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Abstract 

The mathematical methods of calculating the reliability of renewable systems based on the use of Markov's 
random processes (RYABININ, L., 1976). The simplest case of calculating the reliability of a renewable system 
without redundant units has been given. The availability and the reliability of a lightly loaded standby redundant 
system have been considered. Explicit results are obtained in the case of two main units and two standby 
redundant units. 
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1. The Reliability of a Non-Redundant System with Renewal 

Complete and partial failures repeatedly occur in any system during the time of its operation. Each time a failure 
is remedied the capability of the system is restored and the system continues to serve its purpose, the time of 
operation of a system between two failures forms only an insignificant part of its service. Life is determined by 
the total duration of operation until the system is entirely worn out (when it is acknowledged as fully unsuitable 
for further operation). 

Maintenance is eliminating the failure by repair; the repairs of the failed units are carried out by a group of 
servicing elements. 

As in the case of redundancy, renewal is a means of increasing the reliability of systems intended for prolonged 
use. Today, many systems rank precisely among the category of renewable systems and it is therefore necessary 
to know the methods of calculating the reliability of a system with renewal. 

Let us consider a renewable non-redundant system intended for prolonged functioning and which can be either in 
an operative or inoperative state at each specific moment of time t of its period of operation, t0 , depending on the 
tasks imposed on it. The loss of capability, i.e., failure of the system, may occur in the operative state of the 
system (when it is functioning according to its purpose) and in the inoperative state (when the system may 
remain idle at a given moment). In the latter case failure may be eliminated before need arises of starting it again, 
or everything left as it is (because repairs require more time than may be permitted by the circumstances). 

The problem is to determine the probability B(t) of finding the system in failure-free operation at the moment t 
and the probability R(T) of unfailing operation of this system during the time T beginning from the moment t . 
The first probability describes the reliability of the system from the point of view of its preparedness for 
immediate action at any moment of time t ,and the second probability describes the reliability of the system from 
the standpoint of its unfailing functioning in the course of the required interval of time T. 

We solve this problem with the two essential assumptions: 

(i) The life time of the system is a random variable obeying the exponential distribution with rate λ = constant. 

(ii) The repair time of the system is a random variable obeying exponential distribution with rate μ =constant. 
Denote by E the state of the system at any moment; E equal to E0 when the system is operative and equal to E1 
when the system is inoperative. Let P0(t) , P1(t) be the probabilities that the system is in the operative and 
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entirely determined by the intensity of failure λ. In the absence of renewal (μ=0), formula (1.6) is transformed 
into the expression. ( ,T) = ( )	                                (1.8) 

The efficiency of renewal can be estimated from the quantitative aspect by the coefficient Ke(t) which is equal to 
the ratio of the probabilities determined from formulas (1.6) and (1.8): ( ) = + 	 	                           (1.9) 

or if t is large enough, then = 	 	                                (1.10) 

If t=0,then = 11 +  

As could "be expected this efficiency increases with a growth in the intensity of renewal μ , the intensity of 
failures λ , and time t . 

2. The Availability of Standby Redundant System with Renewal 

Let us consider a renewable reserved system consisting of N operating and m standby single-type units. This 
system functions as follows. The task is posed with the system performed by a group of N units. When one of the 
units in this group fails it is instantaneously replaced by a redundant one and the faulty unit goes for renewal. 
The servicing system is composed of L units. If all the servicing units are engaged, the faulty unit queues for 
renewal. The renewed unit is kept as a standby. In the general case, redundant units may also prove faulty. In this 
case they are also delivered to the servicing system for renewal. This system is known as the lightly loaded 
standby system with renewal. 

Let us now describe the mathematical aspects of this system. The system fails when m+1 units have failed. Let 
us take it for granted that the system is in state EK when the number of the failed units is K. Obviously, the 
system is in good order in the states E0, E1, Em. The state E m+1 is the state of failure of the system; the states, 
Em+2, ES (S>N+m) are regarded as impossible. 

Let the life time of a main unit be distributed according to the exponential law with parameter λ , and that of a 
standby unit with parameter  λ , where the coefficient  may range from 0 to 1. Also, let the time needed to 
renew one unit by one servicing unit has an exponential distribution with parameter μ. If the system is in a state 
EK when there are N operating units, and k failed units out of the m standby units, the intensity of failures among 
the operating and standby elements will be + ( − ) =                               (2.1) 

where: = + ( − ) , N ≤ 	 ≤ + .	                    (2.2) 

Let us denote the probability of finding the system in the state Ek at any moment t by PK (t) (t). We shall 
naturally be interested in the probabilities of all possible states P0 (t), P1(t), Pm=1(t) in order to determine the 
system availability. According to the condition of the problem, the probabilities Pm+2

(t)=…=Ps
(t)=0.  

We derive the difference differential equations governing the system. By connecting the probabilities at time t + 
∆ with those at time t and taking limits as 

∆ t  0 , we have ( ) = − 	 ( ) + ( ) ( ) = −( + ) ( ) + ( ) + ( + 1) ( ) ( ) = −( + ) ( ) + 	 ( ) + ( + 1) ( ) ( ) = −( + 1) ( ) + 	 ( )                     (2.3) 

This system can be solved by means of Laplace transforms, but a steady state solution is sufficient to find the 
availability. According to Markov's theorem [8], (∞) = 0	 	 (∞) = =  

Constant. Then in the steady-state case, the system of equations can be written in the form 
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= 	 , 2 = ( + )	 , −	 	 , = [ 	 + ( − 1) ]	 − 	                       (2.4) ( + 1) 	 = [ 	 + ]	 − 	 	,	 0 = ( + 1) 	 −  

Solving the system (2.4) consecutively for k=1.2…, m+1, we find that = !	∏ 	 	                               (2.5) 

From the normalized conditio			∑ p = 1,  		we get =	 1 + ∑ !	∏ 	 		                           (2.6) 

The availability as the probability of finding not more than m units faulty at any moment are equal to (∞) = ∑ =	 ∑ ! 	∏ /	 ∑ ! 	∏                 (2.7) 

Here = 1	 	 = . 

Explicit results for the case of two main units (N=2) and two standby units (m=2), in which, case λ=0.1×1/h 
μ=1×1/h and  =0.1 are given below. 

Let us consider some particular cases for the solution of this problem assuming the different natures of the 
standby (lightly loaded, loaded and nonleaded) and also the different kinds of repair (unlimited and limited). 
With the lightly loaded standby for r=0.5 from formula (2.1) we have no = 3, n1=2.5 and n2=2 In the case of an 
unlimited renewal, the system availability can be found from formula (2.7): 

(∞) = 1 + + !1 + + ! + ! = 0.9981. 

For the loaded standby (r =1) and with, the unlimited we have 

(L ≥ m + 1 = 3 ) we have no=4, n1 = 3 , n2 = 2 (∞) = 1 + 4 × 0.1 + ×
0.011 + 4 × 0.1 + × 0.01 + × ×× × 0.001

= 0.9973 

For the nonloaded standby (r=0) and the renewal is unlimited (L ≥ 3) we get 

no = n1 = n2 = N = 2= Constant, B2 (∞) = 0.9989. 

For the limited renewal (L=1), the coefficients are everywhere equal to unity when μ is in the system of 
equations (2.3). It can be shown that in this case when r=1. (∞) = ( )!∑ ( )!	 	                                   (2.8) 

where S is the total number of single-type units functioning in the system. When S > N + m some of the units are 
inoperative (being renewed or queueing for maintenance). Then (∞) = ! + .! + . !! + .! + . ! + . ! = 0.9690 

and where r=0 (∞) = ( )( )                                      (2.9) (∞) = 1 − (2 × 0.1)1 − (2 × 0.1) = 0.9935. 
Let us illustrate these results in a tabulated form 
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Table 1. System Availability Numbers 

Kind of repair 
Standby 

Loaded Non-loaded 

Unlimited B1 (∞)= 0.0073 B2 (∞)= = 0.9989 

Limited (with L = 1) B3 (∞)= 0.9690 B4 (∞)= = 0.9935 

The table shows that the results of calculating the availability numbers of this system correctly describe the 
relationships between the values of B (∞) for various cases of reserving and renewal 

3. The Reliability of a Lightly Loaded Standby Renewable System 

Let us take a system that satisfied the conditions indicated in the previous section and find the probability R(T) 
of unfailing operation of the system within the times interval [0,T]. The system passed into the state failure with 
the failure of the (m+l) -th unit and the operating state with the renewal of the N-th. unit. 

The failure of the (m+1)-th. unit may occur for the first time before the moment T+∆T in the following two 
mutually exclusive cases: 

(a)  either the failure occurs before the moment T; this event has a probability pm+1(T), 

(b)  or the m-th failure occurs before this moment, and during the time ∆T one more, (m+1)–th, failure occurs; 
this event has probability pm(T)nmλ ∆T. 

so we have 

Pm+1(T+∆T) = Pm+1(T)+nm λ ∆TPm(T)                          (3.1) 

When ∆T  0 we get in the limit ( ) = 	 ( )                               (3.2) 

In order to solve this equation it is necessary know the value of Pm(t) which is the probability of finding m units 
faulty at the moment T not necessarily for the first time, But this value will provide the solution for the system of 
differential equations (2.3) if m is taken instead of m+1. 

Having determined the probability Pm+1 (T) this probability of unfailing operation of the system with a repairable 
standby can be evaluated from the formula. 

R(T)=1-Pm+1(T)                                 (3.3) 

Applying the Laplace transformation to the system of equations (2.3) and taking account of equation (3.2), we 
get ( + 	 ) ∗( ) − ∗( ) = (0), − ∗( ) + ( + + 	) ∗( ) − 2 ∗( ) = (0), − ∗ ( ) + ( + + 	) ∗( ) − ( + 1) ∗ ( ) = (0), − ∗ ( ) + [ + 	 + ( − 1) ] ∗ ( ) − ∗ ( ) = (0), − ∗ ( ) + ( + + ) ∗ 	( ) = (0), − ∗ 	( ) + ∗ 	( ) 		= (0)                        (3.4) 

where	 ∗( ) is Laplace transform of the probability PK(t). 

Let us solve this system with respect to ∗ + 1( ) for the initial conditions. 

Pk (0)=1 ;Pi(0)=0 (i=0,1....,m ; i ≠ K )                         (3.5) 

The sought-for solution is: ∗( )( ) = ∆( )( )∆	( )                                    (3.6) 

where (k) is the index showing the numbers of faulty unite at the initial moment of time; ∆ (Z) is the determinant 
of system (3.4) and is equal to 
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∆( )
=

+ − 0 … 0 0 0 0− + + −2 … 0 0 0 00 − + + 2 … 0 0 0 0… … … … … … … …0 0 0 … − + ( − 1) − 00 0 0 … 0 − +− + 00 0 0 … 0 0 −
 

                                                                                      (3.7) 
and ∆(k) (z) is the determinant of system (3.4) in which the column of the coefficients of ∗ ( ) is replaced by 
the column of free terms for the accepted initial conditions (3.5); ∆( )( )
=

z+n0λ   -μ 0 0 0 0 … 0 0 0 0
-noλ z+n1λ+μ -2μ 0 0 0 … 0 0 0 0

0 -n1λ z+n2λ+2μ 0 0 0 … 0 0 0 0
… … … … … … … … … … …
0 0 0 -nk-1λ z+nkλ+kμ −( + 1)μ … 0 0 0 1
     … … … … … …
     0 … -nm-2λ z+nm-1λ+(m-1)μ -mμ 0
     0 … 0 -nm-1λ z+nmλ+mμ 0
      0 … 0 0 -nmλ 0

 

                                                                                      (3.8) 
Writing the determinant (3.7) as the product of factors: 

∆(z)= z (z + z o) (z + z 1) ... (z + zm)                            (3.9) 

where the are the roots of the equation ∆( ) = + +⋯+ + = 0                       (3.10) 

and writing the determinant ∆(K) (z) in the form of a polynomial. 	 ( + +⋯+ + )                    (3.11) 

We can get 

∗( )( ) = 	 	= ⋯( )( ( )…( )                        (3.12) 

This expression corresponds to the original 

∗( )( ) = 	 	 	= − ∑ 	 ∑ ( ) 		 					 ( )                (3.13) 

where: B0=1. 

In order to obtain all the roots of Zi , let us solve equation (3.10 ) of degree (m+1) . The coefficients Bk , Bk-1,...B1 
can be found from the expression. ∆( )(z)λ  z + n λ −μ 0 … 0 0 0−n λ z + n λ + μ −2μ … 0 0 00 −n λ z + n λ + 2μ … 0 0 0… … … … … … …0 0 0 … −n λ z + n λ + (k − 2)u −(k − 1)μ0 0 0 … 0 −n λ z + n λ + (K − 1)μ

(3.14) 

It can be shown that the coefficient Bk is equal to the product. 
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= 		 − 1	= 0 	                               (3.15) 

which when inserted into the first term of expression (3.13), will give 

	 	= 	 	
	 = 	 	

	 = 1	                          (3.16) 

because the free term 		of the algebraic equation (3.10) is present in the numerator and the denominator of 
(3.16). 

Taking account of equality (3.16) , a formula can be found from (3.13) for the probability of unfailing operation 
of the system with a repairable standby , which is true for the initial conditions (3.5): 

( )( ) = 1 − ( ) ( ) = +1− 	 = ∑ 	=0 ∑ 	 − (− )	=0	 =0≠≠0( − ) −              (3.17) 

Expression (3.17) is the most common formula. Let us now discuss the case when all the elements are in good 
order at the initial moment T = 0, i. e, 

P0 (0) = 1;Pi (0) = 0 with i ≠ 0                         (3.18) 

in this case 

∗( )( ) = 	 	= 0	 = 1 1	( )                        (3.19) 

Where Z -1 =0. 

Setting k =0 in (3.17) and nothing that in this case B0 = 1 and the other Bi values are equal to zero , we get 

( )( ) = 	= 0	 ∑  m
s=0	 		( )                       (3.20) 

If the reliability R(k) (T) of standby intended for prolonged use is known, it is always possible to determine also 
the mean life time of the system, M = R( )(T)dT                              (3.21) 

since formula (3.17) for R(k) (T) comprises the of m+1 exponential terms of the form Di exp{-ziT}, 

where	 = , 

and 

	 			( ) ∑ (− )  

The zi are the roots of the characteristic equation (3.10). 

The mean life time of the system in concern is equal to M = ∑                                    (3.22) 

4. Special Case of Two Main Units and Two Standby Redundant Units 

Let us now consider several quantitative examples for a system composed of two operating (N=2) and two 
standby (m=2) units. Let the parameters of the units be equal to 

λ = 0.1 1/ h; μ = 1 1 / h; ρ= 0.1 

We find R (T) and M for various cases: 
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4.1 Lightly Loaded Standby 

a- Only two operating units are in good order at the initial moment, and two standby units can be renewed in the 
process of functioning of the system. The standby units will be in relieved operating conditions with a coefficient 
r =0.05. In this case we have in conformity with formula (2.2) ؛ no = 3, n1 = 2.5, n2 = 2. The determinant (3.7). 
will be equal to 

∆( ) = + − 0 0− + + 0 00 − + + 2 00 0 −  

=Z (Z 3 + 3.757Z 2 + 2.98Z + 0.015) 

Solving the cubic equation ∆( ) + 3.75 + 2.98 + 0.015 = 0 

We obtain the following values for the roots: 

Z0 = -2.610845, Z1 = 0.005005, Z2 = -1.13415 

The determinant (3.14) will be equal to ∆( )( ) = ∆( )( )0.2 = + −− +	 + = + 1.55 + 0.075 

It can be seen that Bk = B2 = 0.075 and B k-1 =B1 = 1.55. and Now we use formula (3.17) and find R( )(T)= λ. n B + B (−z ) + (−z )z (z − z )(z − z ) e + B + B (−z ) + (−z )z (z − z )(z z ) e + B + B (−z ) + (−z )z (z − z )(z z ) e  

≈ 0.0564e -2.610845T + 0.914e -0.005005T + 0.0419e -1.13415T 

Moduli of the roots Z i are substituted into formula (3.17) because the signs have been taken into account during 
its derivation. 

We obtain from formula (3.22) 

M≈ 183h. 
b- Let us consider the previous case (case a) with the initial conditions P1 (0) = 1 Pi (0) =0, i.e. , i. e., when only 
one standby unit is faulty at the initial moment T=0. In this case the determinant (3.14) is equal to ∆( )( ) = ∆( )( )0.05 = | + | = 0.3 + . 
Suppose, we obtain, Bk = B1 = 0.3 and Bk-1 =B0=1 from formula (3.17) ( )( ) = −( − )( − ) + −( − )( − ) + −( − )( − )  

≈- 0.0115 e -2.610845T + e -0.005005T + 0.022e -1.13415T. 

From formula (3.22) 

Moduli of the roots Zi are substituted into formula (3.17) because the signs have been taken into account during 
its derivation. 

We obtain from formula (3.22) 

M = 200h 
c- Let us consider the case (a) with the initial conditions P0 (0) = 1, Pi (0) =0, i.e., when all units are operable at 
the initial moment T=0. We find from formula (3.20) that ( )( ) = 1( − )( − ) + 1( − )( − )+ 1( − )( − )  

≈ 0.0015 e -2.610845T + 1.0182e -0.005005T - 0.0079e -1.13415T. 
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Whence M ≈ 203.5h. 

4.2 Loaded Standby 

Let us consider case (a) but with a loaded stand by (r=1) and in the absence of queuing for renewal. From 
formula (2.2) we have n0=4, n1=3, n2=2. The determinant (3.7) is equal to ∆( ) = ( + 3.95 + 3.26 + 0.024) 
Hence Z0= -26877, Z1 = -0.0075, Z2= -1.21. 

From formula (3. 20) we obtain 

R (0)(T) = 0.0009e-2.5229T + 0.989e-0.003T - 0.0048e-1.0736T 

And therefore M≈329h. 

4.3 Non-loaded Standby 

Let us consider the same system but with an unloaded 

Standby (r =0). We have n0= n1 = n2 = m =2.further ∆( ) = ( + 3.6 + 2.727 + 0.008) 
Z0=-2.5229m Z1 = 0.003, Z2 = -1.0736 

R (0)(T) = 0.0009e -2.5229T + 0.989e -0.003T - 0.0048e-1.0736T 

where M≈329h 

5. Conclusion 

The mathematical methods of calculating the reliability of renewable systems based on the use of Markov's 
random processes. The availability, the reliability and the mean life time of non-redundant and different standby 
redundant systems with renewal are obtained. 

Then we conclusion that renewal together with standby is an effective means of increasing the reliability of a 
system. In the above cases the mean Life time of the system is equal to: 

M = 132 h with renewal and loaded standby; 

M = 183 h with renewal and lightly loaded standby; 

M = 329 h with renewal and unloaded standby; 

i.e., the mean life time appreciably increases with standby and renewal. 
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