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Abstract 
Maximum Flow Problem (MFP) is considered as one of several famous problems in directed graphs. Many 
researchers studied MFP and its applications to solve problems using different techniques. One of the most 
popular algorithms that are employed to solve MFP is Ford-Fulkerson algorithm. However, this algorithm has 
long run time when it comes to application with large data size. For this reason, this study presents a parallel 
whale optimization (PWO) algorithm to get maximum flow in a weighted directed graph. The PWO algorithm is 
implemented and tested on datasets with different sizes. The PWO algorithm achieved up to 3.79 speedup on a 
machine with 4 processors. 

Keywords: Maximum Flow Problem (MFP), meta-heuristic, optimization, parallel, Whale Optimization 
Algorithm (WOA) 
1. Introduction 
In this study, a parallel algorithm for solving the maximum flow problem (MFP) based on a meta-heuristic 
approach called a whale optimization algorithm (WOA) by (Mirjalili & Lewis, 2016) is proposed. MFP is a 
well-known issue from various issues of optimization in the weighted directed network (Topcoder - Community 
- Maximum Flow Section 1&2). It can be applied to many applications such as networks, engineering, and 
transportations (Munakata & Hashier, 1993). Many solutions were presented and suggested by researchers to 
solve MFP using different techniques (Tarjan,1986, Ford and Fulkerson, 1956). The problem of MF is to 
determine the optimum solution for a directed and weighted graph; where the weight indicates to the flow 
capacity at each edge that communicates two vertices (Topcoder - Community - Maximum Flow Section 1&2). 
Based on that, the main target is obtaining the maximum value of flow from the source to the sink (Community - 
Maximum Flow Section 1&2 – Topcoder).  

A directed and weighted flow network is defined as G = (V, E), where V indicates to the set of vertices and E 
points to set of edges (Cormen, 2009). Thus, a flow capacity (Cuv) is represented by the weight at each edge 
which is non-negative C (u, v) ≥0; where u and v belong to V (Cormen, 2009). Moreover, the network has two 
main vertices: the source s and the sink t. The source is the inception vertex and the sink is the intention vertex 
(Cormen, 2009). Assume a graph G (V, E) contains a vertex called X, and all edges connected with vertex X are 
called E(X), suppose that Fuv = max{Cuv: (u,v) ϵ E}. Thus, the main issue is to get the optimal solution for a 
specific directed graph wherever every edge has a capacity. According to these restrictions, the aim is to find the 
maximum aggregate flow that directed to the sink (Goldberg & Tarjan, 1988). This scenario is mathematically 
modeled by Equation (1) (Cormen, 2009). Max	f(X) = 	෍ X୳୴୬(୳,୴)∈୉(ୱ)  Where	 ∑ X୳୴ሼ୴:(୳,୴)∈୉) −	∑ X୴୳ሼ୴:(୴,୳)∈୉) = 0; For	all	u ∈ V	ሼs, t)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (1)	0 ≤ X୳୴ 	≤ F୳୴; For	all	(u, v) ∈ E.	
Where, the flow on the edge (u, v) is represented by Xuv. 



mas.ccsenet.org Modern Applied Science Vol. 14, No. 3; 2020 

31 
 

Currently optimization algorithms are gaining significant popularity and perform great significant roles in many 
various applications, mainly because they are founded on easy notion resulting from their imitation of natural 
perceptions and ideas which are nature-gained (Mirjalili & Lewis, 2016). Consequently, they are also perceived 
easy to apply and can be of significance in a variety of problem settings. The Whale Optimization Algorithm 
(WOA) is one of these optimization algorithms, and currently suggested in (Mirjalili & Lewis, 2016) and 
inspired from the foraging and hunting mechanism of the humpback whale in nature.  

Most meta-heuristic optimization algorithms come up in the previous decades (Kirkpatrick et al., 1983). There 
are three main categories of these meta-heuristic optimization algorithms: physics-based, evolutionary and 
swarm intelligence algorithms (Kirkpatrick et al., 1983, Masadeh et al., 2018). The physics-based mechanisms 
were derivative from physics-based rules (Alatas, 2011, Masadeh et al., 2019). Evolutionary meta-heuristic 
mechanisms were stimulated from nature (Holland, 1992, Alzaqebah et al, 2018).  The swarm intelligence 
algorithms were derived from the swarms’ societal intelligent attitude (Dorigo et al., 2008).  

The behavior of humpback whales is simulated in the WOA (Mirjalili & Lewis, 2016), which imitates the 
hunting behavior of the humpback whales. The main stages of this behavior are the investigative phase of 
looking for the prey and surrounding it, and the exploitation phase which signifies a bubble-net method and 
confronting the prey. 

Recently, parallel computing comes to be an affecting solution to surpass computation speed. In the sector of 
supercomputing, there will emerge the need to analyze big networks having billions of vertices and edges 
consistently. Due to this, there is a need to make MF solvers be faster and be capable of operating on immense 
networks. The traditional MF algorithm runs on one processor. The parallel algorithms can be applied on several 
processors to solve MFP faster than in single processor. Therefore, this study is a representative of a probable 
equivalent resolution to the MFP by using the WOA. This will be by concurrently grouping the search space to 
establish the MF for the individual cluster (local MF) in the pursuit of finding the general solution (global MF) 
of the chosen graph. By assuming that the graph is the search space and that the whales are looking to get the 
prey, the WOA solves MFP. In this setting, the sink in the network indicates to the prey and the vertices 
represent the whales.  

In this research, a parallel WOA was proposed in order to solve the MFP by clustering the search space to collect 
the MF for each cluster simultaneously for the purpose of finding the global MF of the desired graph. This 
research is organized as follows: Section 2 presents related works and background on this research. A description 
of the WOA in details is presented in Section 3. Section 4 describes the proposed Parallel-MaxFlow-WOA. The 
complexity analysis of proposed algorithm is outlined in Section 5. Section 6 presents an example of the 
proposed technique. The simulation results are argued out in Section 7. Finally, the conclusion and future work 
are drawn in Section 8. 

2. Related Work 
It has come to the attention of many researchers that the MFP involves quite a wide range of concerns all which 
need to be studied in different ways (Ford & Fulkerson, 1956, McHugh, 1990). Ford and Fulkerson (FF) method 
was the first to be applied in 1956 (Ford and Fulkerson, 1956). It is significant in getting the MF from the origin 
to a destination by applying augmenting path algorithm. Dinic (Dinic, 1970) and Cormen (Cormen, 2009) 
discovered that the run time complexity performance of the algorithm is O (mn) augmentation steps if every 
augmenting path in the shortest one; where m is the count of arcs while n denotes the number of nodes (Cormen, 
2009, Dinic, 1970). Edmonds and Karp presented work which was close to that of Dinic’s algorithm using some 
new algorithm (Dinic, 1970, Edmonds & Karp, 1972). The new algorithm acknowledged that the shortest path 
was that the dimension of the arc equals one; this kind of results was attained using the Breadth First Search 
(Eppstein, 1998, Leiserson et al., 2001).  

More algorithms have been established with time to solve the MFP. There was an adapted of a new algorithm to 
work out the shortest augmenting path algorithm (Leiserson et al., 2001, Nemhauser & Wolsey, 1989). Orlin’s 
study (Orlin, 2013) on sparse network exhibited ameliorated polynomial time algorithm (Orlin, 2013). Moreover, 
the researcher presented ways of finding a solution for the MFP in O (mn); where m = O (n), as well as, 
resolving the MF in O (nm+m31/16log2n) time, where m= O(n1.06). (King et al., 1994) describe an improvement to 
this algorithm. They find a solution for the MFP in O (nm ݈݃݋ m/ (n log n) ݊) time. 

Genetic algorithm (GA) is seen to be difficult algorithm to be useful in MFP in most of the graph problem 
because the graph problems are recognized by its multiple unique characteristics (Munakata & Hashier, 1993). 
However, the GA was applied to establish the MF from the source to the sink in a weighted directed graph by 
(Munakata & Hashier, 1993). Every answer is executed by a specific flow matrix in the previous study. In the 
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fitness function, there are two major characteristics, which include balancing nodes and the concentration levels 
of the flow. The initial generation population is selected randomly. After applying the GA, the resulted 
generation is then improved. The results will be optimal or near optimal after a specific count of iterations of 
utilizing the genetic algorithm. 

Lam and Li suggested Chemical Reaction Optimization CRO (Lam et al., 2010), which is a meta-heuristic 
algorithm that was mainly intended for solving combinatorial optimization problems. The run time complexity of 
CRO algorithm for MFP is O (I E2) were presented by (Barham et al., 2016). Where, I indicates to the iterations 
number and E denotes the edges count in the flow graph. The MaxFlow-CRO algorithm is designed to identify 
the best MF that can be relocated from the source to the sink in the flowing network with no restraints for the 
capacity and violation, where the flow in each arc rests in the upper capacity boundary. 

Grey Wolf Optimization (GWO) algorithm was suggested by (Mirjalili et al., 2014), which is a meta-heuristics 
algorithm that is proposed as a resolution to the combinatorial optimization problems too. Masadeh (Masadeh et 
al., 2017) implemented a GWO algorithm to solve the MFP in O (|N| + |E|2) time.  

A parallel genetic algorithm (PGA) was presented by (Surakhi et al., 2017). This would be done by solving each 
augmenting route in the elected graph from the origin to the sink in equivalent stages during iterations. By using 
the Message Passing Interface (MPI) library the PGA is implemented. Similarly, the study is realized and shown 
results from real distributed system IMAN1 supercomputer. Additionally, the study’s outcomes present 
recommendable enhancement in regard to speedup efficiency. In addition, PGA makes the running time faster by 
realizing up to 50% corresponding efficiency. 

A contrast study concerning the performances of GA and CRO algorithms in resolving MFP associated with FF 
algorithm that is known algorithm for explaining MFP is presented by (Khanafseh et al., 2017). Establishing 
which algorithm will come up with results roughly closer to FF with the same accuracy is the main aim of the 
study. Therefore, the outcomes of both algorithms that discussed in their study may be useful in solving MFP 
with accurateness nearly close to FF results. However, it is better when GA in relation to time and accuracy is 
applied.  

WOA was adapted to solve the MFP by (Masadeh et al., 2018). The MFP is solved by the WOA by assuming the 
graph is the search space which the whales seek to reach their prey. The prey is the sink in the network, 
represented by the graph, while other whales are signified in other nodes within the graph. The experimental 
outcomes of the proposed algorithm indicated that the technique can reinforce its performance while solving the 
MFP. 

According to (Masadeh et al., 2018), the WOA is employed to solve MF problem in sequential manner. This is 
to make the computation faster and without degrading the accuracy. The parallel MaxFlow WOA is proposed in 
this research.  

3. Whale Optimization Algorithm  
Whale Optimization Algorithm (WOA) is a random optimization algorithm that was created by (Mirjalili & 
Lewis, 2016). The WOA aims to locate global optimum of a search agents (whales) population in a problem. The 
first step in the search process starts with creating randomly multiple candidate solutions of a specific problem. 
Then, through numbers of iterations the candidate solutions are improved until reaching a satisfied solution set. 
The Whales in reality mimic a bubble-net feeding method which is a private hunting technique as shown in 
Figure 1 (Mirjalili & Lewis, 2016). 
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ሬሬԦܦ = 	 หܯሬሬԦ	. ܺ∗	ሬሬሬሬሬԦ	(ݐ) −	 Ԧܺ	(ݐ)ห										 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (3)	 	 	 	 	 	 	 	 	 	 	 	 	Ԧܺ(ݐ + 1) = 	 	ܹ ∗ሬሬሬሬሬሬԦ	(ݐ) −	 ሬܰሬԦ	. 	ሬሬԦܦ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (4)	ሬܰሬԦ = .	Ԧݎ2	 ሬ݊Ԧ 	Ԧݎ	− 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ሬሬԦܯ	(5) = 	2. ሬ݊Ԧ		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (6)	
For a given problem, random solutions are created by WOA in order to optimize this problem. At each iteration, 
search agents update their positions rely on randomly selected search agent or the search agents which will get so 
far. In order to ensure the exploration stage, update the positions of the other search agents which relies on the 
best solution which mentions the pivot point when |A| is bigger than 1. Whereas, the other case is when |A| is 
less than 1; where the best solutions plays another role with the pivot point. However, in exploration phase the 
position of a search agent is updated according to a randomly selected search agent until find the best search 
agent. This technique allows WOA to proceed a global search. The mathematical model is represented as shown 
in Equation (7) and Equation (8). Algorithm 1 shows the pseudocode of the WOA [Mirjalili & Lewis, 2016]. ܦሬሬԦ = 	 หܯሬሬԦ	. ܺ௥௔௡ௗ	ሬሬሬሬሬሬሬሬሬሬሬሬԦ	(ݐ) −	 Ԧܺ	(ݐ)ห		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (7)	Ԧܺ(ݐ + 1) = 	ܺ௥௔௡ௗ	ሬሬሬሬሬሬሬሬሬሬሬሬԦ	(ݐ) −	 ሬܰሬԦ	. 	ሬሬԦܦ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (8)	
 

 

                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Algorithm 1. Pseudocodes of WOA 

 

4. Proposed Parallel-MaxFlow-WOA 
The proposed algorithm was to improve the WOA in solving MFP by using the parallel approach. Thus, when 
clustering the search spaces alternating each cluster processing sequentially, all the clusters proceed 
simultaneously, hoping for reduction overall running.  

4.1 Initialization Phase 

Starting with a random population of whales represents the vertices; one of them is selected at random to 
represent the source and the prey is selected to denote the sink. In this stage; the distance between the whole 

Initialize the whales population Xi (i = 1, 2, 3, …, n) 

Initialize r, M and N 

Calculate the fitness of each search agent 

X* = the best search agent 

While t ≤ Max_iteration do 

   For each search agent do 
       If |N| ≤ 1 then 
            Update the position of the current search agent by the Equation 

(2). 

     Else if |N| ≥1 then  

            Select a random search agent Xrand  

            Update the position of the current agent by Equation (8) 

    End if 
End for 
Update r, M and N 

Update X* if there is a better solution 

t = t + 1 

End while 
Return X* 
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whales and all Xrand are computed in order to help the whales to assign to the nearest Xrand and to be a member of 
its cluster. 

4.2 Fitness Function 

The main mission of Xrand is to create bubble-net when it sees the prey. Thus, all the whales that are in the search 
space and see the bubble-net will associate its cluster. Thereafter, the members that joined the cluster should 
update their locations toward the Xrand. Moreover, the locations of the whales will update depending on the value 
of A. In case A is less than one, the whale is still associating the cluster and updates its location. This means the 
whale moves towards the prey. When A is greater than one, the whale is not associating the cluster and should 
look for another near Xrand to join. This behaviour is modelled mathematically by Equation (9), Equation (10) 
and Equation (11) (Mirjalili and Lewis, 2016). Ԧܺ(ݐ + 1) = .	ሬሬԦܦ	 ݁௕௟	. (݈ߨ2)	ݏ݋ܥ +	ܺ∗ሬሬሬሬԦ(ݐ)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (9)	
Where ܦሬሬԦ = |(X*) tԦ - XሬሬԦ (t)|, b is a constant for determining the form of the logarithmic spiral and l indicates to 
a random number in [−1, 1] according to (Mirjalili & Lewis, 2016). Ԧܺ(ݐ + 1) = 	ܺ௥௔௡ௗሬሬሬሬሬሬሬሬሬሬሬԦ .ሬሬሬԦ	ܣ	− 	ሬሬሬԦ	ܦ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (10)	
Where ( Ԧܺ ) is a random position vector, (ܺ௥௔௡ௗሬሬሬሬሬሬሬሬሬሬሬԦ ) is the best search agent. V	 = h ∗ r ∗ 	π	(	ଵଷ)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (11)	
Where r indicates the radius of the bubble-net, h represents the height of bubble-net that is chosen randomly 
between 6 and 12 as its inspiration in nature (Watkins & Schevill, 1979) and π is a constant value that is 
approximated to 3.14. 

4.3 Clustering Phase 

Each cluster has Xrand that is selected randomly at the beginning, then fitness function will be computed for each 
whale in order to inspect if it catches sight of the bubble-net. Thus, the whole clusters will compute their local 
maximum flows simultaneously. In other words, all clusters are working at the same time to get their local 
maximum flow, then get the global maximum flow at them sink.  

4.4 Maximum Flow Function 

In this stage, each cluster will calculate its maximum flow (MF) by invoking max-flow function which is 
proposed by Ford-Fulkerson (Ford & Fulkerson, 1993) that is based on augmenting paths in the given residual 
flow network to find the MF from the source to the sink. In other words, each cluster works as an autonomous 
subnetwork, and each one computes the MF by using FF algorithm simultaneously. This technique will get back 
the local MF for each cluster. The MF function will create N numbers of clusters and each one will calculate its 
local MF. Thus, the algorithm will return the global MF of the given network using the following Equation (12).  ݈ܾܽ݋݈ܩ	ݔܽܯ	ݓ݋݈ܨ = 	∑ ௞ே௞ୀଵ(ݓ݋݈݂	ݔܽ݉	݈ܽܿ݋݈) 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (12)	
5. Complexity Analysis of Parallel-MaxFlow-WOA 
The proposed algorithm works by clustering the graph space into N clusters, each cluster represents a subgraph 
of the original graph, and then the Ford Fulkerson algorithm employs in order to find the maximum flow of the 
graph. In WOA, the FF algorithm will be run N times, according to the number of clusters, and the time 
complexity of FF is O (|V| + |E|2) since the |V| indicates to the number of humpback whales (vertices) for 
clustering function and fitness function. O (|E|2) is the time complexity of max-flow function, showing that the 
cost of finding the augmenting path is O (|E|). When the graph is complete, the Fm = |E|; where Fm indicates to 
the maximum flow. Therefore, the run time complexity of Maximum Flow function is O (|E| *Fm) = O (|E|2). 

The overall running time for sequential WOA is N* O (|V| + |E|2) where N is the number of clusters. The parallel 
running time for Parallel-MaxFlow-WOA will be the maximum value of O (|V| + |E|2) on all clusters which is 
MAX (O (|V| + |E|2) N). 

6. Example of Parallel-MaxFlow-WOA 
In this subsection, an example is presented in order to clarify how the suggested algorithm is adapted the WOA 
to solve MFP. The following example is based on the given network shown in Figure 3 that has a set of nodes and 
a set of edges. Moreover, each edge has a capacity which is selected randomly (Masadeh et al., 2018). 
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7. Simulation Results of Parallel-WOA 
Matlab R2016a software with Parallel Toolbox was employed in order to evaluate the performance of 
Parallel-WOA for solving MF problem. For sequential mode, only one worker (process) is used to do the 
computation. On the other hand, four workers (processes) were used in order to do computation in parallel. In 
addition, the sizes of the used datasets were between 1000 and 10000. Every scenario was generated 5 
experiments to have their average run time. 

The simulation platform is a portable computer with following specifications: Intel (R) core (TM) i7-4510U 
CPU with 2.40 GHz, 16 GB RAM and Windows 8.1, 64-bit operating system. 

7.1 Data Sets 

The data sets that used to assess the proposed technique were randomly generated graphs with different sizes and 
large number of edges in these graphs; for that each node (i) in the graph is connected to every other nodes that 
those distances from the source node is greater than the current one (i); Table 1 shows the graphs that had been 
used in the experiments. 

The proposed technique is based on clustering the nodes in the graph's space. The data partitioning is an 
important issue and should be kept into account to accurately compare sequential with parallel mode, for that the 
random graph generator was oriented to make the random generation smart in somehow to fairly distributing the 
data. 

Table 1. Randomly generated Data sets 

Graph number Number of Nodes Number of Edges 

Graph1 1000 502,498 

Graph2 2000 2,004,998 

Graph3 3000 4,507,498 

Graph4 4000 8,009,998 

Graph5 5000 12,512,498 

Graph6 6000 18,014,998 

Graph7 7000 24,517,498 

Graph8 8000 32,019,998 

Graph9 9000 40,522,498 

Graph10 10000 50,024,998 

7.2 Computation Time 

In this subsection, the computation time was examined which means the time that each processor spends in 
computing the MF values. The computation time depends on the number of processors and the input size. When 
the input size is large, it is better to have many processors to do the computation, especially in the proposed work 
different clusters used to represent the partition of the graphs, for that the number of clusters was determined by 
the number of processors that are available in simulation platform. For sequential mode only one processor runs 
to compute the MF value for each cluster in a sequential manner; on the other hand, four processors are used to 
make each processor works on individual cluster. Figure 9 shows the computation time that was taken by only 
one worker (processor) and four workers.  
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8. Conclusion and Future Work 
The maximum flow problem is an essential problem in network flow theory and it has been studied deeply from 
different aspects. In this study, we presented a parallel whale optimization algorithm for solving the maximum 
flow problem, which is simple to implement. Different from the intuitive idea, the basic idea of the proposed 
algorithm is clustering the graph and finds the maximum flow for each cluster simultaneously as a step to find 
the overall maximum flow of the graph. The simulation result showed that the given parallel algorithm 
outperforms the sequential one and has a great enhancement of the computing time, since it achieves 3.79 of 
speedup. 

As a future work, the proposed algorithm was tested on a single machine with multi-processors so for future 
apply the proposed algorithm on distributed machines to take the overall advantages of hardware.  
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