blue component of the 128th color

Data Part
Using seven-bit-reference pointers.
Each seven-bit-reference pointer
refers to one and only one of the 128
entries of colors

Pixel Representation
Using seven-bit-reference pointers to point
out to one of the 128 dictionary entries
(Every individual pixel requires only seven
bits to store its reference)

Pixels' Data

Figure 14. Encoding of a block using a class of type “T4”

Over again, the data compression of this block class can be constructed by utilizing reference pointers that point
out to a special LUD. In this regard, the SRP measure is modeled mathematically by Equation 8:

SRP(“܂૝”) = ቎1 − 	2 + 3 ∗ 2଻ + ୆୐మ଼ ଻⁄ 	3 ∗ BLଶ 	቏ 	∗ 100%	 = ቎1 − 	386 + BLଶ ∗ ଻଼	3 ∗ BLଶ 	቏ 	∗ 100%																					(8)
This equation is similar to Equation 4 except the following differences:

• Dictionary part (LUD): Since there are (28=128) colors, the expression “3*27” of the numerator stands for the
number of bytes that are required to store the RGB dictionary (i.e. LUD).

• Data part: Since there are (128) colors and each of them required seven bits to code, the number of pixels that
can be stored in a single byte should be divided by (8/7) or be multiplied by (7/8). So the expression “BL2/ (8/7)”

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

72

is used to determine the number of bytes that are essential to store the seven-bit-reference pointers of each block
of this class.

For further clarification, a complete example of this type is introduced at “Appendix A” at the end of this paper.
Besides that this example explains the compression process in a simple way, it gives experimental proof to
support the validity of Equation 8.

4.5 Class “T5” (129-256 Colors)

A block is identified as grey if the values of the corresponding three basic RGB components of all pixels of the
block are almost equal. Rather than repeating the same information for the three repeated RGB color components,
one component is enough to represent the other two components. Though, the red component is selected to
represent the other two color components.

Compared with the previous four classes, neither the special dictionary (i.e. LUD) nor the reference pointers are
required for the blocks of this class. Rather, the actual red component of the original block is selected and
directly stored as it is without any reshaping or rearrangement. Figure 15 illustrates how the data can be
constructed for this class of blocks. Each block is just represented by its address (I, J) and the actual red
components of its pixels where each pixel needs a single byte.

Address part I value Block address
(2 bytes) J value

Data Part
Pixels' data contain only Red
components. Neither the
special-purpose dictionary
(LUD) nor the reference
pointers are essential here.
Each pixel occupies only one
byte to be stored.

The Red component of the 1st color 1st color (1 byte)
The Red component of the 2nd color 2nd color (1 byte)
The Red component of the 3rd color 3rd color (1 byte)

The Red component of the 4th color 4th color (1 byte)

The Red component of the 5th color 5th color (1 byte)

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ Pixels' data Using
pointers.

Since they are grey colors,
the red components are
enough to be stored.

Pixels' representation of the remaining
pixels (1 byte per pixel)

&
(only the Red components are stored)

Figure 15. Encoding of a block using a class of type “T5”

Since class “T5” is considered as grey, the dictionary is needless and the SRP per block is defined using
Equation 9:

SRP(“܂૞”) = ቈ1 − 	2 + BLଶ	3 ∗ BLଶ 	቉ 		∗ 100%																																																									(9)
The basic difference between the last two Equations, 8 and 9, is that the dictionary is needless in the latter one.
Given that there are (28=256) colors, each color takes up just one byte, hence (BL2/1= BL2). For a complete
example of this class type, see Appendix B at the end of this paper. This example, on the other hand, gives an
empirical proof about its validity.

4.6 Class “T6” (more than 256 Colors)

Different than class “T5” which only stores the red component, all the three basic RGB components of the
original block are stored in class “T6” and, therefore, each pixel occupies three bytes. The representation of these
blocks is saved by storing the address (I, J) of the block and the actual pixels' data where each pixel requires
three bytes. Figure 16 shows the data structure representation of this class of blocks.

The SRP per block is represented by Equation 10: SRP(“܂૟”) = ቈ1 − 	2 + 3 ∗ BLଶ	3 ∗ BLଶ 	቉ 		∗ 100%																																															(10)
The following points clarify this equation:

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

73

• The dictionary and pointers are needless.
• In any case, this equation gives negative results for this class. But the result is approaching zero value and,

therefore, the counter loss of storage space can be easily affordable and then disregard without making a big
difference.

• The rest of this equation is similar to Equation 4.

For further clarification and understanding, Appendix C at the end of this paper gives a complete example of this
type and gives real empirical proof about the validity of Equation 10.

Address part
I value Block address

(2 bytes) J value

Data Part
(i.e. Pixels' data)

Pixels are stored as it is.
Each pixel occupies
three bytes to be stored.

The Red component of the 1st color
1st color
(3 bytes) The Green component of the 1st color

The Blue component of the 1st color
The Red component of the 2nd color

2nd color
(3 bytes) The Green component of the 2nd color

The Blue component of the 2nd color
The Red component of the 3rd color

The Green component of the 3rd color
The Blue component of the 3rd color

⁞ ⁞ ⁞ ⁞ ⁞ ⁞

The Red component of the last pixel
The color

of the last pixel The Green component of the last pixel
The Blue component of the last pixel

Figure 16. Encoding of a block using a class of type “T6”

5. Experimental Results & Evaluation

To assist in compare and contrast, a short outline of the six different classes is outlined in Table 11. It is worth
remembering that the block length, “BL”, is only stored once at the first byte of class “T1”. Since it is reserved as
a single byte, the maximum block length is “255”. Otherwise, there is a necessity to change the size of the block
length.

Table 11. Compare and contrast between the six classes

Class
Type

“BL”
Block

Address
Max. No. of

Colors
Dictionary Size

(byte)
LUD

Reference
pointer width

Every three bytes
are stored as:

“T1”   1 1*3=3   Zero bit

“T2”   2 2*3= 6  1 bit One bit

“T3”   16 16*3=48  4 bits Four bits

“T4”   128 128*3=384  7 bits 7 bits
“T5”   256  (i.e. zero)   8 bits

“T6”   >256  (i.e. zero)   24 bits

Since a reliable system should be experimented and analyzed on a great number of samples, a certain
special-purpose database contains different image types were created as reported in Table 12. This database
contains a dataset of 3151 24-bit-RGB-bitmap images of various resolutions distributed among eight categories
of three-RGB-component colors. AS it is creative and has a productive service environment, the experiments
have been carried out and tested empirically using MATLAB® 9.4 (R2018a) environments. (MathWorks Inc
2019)

After this proposed algorithm has been conducted upon this database, a proportionate reduction in the
compression level has been achieved and this empirically-based evidence, on the other hand, shows
rapprochement between theoretical and experimental results. To put it another way, all the ten equations stated in
this research are proved both theoretically and empirically as being correct. The result is therefore worthy and
the saving percentage (SRP) for the whole dataset in terms of storage space reduction is significant, which is

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

74

(71.039%). On the way to compare and contrast, this admirable result is totally better than the previous result of
El-Omari et al. (2017) which is (87%) but for the documents that contain only texts and graphics” (El-Omari et
al. 2017). For further clear investigation and evaluation, Table 13 illustrates these remarks and results for
different block classes and block lengths. The strikethrough bolded cells in the last column of this table are
introduced to show the cases where the compression ratio is poor due to the fact that:

If the data block is of class “T6”, then the current data are stored as it is along
with its block address (I, J) which is a two-byte length.

Table 12. A special-purpose database created for the purpose of testing.

Type no. Image content Number of images

1 Pure backgrounds 218
2 Pure texts 556
3 Pure graphics 388
4 Pure pictures 414
5 Graphs and pictures without texts 218
6 Texts and pictures without graphics 286

7 Texts and graphics without pictures 369

8 Mixed images 702

Total number of images 3151

Table 13. A numeric example showing the SRP measure for the six classes using one-byte block length

 Class

“BL”

“T1”
Single color
Equation 4

“T2”
2 colors

Equation 6

“T3”
3-16 colors
Equation 7

“T4”
17-128 colors
Equation 8

“T5”
129-256 colors

Equation 9

“T6”
>256 colors
Equation 10

25 99.680 95.407 80.667 50.247 66.560 -0.107
35 99.837 95.616 81.973 60.330 66.612 -0.054
45 99.901 95.702 82.510 64.479 66.634 -0.033
55 99.934 95.745 82.782 66.580 66.645 -0.022
65 99.953 95.770 82.939 67.788 66.651 -0.016
75 99.964 95.786 83.037 68.546 66.655 -0.012
85 99.972 95.796 83.103 69.052 66.657 -0.009
95 99.978 95.804 83.149 69.408 66.659 -0.007

105 99.982 95.809 83.182 69.666 66.661 -0.006
115 99.985 95.813 83.207 69.860 66.662 -0.005
125 99.987 95.816 83.227 70.010 66.662 -0.004
135 99.989 95.819 83.242 70.127 66.663 -0.004
145 99.990 95.821 83.254 70.221 66.663 -0.003
155 99.992 95.822 83.264 70.298 66.664 -0.003
165 99.993 95.824 83.272 70.361 66.664 -0.002
175 99.993 95.825 83.279 70.413 66.664 -0.002
185 99.994 95.826 83.285 70.457 66.665 -0.002
195 99.995 95.826 83.290 70.495 66.665 -0.002
205 99.995 95.827 83.294 70.527 66.665 -0.002
215 99.996 95.828 83.297 70.555 66.665 -0.001
225 99.996 95.828 83.300 70.579 66.665 -0.001
235 99.996 95.829 83.303 70.600 66.665 -0.001
245 99.997 95.829 83.306 70.619 66.666 -0.001
255 99.997 95.829 83.308 70.635 66.666 -0.001

Average 99.962 95.783 83.020 68.411 66.654 -0.013

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

75

Connected with Table 13, Figure 17 is a graphical evaluation that presents clearly the relation between the block
class and the average SRP measure. As clearly shown in this Figure, the overall saving ratio of the proposed
algorithm is based on recognizing the class of the block.

By analyzing Table 13 and its associated Figure 17, it can be concluded that the best results of the storage space
reduction can be achieved with classes of type “T1” where the average compression ratio is (99.962%), which
means that the entire image is a background containing one color. The next best results can be extracted with the
class of type “T2” which is (95.783%). Then, the next one is achieved by the class of type “T3” which has
(83.020%). Next, classes of types “T4” and “T5” with the percentages (68.411%), (66.654%), respectively.

Due to the fact that additional two-byte storage is required, the worst case is whenever the blocks are of the class
of type “T6”, which means that the entire image is a picture. In this case, the encoding of this approach is not
appropriate and the proposed system is dynamic enough to cancel the encoding process and use another proper
encoder. But, this worst-case (i.e. “T6”) has an average losing percentage that is around zero (precisely 0.013 %)
which can be neglected at the expense of the other worthy percentages.

Figure 17. Per class-type compression ratios (using one-byte block length).

On the basis of the above-stated analyses, the block class type has a great impact on the SRP measure. Stated in
other words, this measure is highly relying on the image content that leads to the distribution of the original table
upon the six classes. By comparing the whole advantages and benefits of this proposed algorithm, it is proved
that it is a very efficient alternative and able to produce comparably competitive results.

By a further evaluation of Table 13, the block length, “BL”, has an impact on the received results. When the
block length is increased, the SRP measure is increased, as well. This proves that SRP is directly proportional to
the block length. Hence, duplicating this length is maybe imperative particularly for large-size images. In order
to prove this truth, Table 14 and it is a related demonstration of Figure 18 use a two-byte block length. From
another point of view, this table assures that the proposed algorithm is a significant one for segmentation and
compression compound images.

Similar to the investigation of Table 13 and Figure 17, it can be concluded from Table 14 and Figure 18 that this
proposed technique gives the best results for the first five classes. The best results can be achieved with the class
of type “T1” where the SRP is (99.999%). The next best results that can be achieved are with the classes, “T2”,
“T3”, “T4”, and “T5” with the percentages (95.832%), (83.327%), (70.786%), (66.666%), respectively. Again,
the worst case is of the class of type “T6” which is around zero (precisely 0.0002446 %). Since this loss is too
small to be observed, it can be neglected without making a big difference.

99.962
95.783

83.020

68.411 66.654

-0.013

-10

0

10

20

30

40

50

60

70

80

90

100

T1 T2 T3 T4 T5 T6

T1 T2 T3

T4 T5 T6

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

76

Table 14. A numeric example showing SRP for the six classes using two-byte block lengths

 Class
“BL”

 “T1”
Single color
Equation 4

 “T2”
2 colors

Equation 6

 “T3”
 3-16 colors
Equation 7

 “T4”
17-128 colors
Equation 8

 “T5”
129-256 colors

Equation 9

 “T6”
>256 colors
Equation 10

280 99.997 95.830 83.312 70.669 66.666 -0.001

305 99.998 95.830 83.315 70.695 66.666 -0.001

330 99.998 95.831 83.318 70.715 66.666 -0.001

355 99.998 95.831 83.320 70.731 66.666 -0.001

380 99.999 95.831 83.322 70.744 66.666 0.000

405 99.999 95.832 83.323 70.755 66.666 0.000

430 99.999 95.832 83.324 70.764 66.666 0.000

455 99.999 95.832 83.325 70.771 66.666 0.000

480 99.999 95.832 83.326 70.777 66.666 0.000

505 99.999 95.832 83.327 70.783 66.666 0.000

530 99.999 95.832 83.327 70.788 66.666 0.000

555 99.999 95.832 83.328 70.792 66.666 0.000

580 99.999 95.833 83.328 70.795 66.666 0.000

605 99.999 95.833 83.329 70.798 66.666 0.000

630 99.999 95.833 83.329 70.801 66.666 0.000

655 100.000 95.833 83.329 70.803 66.667 0.000

680 100.000 95.833 83.330 70.806 66.667 0.000

705 100.000 95.833 83.330 70.807 66.667 0.000

730 100.000 95.833 83.330 70.809 66.667 0.000

755 100.000 95.833 83.330 70.811 66.667 0.000

780 100.000 95.833 83.331 70.812 66.667 0.000

805 100.000 95.833 83.331 70.813 66.667 0.000

830 100.000 95.833 83.331 70.815 66.667 0.000

855 100.000 95.833 83.331 70.816 66.667 0.000

880 100.000 95.833 83.331 70.817 66.667 0.000

905 100.000 95.833 83.331 70.818 66.667 0.000

930 100.000 95.833 83.331 70.818 66.667 0.000

955 100.000 95.833 83.332 70.819 66.667 0.000

980 100.000 95.833 83.332 70.820 66.667 0.000

1005 100.000 95.833 83.332 70.821 66.667 0.000

Average 99.999 95.832 83.327 70.786 66.666 0.000

Compared with the other approaches, the most important advantage of this proposed algorithm is its simplicity
(less than five operations per pixel), clarity and directness, dependency on just a few parameters And, above all,
its reliability. Furthermore, this proposed approach combines different compression concepts in order to achieve
better compression ratios of the scanned documents; its basic scope is based upon hybridizing the following
methods that are already demonstrated in Figure 3:

• Dynamic Algorithms: Since it is relying on capturing more details about the problem of interest, it’s a dynamic
and content-based algorithm.

• Statistical-based: It is a local statistical thresholding approach where the blocks classification can be achieved
by exploiting some prior knowledge relevant to the number of colors that originally exist within the image or
one of its blocks.

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

77

• Dictionary-based: For the reason that the dictionary of colors is included inside the internal data representation,
it is a dictionary-based-compression scheme.

• Block-based encoding: It is a block-based approach where the input image is divided into equal-size-square
blocks.

• Multi-layered encoding: As each input image is divided into six regions in view of the number of the detected
colors, it is a region-based approach, as well.

• Lossless encoding: When the final image of Phase VII is retrieved back and compared with the original one, the
two images are entirely the same and precisely bit-by-bit alike. This guarantees that every bit can be retrieved
back precisely to its original value without any level of distortion and hence the process is reversible. This also
implies that the proposed algorithm can be recognized as a lossless one or at least near-lossless.

Above and beyond that, not only this approach crosses the aforesaid models but also it is a two-level
compression technique (i.e. Phase V and Phase VII). Finally, to conclude the discussion of this section, if the
logical operation “XOR” is accomplished on both the encoded input images and the decoded output images, the
result is zero (i.e. off or false) which means that both the images are alike. Therefore, the output quality of this
phase is (100%) which also reinsures the above-stated conclusion that says: this technique is a lossless one.

Figure 18. Per class-type compression ratios (using a two-byte block length).

6. Conclusion

An increase in the demand of numerous millions of computer users for storing more numerous millions of
images paved the way for viewing segmentation and compression techniques and seeing them as
more intertwined than ever. And so, the present work proposes a lossless statistical block-based segmentation
technique that works in conjunction with other encoding techniques to segment compound or mixed documents
that have different content types, such as pictures, graphics, texts, and/or backgrounds. Furthermore, this
research has disclosed very stimulating and deep-insight findings that can significantly improve the mechanisms
by which the segmentation and compression of compound images are currently evaluated.

With regard to the number of colors detected in each part of the image, this paper involves a seven-phase
approach in which an incoming compound document is segmented into a set of multiple image objects, each
compressed by the most off-the-shelf applicable compression technique. This approach hybridizes different
compression concepts to achieve better compression in terms of space-time complexity. It is a block-based
approach where the input image is divided into equal-size-square blocks. It is a region-based approach where the
input image is divided into homogeneous regions according to the number of colors. Besides it’s a dynamic and

99.999
95.832

83.327

70.786
66.666

0.000

-10

0

10

20

30

40

50

60

70

80

90

100

T1 T2 T3 T4 T5 T6

T1 T2 T3

T4 T5 T6

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

78

content-based algorithm, it is a threshold approach where the blocks classification is carried out by exploiting the
number of colors that exist within the block or the image. Since the lookup dictionary of colors is included in the
internal representation of the third phase (i.e. Rearrangement phase) and in the external representation of the sixth
phase (i.e. Integrating phase), it is a dictionary-based-compression scheme.

Motivated by the purpose of testing the performance of the proposed algorithm, a special database was created. It
contains a dataset of 3151 24-bit-RGB-bitmap document images with different image types and rich-mix
contents. In view of the empirical findings, the outcomes of the conducted experiments are admirable and the
overall average saving rate that has been achieved is (71.039%) for the whole dataset. The important thing is that
the relevant matching analysis between the theorizing (i.e. Equations 1 through 10) and the empirically-based
results show rapprochement without any discrepancies. Thus, the algorithm is efficient, robust, and has the
capability of handling compound documents that have different content types. However, the performance of this
solution, like most other image compression algorithms, depends on the content of the file to be compressed.
Finally, as the input encoded image and the output decoded image are recognized as the same and recorded as
identical up to the last bit, this technique is a lossless one.

7. Future Work and Outlook

In order to realize the potential advantages of this proposed technique upon this significant area, further
experimental and simulation researches should be carried out and, in turn, several significant issues can be
extended for future work to support the achievements of this work. These issues may lead to further
improvement related to more storage space reduction and, furthermore, bring to light a great number of new
research opportunities that need to be further investigated. On the whole, the research scope can be extended to
introduce the following perspectives:

• In the way of maximizing the existing compression ratios, the grey-scale resolution (i.e. bit-depth) can be
increased from 24-bit to other values. Then the impact of this modification upon the six-SRP classes should be
investigated.

• Because some regions may have more relative importance than the others, this algorithm may take further
direction related to the preservation of information. For instance, the regions of the vehicle plates might be more
significant to be verified precisely than the other parts of the vehicle (Alghyaline et al. 2019). And, therefore, a
“lossless” algorithm is applied to vehicle plates and “lossy” compression is applied for the rest of the image.
Hence, “lossless” and “lossy” are used upon this importance.

• According to analysts and specialists, it is extremely rare to see these current days anyone living without
Internet access and, above and beyond that, it is foreseen in the next few coming years that there isn't any
running business without the innovative Cloud Computing (CC) services (El-Omari 2019). As most Digital
Image Processing (DIP) applications are high-productivity and could be deployed remotely with the new vision
of the smart world, there is an utmost need to integrate the DIP paradigm to be activated within the CC
environment (Yuzhong and Lei 2014)(El-Omari 2019). This is especially true for hosting and delivering this
proposed solution; the following motivations reinforces this relevant point and truly ensure that CC is the most
tolerable place for hosting DIP systems:

- The majority of these systems are typically sophisticated and entail high-end communicational capabilities,
high-level computational power, well-developed applications, and large mass data storage capacities (Kumar
et al. 2019) (M Gokilavani, GP Mannickathan, and MA. Dorairangaswamy 2018)(El-Omari 2019).

- Most DIP systems require application-specific platforms and real-time or near-real-time applications
(El-Omari 2019)(Yuzhong and Lei 2014).

- Given that CC is moving in the direction of providing highest Quality of Service (QoS) at a lower expense, the
underlying hardware of these systems is usually very expensive to be single-owned by the enterprise itself
(Mirarab, Fard, and Shamsi 2014)(El-Omari 2019)(Qin et al. 2018).

- Moreover, the three-field integration (CC, Big Data, and DIP) has recently become the most desirable
platform for hosting and delivering DIP functions (El-Omari and Alzaghal 2017)(Mirarab et al. 2014)(Kang
and Lee 2016).

By this, segmentation and compression compound images based on utilizing CC might become a
wildly-popular simple practice among ordinary users.

• Since image compression has a positive leading contribution in the security area (Kumar et al. 2019), the data
inside the Lookup Dictionary Table (LUD) and the reference pointers can be encrypted at the third phase (i.e.

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

79

Phase III: Rearrangement phase) of this proposed algorithm which, as a result, leads to an encrypted integrated
file as an output of phase 6.

• In the foreseeable future, there may be many possible arrangements that can be arranged to rapidly accelerate
the compression/decompression progress of this proposed technique; some of them have been already
highlighted in Figure 3. Followings are two of these arrangements:

- Building the data compression/decompression process as real-time utility software that may be considered as
part of the operating system. By using this strategy, every data file is directly encoded when it is stored and, in
contrast, it is automatically decoded when it is retrieved back (i.e. loaded).

- Building the data compression/decompression mechanism internally as a special-purpose built-in chip. Again
as have been stated in the previous point, every file is automatically compressed during the saving process,
and vice versa.

Equally important, both arrangements should be designed to be operated automatically without the users'
interferences. In addition, these arrangements should be worked without the end-users' awareness of their
existence.

References

Alghyaline, Salah, Nidhal. K. T. El-Omari, Ra’ed M. Al-Khatib, & Hesham Al-Kharbshh. (2019). RT-VC: An
Efficient Real-Time Vehicle Counting Approach. Journal of Theoretical and Applied Information
Technology (JATIT), 97(7), 2062–75.

Azad, Abul Kalam, Rezwana Sharmeen, Shabbir Ahmad, & S. M. Kamruzzaman. (2010). “An Efficient
Technique for Text Compression.” 467–73 in The 1st International Conference on Information
Management and Business, The University of South Australia. The University of South Australia.

Boopathiraja, S., P. Kalavathi, & C. Dhanalakshmi. (2019). Significance of Image Compression and Its Upshots
– A Survey, 5(2),1203–8. https://doi.org/10.32628/CSEIT1952321

El-Omari, Nidhal. K. T. (2019). Cloud IoT as a Crucial Enabler: A Survey and Taxonomy. Modern Applied
Science, 13(8), 86–149. https://doi.org/10.5539/mas.v13n8p86

El-Omari, Nidhal. K. T., A. H. Omari, O. F. Al-badarneh, & H. Abdel-jaber. (2012). Scanned Document Image
Segmentation Using Back-Propagation Artificial Neural Network Based Technique. International Journal
of Computers and Communications, 6(4), 183–90.

El-Omari, Nidhal K. T., Ahmad H. Al-omari, Ali Mohammad H. Al-ibrahim, & Tariq Alwada. (2017).
Text-Image Segmentation and Compression Using Adaptive Statistical Block Based Approach.
International Journal of Engineering and Advanced Technology (IJEAT), 6(4), 1–9.

El-Omari, Nidhal K. T. & Arafat A. Awajan. (2009). “Document Image Segmentation and Compression Using
Artificial Neural Network Based Technique.” 320–24 in International Conference on Information and
Communication Systems (ICICS09), Amman, Jordan.

El-Omari, Nidhal Kamel Taha. (2008). A Hybrid Approach for Segmentation and Compression of Compound
Images. The Arab Academy for Banking and Financial Sciences, 1–201.

El-Omari, Nidhal Kamel Taha & Mohamad H. Alzaghal. (2017). “The Role of Open Big Data within the Public
Sector, Case Study: Jordan.” Pp. 182–86 in The 8th International Conference on Information Technology
(ICIT 2017), Internet of Things, IEEE, Amman, Jordan. https://doi.org/10.1109/ICITECH.2017.8079997

Gonzalez, Rafael C. & Richard E. Woods. (2017). Digital Image Processing. 4th ed. Pearson Education In.

Gonzalez, Rafael C., Richard E. Woods, & Steven L.Eddins. (2009). Digital Image Processing Using Matlab
(DIPUM). 2nd ed. Gatesmark Publishing.

Kang, Sanggoo & Kiwon Lee. (2016). Auto-Scaling of Geo-Based Image Processing in an OpenStack Cloud
Computing Environment. Remote Sensing, 8(8), 662–71. https://doi.org/10.3390/rs8080662

Kumar, N. Udaya, M. Madhavi Latha, E. V. Krishna Rao, & K. Padma Vasavi. (2019). Multi Scale Multi
Directional Region of Interest Based Image Compression Using Non Subsampled Contourlet Transform.
SCIREA Journal of Electrics, Communication, 2(1), 1–18.

M Gokilavani, GP Mannickathan, & MA. Dorairangaswamy. (2018). A Survey of Cloud Environment in
Medical Images Processing. Monthly Journal of Computer Science and Information Technology, 7(11), 68–
73.

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

80

MathWorks Inc. (2019). MATLAB The Language of Technical Computing. The Math Works INC. Retrieved
January 3, 2020 (https://www.mathworks.com/help/matlab/index.html).

Mirarab, Ali, Najmeh Ghasemi Fard, & Mahboubeh Shamsi. (2014). A Cloud Solution for Medical Image
Processing. International Journal of Engineering Research and Applications (IJERA), 4(7), 74–82.

Petrou, Maria & Panagiota Bosdogianni. (2010). Image Processing: The Fundamentals. John Wiley & Sons.
https://doi.org/10.1002/9781119994398

Qin, Z., J. Weng, Y. Cui, & K. Ren. (2018). Privacy-Preserving Image Processing in the Cloud. IEEE Cloud
Computing, 5(2), 48–57. https://doi.org/10.1109/MCC.2018.022171667

Queiroz, Ricardo L. de, Robert Buckley, & Ming Xu. (1999). Mixed Raster Content (MRC) Model for
Compound Image Compression. The International Society for Optical Engineering (SPIE), 3653, 1106–
17.

Rahman, Atiqur & Mohamed Hamada. (2019). Lossless Image Compression Techniques: A State-of-the-Art
Survey. Symmetry, 11(10), 1–22. https://doi.org/10.3390/sym11101274

Sharma, Pulkit. (2019). Computer Vision Tutorial: A Step-by-Step Introduction to Image Segmentation
Techniques. Retrieved February 2, 2020
(https://www.analyticsvidhya.com/blog/2019/04/introduction-image-segmentation-techniques-python/).

Taha, Nidhal Kamel, Jafar Ababneh, Jamal N. Bani Salameh, Abdel Rahman A. Al Karabsheh, & Ali
Mohammad H.Al-Ibrahim. (2012). Innoviate Text-Image Compression Technique. European Journal of
Scientific Research, 88(4), 603–16.

Wikipedia. (2016). Lookup Table. Wikipedia, the Free Encyclopedia. Retrieved January 2, 2020
(https://en.wikipedia.org/wiki/Lookup_table).

Yuzhong, Yan & Huang Lei. (2014). “Large-Scale Image Processing Research Cloud.” Pp. 88–93 in The Fifth
International Conference on Cloud Computing, GRIDs, and Virtualization, Venice, Italy.

Appendix A: An example of the “T4” blocks (17-128 colors)

This example aims at putting a focus on how the class of type “T4” is fabricated. Suppose that a square block (I,
J) = (48, 67) of 64x64 pixels in size has the 39-color CST that is viewed in Table 15. This table is achieved
based on Table 1 and as an output of Algorithm II of Figure 8. This table contains four columns, the first three
columns are for the RGB components and the last one is for the frequencies of colors that are found within this
block. Since the size of the block is 4096 pixels, the total sum of the last column of this table is 4096 pixels.

Note how these 64*64=4096 pixels are distributed among 39 three-RGB-component colors and they are ordered
in descending order according to their frequencies. Since this dictionary has 39 (i.e. from sequence 0 to sequence
38) colors, it is of type “T4” and so each pixel needs a seven-bit reference to point out to one of the 128
dictionary entries. When the LUD dictionary is built, the first color takes the number (000)10 = (000 0000)2, the
second color takes (001)10 = (000 0001)2, the third color takes (002)10 = (000 0010)2, the fourth color takes
(003)10 = (000 0011)2 , and so on until the last color that takes (127)10 = (111 1111)2 . In order to complete the
LUD entries, the remaining unoccupied (i.e. unfilled) entries of colors, from the 40th color to the 128th color, are
fulfilled with null values and there isn't any reference pointer that points out to one of them.

Now, assume that the first twenty pixels of this block contain the following color components RGB:

(255,100,150)10 (000,010,050)10 (000,010,050)10 (077,015,080)10 (167,100,200)10
(255,100,150)10 (000,010,050)10 (013,023,033)10 (255,100,150)10 (153,153,153)10
(000,010,050)10 (255,100,150)10 (241,100,111)10 (233,200,200)10 (241,100,111)10
(018,000,000)10 (000,010,050)10 (000,010,050)10 (109,100,209)10 (109,100,209)10

Inspired by the number of colors detected in this block, this technique treats this block as a class “T4”. So, the
corresponding reference pointers for these twenty pixels are described in Table 16. On the other side, Table 17
illustrates the data schematic construction of this example where a total of 3970 bytes are required for each block

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

81

of this type and size. For the remaining 4076 pixels, other than these twenty pixels, the same pattern is used.
Related to Table 17, it is vitally important to mention that to simplify the viewing of the seven-bit-reference
pointers, eight-bit-reference pointers are viewed instead. In terms of this, the total occupied bytes of the data part
is multiplied by (7/8), i.e. 4096*7/8+386=3970.

Table 15. A CST example of 39 colors (data in decimal)

 Red component Green component Blue component Frequency

0. 255 100 150 969
1. 000 010 050 816
2. 077 015 080 395
3. 167 100 200 392
4. 155 105 113 289
5. 100 050 090 199
6. 007 017 027 166
7. 099 100 105 81
8. 016 017 018 59
9. 012 024 036 49
10. 013 023 033 49
11. 225 100 150 49
12. 140 160 190 40
13. 189 189 189 40
14. 208 208 208 40
15. 124 124 124 39
16. 199 199 199 39
17. 198 200 200 39
18. 197 197 197 32
19. 240 240 240 32
20. 241 100 111 28
21. 244 200 200 28
22. 102 111 111 24
23. 153 153 153 20
24. 104 104 104 20
25. 154 154 154 20
26. 217 200 200 19
27. 178 100 100 18
28. 233 200 200 17
29. 001 002 003 16
30. 002 004 006 16
31. 011 113 111 16
32. 017 027 037 12
33. 018 000 000 8
34. 109 100 209 7
35. 255 90 100 4
36. 255 95 110 3
37. 255 90 120 3
38. 255 90 130 3
 Total 4096

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

82

Finally, to conclude the discussion of this example, an important conclusion that should be stated here:

Rather than spending 12288 (i.e. 64 * 64 * 3) bytes in storing this block of (64x64) pixels in
size, 4482 bytes are enough. Namely:

3970 / (64 * 64 * 3) * 100% = 32.308%

This means that this proposed technique has the capability to encode this class of blocks by
using only 32.308% of the block size. If Equation 8 is recalculated by using BL=64, the result
is the same without any discrepancies.

Table 16. The corresponding reference pointers of the example on the class type “T4”

Pixel no. Pixel data Decimal color reference 7-bit binary color reference

01 (255,100,150)10 (00)10 (000 0000)2
02 (000,010,050)10 (01)10 (000 0001)2
03 (000,010,050)10 (01)10 (000 0001)2
04 (077,015,080)10 (02)10 (000 0010)2
05 (167,100,200)10 (03)10 (000 0011)2
06 (255,100,150)10 (00)10 (000 0000)2
07 (000,010,050)10 (01)10 (000 0001)2
08 (013,023,033)10 (10)10 (000 1010)2
09 (255,100,150)10 (00)10 (000 0000)2
10 (153,153,153)10 (23)10 (001 0111)2
11 (000,010,050)10 (01)10 (000 0001)2
12 (255,100,150)10 (00)10 (000 0000)2
13 (241,100,111)10 (20)10 (001 0100)2
14 (233,200,200)10 (28)10 (001 1100)2
15 (241,100,111)10 (20)10 (001 0100)2
16 (018,000,000)10 (33)10 (010 0001)2
17 (018,000,000)10 (33)10 (010 0001)2

18 (018,000,000)10 (33)10 (010 0001)2

19 (109,100,209)10 (34)10 (010 0010)2
20 (109,100,209)10 (34)10 (010 0010)2

Table 17. A data structure example for the blocks of type “T4”

Data Type Decimal Data Byte Sequence

Block address
I (048)10 001

J (067)10 002

Dictionary Part (LUD)
A special-purpose dictionary of
128 three-RGB-color-component
entries (i.e. 128 * 3 = 384 cells).

1st color
R001 (255)10 003
G001 (100)10 004
B001 (150)10 005

2nd color
R002 (000)10 006
G002 (010)10 007
B002 (050)10 008

3rd color
R003 (077)10 009
G003 (015)10 010
B003 (080)10 011

4th color
R016 (167)10 012
G016 (100)10 013

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

83

Data Type Decimal Data Byte Sequence

B016 (200)10 014

5th color
R005 (155)10 015
G005 (105)10 016
B005 (113)10 017

6th color
R006 (100)10 018
G006 (050)10 019
B006 (090)10 020

7th color
R007 (007)10 021
G007 (017)10 022
B007 (027)10 023

8th color
R008 (099)10 024
G008 (100)10 025
B008 (105)10 026

9th color
R009 (016)10 027
G009 (017)10 028
B009 (018)10 029

10th color
R010 (012)10 030
G010 (024)10 031
B010 (036)10 032

11th color
R011 (013)10 033
G011 (023)10 034
B011 (033)10 035

12th color
R012 (225)10 036
G012 (100)10 037
B012 (150)10 038

13th color
R013 (140)10 039
G013 (160)10 040
B013 (190)10 041

14th color
R014 (189)10 042
G014 (189)10 043
B014 (189)10 044

15th color
R015 (208)10 045
G015 (208)10 046
B015 (208)10 047

16th color
R016 (124)10 048
G016 (124)10 049
B016 (124)10 050

17th color
R017 (199)10 051
G017 (199)10 052
B017 (199)10 053

18th color
R018 (198)10 054
G018 (200)10 055
B018 (200)10 056

19th color
R019 (197)10 057
G019 (197)10 058
B019 (197)10 059

20th color
R020 (240)10 060
G020 (240)10 061
B020 (240)10 062

21st color
R021 (241)10 063
G021 (100)10 064

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

84

Data Type Decimal Data Byte Sequence

B021 (111)10 065

22nd color
R022 (244)10 066
G022 (200)10 067
B022 (200)10 068

23rd color
R023 (102)10 069
G023 (111)10 070
B023 (111)10 071

24th color
R024 (153)10 072
G024 (153)10 073
B024 (153)10 074

25th color
R025 (104)10 075
G025 (104)10 076
B025 (104)10 077

26th color
R026 (154)10 078
G026 (154)10 079
B026 (154)10 080

27th color
R027 (217)10 081
G027 (200)10 082
B027 (200)10 083

28th color
R028 (178)10 084
G028 (100)10 085
B028 (100)10 086

29th color
R029 (233)10 087
G029 (200)10 088
B029 (200)10 089

30th color
R030 (001)10 090
G030 (002)10 091
B030 (003)10 092

31st color
R031 (002)10 093
G031 (004)10 094
B031 (006)10 095

32nd color
R032 (011)10 096
G032 (113)10 097
B032 (111)10 098

33rd color
R033 (017)10 099
G033 (027)10 100
B033 (037)10 101

34th color
R034 (018)10 102
G034 (000)10 103
B034 (000)10 104

35th color
R035 (109)10 105
G035 (100)10 106
B035 (209)10 107

36th color
R036 (255)10 108
G036 (090)10 109
B036 (100)10 110

37th color
R037 (255)10 111
G037 (095)10 112
B037 (110)10 113

38th color
R038 (255)10 114
G038 (090)10 115

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

85

Data Type Decimal Data Byte Sequence

B038 (120)10 116

39th color
R039 (255)10 117
G039 (090)10 118
B039 (130)10 119

Colors
from 40th
to 128th are
fulfilled
with null
values.

⁞ ⁞ ⁞
R127 null 381
G127 null 382
B127 null 383
R128 null 384

G128 null 385
B128 null 128*3+2=386

Data Part
Pointer references for the first 15
pixels of the block.
In terms of simplicity,
eight-bit-reference pointers are
viewed instead of a
seven-bit-reference. Hence, the
number of the total bytes is
multiplied by (7/8).

1st byte = P1 (00)10 387
2nd byte = P2 (01)10 388
3rd byte = P3 (01)10 389
4th byte = P4 (02)10 390
5th byte = P5 (03)10 391
6th byte = P6 (00)10 392
7th byte = P7 (01)10 393
8th byte = P8 (10)10 394
9th byte = P9 (00)10 395

10th byte = P10 (23)10 396
11th byte = P11 (01)10 397
12th byte = P12 (00)10 398
13th byte = P13 (20)10 399
14th byte = P14 (28)10 400
15th byte = P15 (20)10 401
16th byte = P16 (33)10 402
17th byte = P17 (33)10 403
18th byte = P18 (33)10 404
19th byte = P19 (34)10 405
20th byte = P20 (34)10 406

The remaining 12268 pixels
⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

12288th byte = (P12288) ..…. 4096*7/8+386=3970

Appendix B: An example of the “T5” blocks (129-256 colors)

This example is viewed to clarify the class of type “T5”. Suppose that a square block (I, J) = (34, 50) of 64x64
pixels in size has the CST that is viewed in Table 18. This table is achieved based on Table 1 and as an output of
Algorithm II of Figure 8. Since the size of the block is 64x64=4096 pixels, the total number of all the colors is
4096 pixels.

Note how these 4096 pixels are distributed among 145 three-RGB-component colors and they are ordered
starting from the color that has the highest frequency (here white). Because the three RGB-component values of
each row of this table are the same, all the pixels of this range are considered as grey pixels. Since this CST has
145 grey colors, it is of type “T5”. Now, assume that the first twenty-five pixels of this block contain the
following three-RGB-component colors:

(255,255,255)10 (000,000,000)10 (000,000,000)10 (077,077,077)10 (167,167,167)10
(255,255,255)10 (000,000,000)10 (013,013,013)10 (255,255,255)10 (153,153,153)10
(000,000,000)10 (255,255,255)10 (140,140,140)10 (109,109,109)10 (178,178,178)10
(140,140,140)10 (001,001,001)10 (109,109,109)10 (140,140,140)10 (140,140,140)10
(208,208,208)10 (208,208,208)10 (208,208,208)10 (208,208,208)10 (208,208,208)10

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

86

Table 18. A CST example of 145 colors (data in decimal)

 Red component Green component Blue component Frequency

0. 255 255 255 206
1. 000 000 000 201
2. 077 077 077 200
3. 167 167 167 189
4. 155 155 155 188
5. 100 100 100 180
6. 007 007 007 177
7. 099 099 099 163
8. 004 004 004 163
9. 012 012 012 140
10. 013 013 013 139
11. 225 225 225 137
12. 140 140 140 137
13. 189 189 189 132
14. 208 208 208 123
15. 124 124 124 121
16. 199 199 199 119
17. 198 198 198 119
18. 197 197 197 118
19. 240 240 240 114
20. 241 241 241 113
21. 244 244 244 77
22. 102 102 102 67
23. 153 153 153 58
24. 104 104 104 58
25. 154 154 154 55
26. 217 217 217 38
27. 178 178 178 22
28. 233 233 233 21
29. 001 001 001 14
30. 002 002 002 14
31. 011 011 011 14
32. 017 017 017 13
33. 018 018 018 13
34. 109 109 109 13
⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

130. 251 251 251 5
131. 222 222 222 3
132. 224 224 224 3
133. 205 205 205 3
134. 223 223 223 3
135. 229 229 229 3
136. 003 011 063 3
137. 004 010 064 3
138. 006 011 066 3
139. 004 012 067 3
140. 005 015 061 3
141. 235 235 235 2
142. 245 245 245 2
143. 211 211 211 2
144. 219 219 219 2

 Total 4096

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

87

Based on the number of detected colors that are viewed in Table 18, the type of the block involved in this
example is “T5”. Table 19 illustrates the data schematic construction of this example where a total of 4098 bytes
are required for each block of this type and size. For the remaining 4071 pixels, other than these twenty-five
pixels, the same pattern is utilized. With regard to the aforesaid discussion, the researcher concludes that:

Rather than using 12288 (i.e. 64 * 64 * 3) bytes to store this three-RGB-component-color block
of (64x64) pixels in size, 4098 bytes are enough. To be specific:

4098 / (64 * 64 * 3) * 100% = 33.349%

Another time, this means that this proposed technique is capable to encode this class of blocks
by using only 33.349% of the block size. If Equation 9 is recalculated by using BL=64, the
same result will be achieved which means that the proposed algorithm is an efficient alternative
for this class of blocks and, above all, this outcome shows a rapprochement between the
theorizing (i.e. Equations 9) and the empirically-based results.

Table 19. A data structure example for the blocks of type “T5”

Data Type Data in Decimal Byte Sequence

Block address
I (034)10 001

J (050)10 002

Dictionary of Colors Not needed

Data Part
Every pixel needs only one byte
to be stored. There is no
special-purpose dictionary.

1st byte = P1 (255)10 003

2nd byte = P2 (000)10 004

3rd byte = P3 (000)10 005

4th byte = P4 (077)10 006

5th byte = P5 (167)10 007

6th byte = P6 (255)10 008

7th byte = P7 (000)10 009

8th byte = P8 (013)10 010

9th byte = P9 (255)10 011

10th byte = P10 (153)10 012

11th byte = P11 (000)10 013

12th byte = P12 (255)10 014

13th byte = P13 (140)10 015

14th byte = P14 (109)10 016

15th byte = P15 (178)10 017

16th byte = P16 (140)10 018

17th byte = P17 (001)10 019

18th byte = P18 (109)10 020

19th byte = P19 (140)10 021

20th byte = P20 (140)10 022

21st byte = P21 (208)10 023

22nd byte = P22 (208)10 024

23rd byte = P23 (208)10 025

24th byte = P24 (208)10 026

25th byte = P25 (208)10 027

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

4096th byte = (P4096) ..…. 4096 + 2 =4098

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

88

Appendix C. An example of the “T6” blocks (more than 256 colors)

This example is reported here in order to understand how the blocks of class type “T6” are fabricated. Assume
that the square block (I, J) = (27, 57) of 195x195=38025 pixels in size has a color table with more than 256
colors. Suppose that the first fifteen pixels of this block contain the following color components RGB.

(209,211,239)10 (255,255,254)10 (020,050,090)10 (254,054,253)10 (055,055,055)10
(101,101,133)10 (003,009,255)10 (255,255,255)10 (255,255,255)10 (101,101,133)10
(000,000,000)10 (255,255,255)10 (199,188,191)10 (197,180,193)10 (192,187,189)10

Inspired by the number of colors detected in this block, this technique treats this block as a class “T6”. Hence,
Table 20 illustrates the data schematic construction of this example where a total of 114077 bytes are required
for each block of this type and size. This means that there are only two bytes more than the original size of the
block. For the remaining 38010 pixels, other than these fifteen pixels, the same pattern is utilized. Based on the
above-mentioned discussion, the researcher can conclude that:

Rather than using 114075 (i.e. 195 * 195 * 3 * 3) bytes in storing this block of (195x195) pixels in
size, 114077 bytes are required. This is due to the fact that additional two-byte storage is required in
terms of storing the block address. Namely:

114077 / (195 * 195 * 3 + 2) * 100% = 0.00175%

Another time, this means that this proposed technique needs only 0.00175% as an extra space to
store this block. This is relatively very small and can be ignored at the expense of the other worthy
percentages. If Equation 10 is recalculated by using BL=195, the same result will be achieved. And
so, this outcome is consistent with the theorizing (Equation 10) without any discrepancies.

Table 20. A data structure example for the blocks of type “T6”

Data Type Data in Decimal Byte Sequence

Block address
I (027)10 01

J (057)10 02

Dictionary of Colors Not needed.

Data Part

Every pixel of the
block takes three
bytes.
Just the first 15
pixels of the block
are shown here.
There is no
special-purpose
dictionary.

1st Pixel
R001 (209)10 03
G001 (211)10 04
B001 (239)10 05

2nd Pixel
R002 (255)10 06
G002 (255)10 07
B002 (254)10 08

3rd Pixel
R003 (020)10 09
G003 (050)10 10
B003 (090)10 11

4th Pixel
R016 (254)10 12
G016 (054)10 13
B016 (253)10 14

5th Pixel
R005 (055)10 15
G005 (055)10 16
B005 (055)10 17

6th Pixel
R006 (101)10 18
G006 (101)10 19
B006 (133)10 20

7th Pixel
R007 (003)10 21
G007 (009)10 22
B007 (255)10 23

mas.ccsenet.org Modern Applied Science Vol. 14, No. 4; 2020

89

Data Type Data in Decimal Byte Sequence

8th Pixel
R008 (255)10 24
G008 (255)10 25
B008 (255)10 26

9th Pixel
R009 (255)10 27
G009 (255)10 28
B009 (255)10 29

10th Pixel
R010 (101)10 30
G010 (101)10 31
B010 (133)10 32

11th Pixel
R011 (000)10 33
G011 (000)10 34
B011 (000)10 35

12th Pixel
R012 (255)10 36
G012 (255)10 37
B012 (255)10 38

13th Pixel
R013 (199)10 39
G013 (188)10 40
B013 (191)10 41

14th Pixel
R014 (197)10 42
G014 (180)10 43
B014 (193)10 44

15th Pixel
R015 (192)10 45
G015 (187)10 46
B015 (189)10 47

The remaining
38010 pixels

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

Pixel 38025 ..…. ..…. 38025*3+2=114077

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution
license (http://creativecommons.org/licenses/by/3.0/).

