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Abstract 

The thermal protective clothing for high-temperature operation usually consists of three-layer fabrics and a gap 
called the air layer or Layer IV between Layer III and skin. In order to design more effective thermal protective 
clothing at less cost, based on the heat transfer principles, we establish heat transfer models of fabrics and air 
layer, which are one-dimensional nonlinear partial differential equations with constant coefficients. In the 
three-layer fabrics, we consider the effects of heat conduction and heat radiation in Layer I but only consider 
heat conduction in Layer II and Layer III. Furthermore, the heat transfer model of Layer IV is decoupled and 
simplified to steady-state heat conduction in Layer IV and radiation heat transfer on surface of Layer IV. 
According to the explicit difference schemes for the models, we use the parameters in an experiment which puts 
a thermal manikin in high-temperature environment for some time and measures the temperature of lateral skin 
at regular time, to solve the models and calculate the temperature of each layer. With MATLAB, the visual 
interface of three-dimensional temperature distribution is provided, which is reference for functional design of 
thermal protective clothing. We also compare the simulation result of skin surface with the experimental data. 
The results show that at the same position, the temperature rises over time but with decreasing rate and finally 
reaches the steady state. Moreover, at one moment after reaching the steady state, the temperature has a gradual 
decrease with the increase of distance from the external environment. 

Keywords: multilayer thermal protective clothing, heat transfer, finite difference method 

1. Introduction 

The thermal protective clothing for high-temperature operation, which is normally used in high-temperature or 
ultra-high-temperature environment, can reduce the amount of heat accumulated near human skin to avoid the 
harm of heat sources to human body such as burns by slowing down the rate of heat transfer. It not only has the 
properties of ordinary protective clothing, but also possesses some characteristics such as fire resistance, liquid 
repellency, no droplet during combustion and safety and comfort when heated, so it is often used in petroleum 
industry, chemical industry, metallurgy, fire protection, national defense and the places having open fire, electric 
spark, molten metal and flammable substance. But according to some studies, even when people wear the 
thermal protective clothing, extremely high-temperature environment may cause skin burns or burns. To improve 
this problem, many researchers have done a lot of research to evaluate the performance of thermal protective 
clothing and the majority of the physical protective clothing experiment is based on high-temperature 
environment. However, the experimental material can not be reused after the experiment, which results in high 
cost and unnecessary waste of resources. Therefore, it is necessary to establish a heat transfer model of thermal 
protective clothing for high-temperature operation, which can offer theoretical reference on the design of the 
clothing and provide more scientific security for human body through simulation experiment. 

Because the establishment of this heat transfer model has great benefits for the study of its performance, this 
topic has gradually become a new research focus in recent years. According to the number of material layers, the 
mathematical models of thermal protective clothing are mainly divided into monolayer model and multilayer 
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model. The monolayer model only involves a shell of clothing and researchers mainly study the effects of heat 
radiation of external environment, physical properties of fabric, moisture inside fabric and the thickness of air 
layer on the protective performance. Gibson (1996) proposed a multiphase heat and mass transfer model, but the 
radiant heat in fabric layer is not taken into account. Then, Torvi (1997) introduced the heat transfer model of 
outer fabric under the environment of strong radiation or long-term low radiation. Based on the models 
established by Gibson and Torvi, a coupled heat and moisture model with porous media for thermal protective 
clothing was developed (Chitrphiromsri & Kuznetsov, 2005). In this model, they considered the sweat on the 
surface of the skin, which can evaporate or be absorbed by fibers, and they used the parameter estimation 
method to calculate the gas temperature around human body and convection heat conductivity. Song Guowen et 
al. (2008) analyzed the heat and moisture transfer model of thermal protective clothing under flash fire 
conditions and got the distribution of temperature and water vapor in fabric and air layer by numerical 
simulations. In addition, they used the model of skin to evaluate thermal damage and the results showed that the 
thickness of the air layer had a crucial impact on the performance of thermal protective clothing. On the base of 
the previous study, Ghazy et al. (2010; 2013; 2014) used the empirical formulas to transform the physical 
parameters of fabric from constant to variable, which made the simulation results more precise. Besides, they 
proposed a simple and accurate model of air layer and a heat transfer model of monolayer fabric in motion. 
According to the monolayer model, many researchers also study the multilayer moisture and heat transfer model 
of thermal protective clothing, Mell and Lawson (2000) firstly established a heat transfer model between layers 
of multilayer fabric, which is develop from Torvi’s model. Because phase change materials have an influence on 
thermal protection performance of clothing, a multilayer dynamic heat transfer model with phase change 
materials was built (Mercer & Sidhu, 2008; Elgafy & Mishra, 2014). Considering the effect of moisture on 
thermal protection, Lawson et al. (2010) made continued developments in protective clothing modeling of 
multilayer composite state under instantaneous conditions. Moreover, taking the impact of air layer into account, 
Ghazy and Bergstrom (2012) further improved the multilayer heat and moisture transfer model by introducing 
multi air layers. 

According to the classic heat transfer model and existing research, we firstly propose heat transfer models of 
multilayer thermal protective clothing for high-temperature operation. In these models, we consider the heat 
conduction and heat radiation in Layer I while there is only heat conduction in Layer II and Layer III. In addition, 
to simplify calculation, we decouple the model of Layer IV. After determining the initial and boundary condition, 
using the finite difference method and the models we establish, we carry out numerical simulation with the 
parameters of one thermal manikin experiment. Finally, the temperatures of each layer, which are varying with 
time and thickness, can be calculated and the temperature distribution can be plotted by MATLAB. We assume 
the parameters and physical structure of three-layer fabrics remain unchanged and take no account of the 
moisture transfer and heat exchange in skin. Besides, the direction of heat transfer is assumed to be 
perpendicular to the skin, which means that our models are one-dimensional. Our models’ purpose is to get 
insight law of heat transfer within textiles and offer reasonable and scientific basis for the design of thermal 
protective clothing, which can help the researchers develop more effective thermal protective clothing at less 
cost. 

2. Method 

2.1 Establishment of Heat Transfer Model 

When working in high-temperature environment, people need to wear thermal protective clothing to avoid burns. 
Thermal protective clothing usually consists of three-layer fabrics, which is regarded as Layer I, Layer II and 
Layer III. Layer I is in contact with the external environment. There is a space between Layer III and skin, which 
is regarded as Layer IV or air layer. A sectional view of the environment, three-layer fabrics, air layer and skin is 
shown in Figure 1. 
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high-temperature environment and three-layer fabrics respectively; Ffab-skin is the radiation shape factor of fabric 
radiation outward, equal to 1 (Kothandaraman, 2006); Te, Tfab, Tskin are the temperatures of high-temperature 
environment, three-layer fabrics and thermal manikin respectively. 

γ is the extinction coefficient of fabric and it can be calculated by the following formula: 

fabL

)ln(                                            (4) 

Where τ is fabric projection rate. 

2.1.2 Establishment of Heat Transfer Model in Air Layer 

According to previous study (Ghazy & Bergstrom, 2012), we can get the heat transfer model of the air layer: 
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Some studies (Torvi, Dale, & Faulkner, 1999) have shown that the heat transfer in the air layer is mainly heat 
radiation. Besides, when the thickness of air layer is less than 8mm, which is too small to form the heat 
convection, there is mainly heat conduction. Therefore, according to the principle of conductive and convective 
heat transfer in a limited space, we assume that there are only heat conduction in Layer IV and heat radiation on 
the surface of Layer IV. Then, the model of the air layer can be decoupled into the following formulas 
(Chitrphiromsri & Kuznetsov, 2005; Lu, 2017): 
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Where qIV,rad is the radiation flux of Layer IV; εfab, εskin are the radiant emissivity of Layer III and skin 
respectively. 

hc,air is the heat transfer coefficient of air conduction and natural convection. The formula is: 

air

air
airc L

Tk
Nuh

)(
,                                     (8) 

Where Nu is the Nusselt number, equal to 1 when natural convection is neglected. 

The decoupled model in air layer simplifies the calculation and has good effect, so it has been used in many 
studies (Torvi, 1997; Song, 2003; Elgafy & Mishra, 2014; Ghazy, 2014; Zhu, 2015). 

2.1.3 Determination of Initial Condition and Boundary Condition 

(1) Initial Condition 

The initial condition is 

  )(0, xTxT I                                      (9) 

Where )(xTI  is assumed to be 310.15K. 

(2) Boundary Condition 

The total heat flux to the surface of three-layer fabrics is the sum of radiant heat and convective heat, so the left 
boundary condition of the fabric layer is as follows (Torvi, 1997): 
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Where qconv is the convective heat from external environment to Layer I; qrad is the radiant heat from external 
environment to Layer I. 

According to Chitrphiromsri and Kuznetsov (2005), we can convert the formula (10) into the following formula: 
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Where fabch ,  is the heat transfer coefficient between external environment and Layer I; eT  is the temperature 
of the external environment. 

The boundary condition between Layer I and Layer II is: 
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The boundary condition between Layer II and Layer III is: 
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The right boundary condition of the fabric layer is as follows: 
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Where radIVq ,  is the radiant heat from the back of Layer III. 

2.2 Numerical Solution of Temperature Distribution for Heat Transfer Model 

The models we establish above is a whole, which involves four layers altogether from the left boundary of the 
thermal protective clothing to skin. According to this one-dimensional heat transfer model, there are all partial 
differential equations, which are difficult to solve. Therefore, we use the numerical method, the finite difference 
method, to discretize these partial differential equations and introduce the explicit difference schemes of them to 
simplify the calculation. 

2.2.1 Discretization of Partial Differential Equation  

(1) Explicit Difference Scheme for Three-Layer Fabrics 

We discretize the continuous model by meshing the computational domain. Besides, we use forward difference 
for time and central difference for thickness. Then, we get the explicit difference scheme for three-layer fabrics 
as follows: 
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Where i, j is the step number of time and thickness respectively; ∆t, ∆x is time step and thickness step 
respectively; )(xi  is the ith step radiant heat. 

Simplify these equations as follows: 
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Where μ is as follows: 
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(2) Explicit Difference Scheme for Air Layer 

Because we assume that there are steady-state heat conduction in Layer IV and radiation heat transfer on the 
surface of Layer IV, the explicit difference scheme for air layer is: 
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2.2.2 Discretization of Boundary Condition 

The following formulas in this section are explicit difference schemes for boundary conditions. The left 
boundary condition of the three-layer fabrics is: 
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The boundary conditions of the interface between three layers of fabric are as follows: 
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The right boundary condition of the three-layer fabrics, which is also the left boundary condition of the air layer, 
is as follows: 
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2.2.3 Parameter Values of Experiment 

In order to test the performance of the heat transfer model, we apply it to analyzing the temperature distribution 
of the thermal protective clothing for high-temperature operation, which has been used for thermal manikin 
experiment. In the experiment, a thermal manikin, whose initial body temperature is 310.15K, wearing the 
thermal protective clothing, is placed in a laboratory with the ambient temperature at 348.15K for 90 minutes, 
and the temperature of its lateral skin is taken at a regular time. The main parameter values of this experiment are 
shown in Table 2 and Table 3. 

Table 2. Parameter Values of Thermal Protective Clothing Material 

 ρ (kg/m3) cp (J/kg·K) k (W/m·K) L (mm) 

Layer I 300 1377 0.082 0.6 

Layer II 862 2100 0.37 6 

Layer III 74.2 1726 0.045 3.6 

Layer IV 1.18 1005 0.028 5 

Table 3. Other Parameter Values 

fabch , (W/m2·K)   
e  fab  skin  

120 0.01 0.02 0.9 0.95 

2.2.4 Stability of Explicit Difference Equations 

The stability of explicit difference equations shows the ability of difference scheme to control error propagation 
in computation. The formula is as follows: 
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In order to satisfy the stability condition, ensure the convergence of the result and get the precise numerical 
solution, we determine 2.0x  and 0004.0t  according to the parameter values. 

3. Results and Discussions 

3.1 Results of Temperature Distribution 

Based on the difference equations established above, we use 2.0x  and 0004.0t  to iterate. Then we 
can get the temperature of each fabric, that is, the temperature distribution of multilayer thermal protective 
clothing. According to the calculated data, the three dimensional temperature distribution can be plotted with 
MATLAB. The result is shown as Figure 2. 

 

 
Figure 2. Three dimensional temperature distribution of thermal protective clothing 

Using the control variable method, we control position or time invariant respectively to observe the variation of 
temperature with time at the same position or the variation of temperature with position at one moment. The 
results are as Figure 3 and Figure 4 and the steady-state temperature values are shown in Table 4. 

 

Figure 3. Temperature of boundary varies with time 
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Figure 4. Temperature varies with thickness on different time 

When it is steady-state, the temperatures of four layers are shown in Table 4. 

Table 4. Convergence Values of Each Layer Temperature 

t (s) TI (K) TII (K) TIII (K) TIV (K) 

5400 344.90 341.78 326.36 321.44 

According to Figure 3, when the thermal protective clothing is under the high-temperature environment, the 
temperature at the same position increases with time, and the temperature rising rate slows down gradually. 
Finally, it remains unchanged, which means that the heat transfer of each layer tends to be steady-state after a 
certain period of time. This is because the temperature difference between two points diminishes gradually, 
which results in the decrease of heat transfer rate. In addition, the trend of result data is the same as the 
temperature variation of the lateral skin measured in the experiment. 

Then, Figure 4 shows that there are different temperature drop rates in different layers, which result in a 
discontinuity in term of gradient at boundaries. They are determined by the physical properties of the layers. The 
lower the thermal conductivity is, the better the heat insulation effect will be. It can be seen that the highest 
temperature drop rate appears between 34mm and 52mm. It means that the fabric of best thermal protection 
performance is Layer III, which is known as the insulation layer.  

During the experiment, the temperature of skin surface is measured per second. We compares the simulation 
result of skin surface with the experimental data, as shown in Figure 5. 

 

Figure 5. Comparison between simulation result and experimental data of skin surface 

When heat transfer reaches steady state, the experimental data of skin surface is 321.23K while the simulation 

result is about 321.435K. The error value is about 0.205K, which is acceptable. 
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3.2 Evaluation of Heat Transfer Model 

The heat transfer model constructed in this paper is a reference to the temperature distribution measurement of 
thermal protective clothing for high-temperature operation. It can be used to test the thermal protective 
performance of this clothing under specific environment and determine the critical value of applicable 
temperature for known material clothing, which provides guidance for the design of thermal protective clothing 
for high-temperature operation. In different working conditions, the fabric layer number of the model can be 
adjusted according to the actual situation, which makes the model more widely used. 

However, this heat transfer model is an one-dimensional temperature conduction model, which only considers 
the temperature of the high-temperature environment, but neglects the impact of moisture transfer in different 
environmental humidity. In real application, according to the humidity characteristics of specific environment,  
this model can be adjusted and improved by introducing the moisture transfer, so that the model can be more 
practical and its role can be maximized. 

4. Conclusions 

In order to design more effective thermal protective clothing at less cost, based on the heat transfer theory and 
thermodynamics theory, we firstly establish heat transfer models of fabrics and air layer. In the three-layer 
fabrics, we consider the impact of heat conduction in three layers but only consider heat radiation in Layer I. 
Besides, we decouple and simplify the heat transfer model of Layer IV into a model with steady-state heat 
conduction in Layer IV and radiation heat transfer on surface of Layer IV. Secondly, using the finite difference 
method, we get the explicit difference schemes for the models, which can help to solve the partial differential 
equations. Then, we determine the time step and thickness step to ensure the stability of these explicit difference 
equations and get more precise results. According to the parameters and data collected in a thermal manikin 
experiment, we can solve the models and calculate the temperature of each layer. By simulation of MATLAB, 
the three-dimensional temperature distribution can be plotted. Finally, we compare the simulation result of skin 
surface with the experimental data. In conclusion, this study can provide reference for functional design of 
thermal protective clothing, and to some extent, it can reduce R&D cost and shorten R&D cycle. 
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