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Abstract 
Propensity score methods have dominated the estimation of treatment effects based on observational data and 
particularly in the health and medical sciences. We propose a weighting method based on rank-based Mahalanobis 
distance, namely the covariate balancing rank-based Mahalanobis distance method, to estimate causal effects for 
observational data. Using Monte Carlo simulations, under different data structures and type of outcome variables, 
the proposed method is shown to have better performance, in terms of bias reduction and treatment effect 
estimation. Specifically, under the generalized linear model framework, we simulated datasets based on the 
Lalonde-PSID study, for linear link function; while datasets were simulated based on the Lindner study, for non-
linear link functions. We further apply the proposed method to data extracted from the Nigeria Demographic Health 
Survey (2013), to investigate the effect of educational exposure on ideal family size among married couples in 
Nigeria. The proposed method is a viable alternative method that can improve covariates balance, bias reduction, 
and efficient estimation of treatment effects. 
Keywords: weighting, covariate balance, generalized linear models, monte carlo simulation, treatment effect 
1. Introduction 
A principal objective of health outcomes research is to estimate the causal effect of a treatment or intervention on 
an outcome variable. Inferences made in observational studies, because the treatment assignment is devoid of 
randomization, are not regularly clear and straightforward. 
In recent times, weighting methods have taken centre stage as a pre-processing procedure, which aims at improving 
the balance of background covariates, and efficiently estimating treatment effects. Weighting is a nonparametric 
balancing procedure, which applies weights to sample units to equal the distribution of a target population.   
The literature on weighting methods has been dominated by the inverse probability of treatment weights (IPW), 
which originates from survey research (Crump, Hotz, Imbens, & Mitnik, 2009; Hirano & Imbens, 2001; Hirano, 
Imbens, & Ridder, 2003; Imbens, 2004). The idea of IPW was formed from the Horvitz-Thompson weight (Horvitz 
& Thompson, 1952), which for each sample unit is the inverse of the probability of such unit being assigned to the 
observed group. Despite their popularity, propensity score methods, with specific reference to IPW, rely heavily 
on the correct specification of the propensity score model - slight misspecification of the propensity score model 
will result in a substantial bias of estimated treatment effects (Kang & Schafer, 2007). 
In this paper, we introduce a rank-based Mahalanobis distance weighting approach, namely, the covariate 
balancing rank-based Mahalanobis distance (CBRMD) method, to efficiently estimate treatment effects, in the 
presence of confounding factors. We show how to use a modified Mahalanobis distance, the rank-based 
Mahalanobis distance, proposed by Rosenbaum (Rosenbaum, 2002), as weights that can reduce covariates 
imbalance between treated and control groups, which are used to estimate treatment effects efficiently. In brief, 
we fix weights for the treated group sample units at unity, while those for control group units are obtained as the 
number of times a control unit has the smallest rank based Mahalanobis distance from the individual treated units.  
We illustrate the general framework of the proposed method in the Methodology section. The performance of the 
proposed method is evaluated through a series of Monte Carlo simulations and a case study of data on the effect 
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of educational exposure on the desired family size among married couples in Nigeria. Using the IPW method as a 
benchmark, we study the effectiveness of the proposed technique in balancing covariates, and efficient estimation 
of treatment effects. Our choice of the IPW as a benchmark for evaluating the performance of the proposed method 
is due to its simplicity and familiarity.  
2. Methodology 
Consider a random sample of n= nt + nc units, with each i (i =1, . . ., n), belonging to only one of two groups for 
which estimation of causal effects are of interest, denoted by 𝑇𝑖. The ith unit received the treatment of interest, if 𝑇𝑖 = 1, and  𝑇𝑖 = 0, if it was not received (control group). Let 𝑋𝑖′ denote a K-dimensional vector of observed 
pre-treatment covariates associated with unit 𝑖. Adopting the potential outcomes framework, we let 𝑌𝑖(1) be the 
potential outcome that unit i attains under treated group and 𝑌𝑖(0) the potential outcome under control group 
(Rubin, 1974). The observed outcome can then be represented as 𝑌𝑖 = 𝑇𝑖𝑌𝑖(1) + (1 - 𝑇𝑖) 𝑌 (0). We estimate the 
Sample Average Treatment effect on the Treated (SATT) as, SATT = 1𝑛𝑡 ∑ 𝑇𝐸𝑖𝑖Є𝑇 , where 𝑇𝐸𝑖 = 𝑌𝑖(1) - 𝑌𝑖(0). 
The Mahalanobis distance between covariates of the treated unit, 𝑋𝑡 and covariates of the control unit, 𝑋𝑐 can be 
obtained from: 

D2 (𝑋𝑡, 𝑋𝑐) = (𝑿𝑡 −  𝑿𝑐)𝑇∑−1 (𝑿𝑡 −  𝑿𝑐)     (1) 
where ∑ is the estimated sample covariance of X.  
For multivariate normal covariates, the Mahalanobis distance works fine; but exhibit some rather odd behaviour 
with non-normal data and outliers-present data. Consequently, we replace the Mahalanobis with a rank-based 
Mahalanobis distance, defined by Rosenbaum (Rosenbaum, 2002) as follows: 

rD2 (𝑋𝑡, 𝑋𝑐) =  𝑟(𝑿𝑡) −  𝑟(𝑿𝑐) 𝑇 𝑎𝑑𝑗 ∑−1 𝑟(𝑿𝑡) −  𝑟(𝑿𝑐)    (2) 
where, 𝑟(𝑿𝑡) 𝑎𝑛𝑑 𝑟(𝑿𝑐)  are the ranks of each of the covariates belonging to the treated and control groups, 
respectively. Average ranks are used for ties. 
Further, note that 𝑎𝑑𝑗 ∑   denotes adjusted covariance matrix, which adjusts the ∑ (variance-covariance matrix 
of the ranked covariates) by pre-multiplying and post-multiplying the covariance matrix of the ranks by a diagonal 
matrix whose diagonal values are the ratios of untied ranks’ standard deviation, to the tied ranks’ standard 
deviations of the covariates. In other words, adj ∑ is defined as: 

adj ∑ = D ∑ D       (3) 
where,  

D =

𝑆𝑢𝑆𝑡1 ⋯⋮ ⋱ ⋮⋯ 𝑆𝑢𝑆𝑡𝐾
  

𝑆𝑢 is the standard deviation of untied ranks, and  𝑆𝑡𝐾 is the standard deviation of tied ranks for the kth covariate. 
From the matrix rD2 with dimension t x c, where t is the number of treated units and control units, respectively, 
the proposed algorithm extracts the control units and its corresponding rank-based Mahalanobis distance on each 
row of the matrix.   
Finally, sample weights for treated units are fixed at unity, while those for control group units are given as the 
number of times a control unit has the smallest rank-based Mahalanobis distance from the individual treated units.  
If any control unit does not have the smallest rank-based Mahalanobis distance from any treated unit, the CBRMD 
procedure does not give it a weight of zero. Instead, it only down-weights them. When there are ties in the control 
units that have the least rank-based Mahalanobis distance from any treated unit, the weight is approximately 
equally distributed among them so that every sample unit contributes to the estimation, which in turn improves 
balance, reduces bias, and maximizes efficiency. 
The proposed algorithm is described in the following steps: 
Step 1: Sort the data in order of the treatment indicator, with the corresponding unit identification number. 
Step 2: Compute the rank-based Mahalanobis distances of each treated units with the control group units, using 
Equation (2), and store the distances in a matrix with t rows and c columns. 
Step 3: Create a vector which stores the column number of the control unit that has the smallest distance with the 
treated units in each row. 
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Step 4: Extract a frequency distribution based on Step 3, to identify the number of times each control unit had the 
smallest distance. Control units with zero frequencies are down-weighted approximately equally. 
Step 5: Treated units have weights that are fixed at 1; while control units have weights based on step 4. 
3. Simulations 
3.1 Monte Carlo Simulations - Overview 
In this section, we study the numerical performance of the proposed methodology. We conducted extensive Monte 
Carlo simulations to examine the performance of the proposed method, and compare its performance to that of 
IPW. Performance of the methods was assessed using absolute standardized bias of covariates; absolute biases and 
root mean squared errors (RMSE) of the estimated treatment effects. The data generating process and analyses 
were conducted in the R environment of version 3.4.3. 
Two different phases of simulations were conducted overall. In the first phase, the simulation was made to be as 
realistic as possible by simulating from real-life data, which was achieved by explicitly focusing on two distinct 
scenarios: 
In the first scenario, subsequently referred to as Scenario I, we generated treatment and outcome variables from 
covariates of the Lalonde-PSID data. This data has a reputation of being used as a benchmark in the causal 
inference literature. The data is a hybrid of program participants (treated units) from Lalonde’s (LaLonde, 
1986)experimental data and control group drawn from the Panel Study of Income Dynamics (PSID) data. The 
dataset comprises of ten covariates including age (age), indicator variables for unemployment in 1974 (u74) and 
1975 (u75), marital status (married), lack of a high school diploma (nodegree), number of years of education 
(education), hispanic race (hispanic), black race (black), and real earnings in 1974 (re74) and 1975 (re75). The 
outcome was the real earnings in 1978. Choice of this data will enable us to evaluate how well our proposed 
method can recover the treatment effect estimates from the experimental data. 
For the second scenario, subsequently referred to as Scenario II, we extend our evaluation to non-normal responses. 
We specifically consider three types of outcomes: binary outcomes (Binomial distribution), counts (Poisson 
distribution), and skewed continuous outcomes (Gamma distribution). The idea is to mirror some outcome 
variables that are mostly encountered in medical and health sciences. For example, presence or absence of diseases, 
number of antenatal care visits by pregnant women, and health care costs are usually described by the Binomial, 
Poisson, and Gamma distributions, respectively.  
The simulations were based on the Lindner dataset. Details of this data have been published elsewhere (Abdia, 
Kulasekera, Datta, Boakye, & Kong, 2017). In brief, the Lindner dataset comprises information on 996 patients 
who were receiving an initial Percutaneous Coronary Intervention (PCI) at the Ohio Heart Health, Lindner Christ 
Hospital in 1997. The treatment indicator (abcix), equals 1 when the patient was in PCI treatment with additional 
treatment abciximab (an expensive, high-molecular-weight IIb/IIIa cascade blocker), and 0 when the patient was 
in PCI group. Covariates include, indicator for recent acute myocardial infarction (acutemi); indicator for coronary 
stent insertion (stent); gender (female); height; left ventricle ejection fraction (ejecfrac); number of vessels 
involved in initial PCI (ves1proc); diabetic indicator (diabetic); and an indicator for survival at six months 
(sixMonthSurvive).  
3.2 Monte Carlo Simulations – Data Generation 
For scenarios I and II, like (Austin, 2011; Austin & Stuart, 2017), we assume a linear relationship between log-
odds of treatment assignment and covariates from their respective real data, as shown in Equations (4) and (5).     

Logit (𝜋i) = α0 + α1 age + α2 education + α3re74 + α4 re75 + α5 married + α6 black + α7 hispanic + α8 
nodegree + α9 u74 + α10 u75         (4) 

Logit (𝜋i) = α0 + α1 stent + α2 height + α3female + α4 diabetic + α5 acutemi + α6 ejecfrac + α7 ves1proc 
+ α8 sixMonthSurvive                 (5) 

To ensure varied number of treated and control units, we then generate the treatment variable for individual i, in 
1000 separate runs as Ti ~ Bernoulli (𝜋i). 
In assessing covariates balance, we average the Absolute Standardized Bias (ASB) for each covariate, from the 
1000 runs of the above data generation. ASB is given as: 

ASB= 1𝑠2𝑡 +  𝑠2𝑐2  ∑ 𝑥𝑖 𝑇𝑖 𝑤𝑖𝑛𝑖=1  ∑ 𝑇𝑖 𝑤𝑖𝑛𝑖=1 −  ∑ 𝑥𝑖 (1−𝑇𝑖 )𝑤𝑖𝑛𝑖=1∑ (1−𝑇𝑖 )𝑤𝑖𝑛𝑖=1          (6) 
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where 𝑠2𝑡 and 𝑠2𝑐 are the sample variances of the covariate in the treated and control group respectively. For 

weighted data, 𝑠2 = ∑ 𝑤𝑖(∑ 𝑤𝑖)2 ∑ 𝑤𝑖 (𝑥𝑖 −  𝑥)2, where 𝑥 = ∑ 𝑥𝑖𝑛 . 

We generate outcome variables differently for the two scenarios. For scenario I, we assume the following linear 
model: 

Y = β0 + γTi + β1age + β2education + β3re74 + β4re75 + β5married + β6black + β7hispanic  + β8nodegree + β9u74 + β10u75 + εi,            εi ~ N (0,10)       (7) 
Following (Diamond & Sekhon, 2013), we set γ = 1000, and β0 , β1 ,…, β10  are coefficients from linearly 
regressing the outcome on the covariates from the real data.  
For scenario II, data are generated from the following generalized linear model 

 g(E(Y/X, Z)) = β0 + ∑ 𝛽𝑗8𝑗=1 𝑋𝑗 + γT,    (8) 
Where g is chosen to be the canonical link function for Binomial, Poisson, and Gamma distribution, respectively. 
The 𝑋𝑗’s are the 8 covariates from the Lindner dataset. 
Following (Austin, 2011), model coefficients for Equation (8), are set as β0  = 0, β1  = β2  =log(1.1), β3  = β4  =log(1.25), β5  = β6  =log(1.5), and β7  = β8  =log(2). The non-zero coefficients are chosen to reflect low, 
medium, high and very high effect sizes.  
3.2.1 Data Generation – Binary Outcomes (Binomial Distribution) 
For binary outcomes, (8) becomes: 

Logit (P(Yi=1)) = β0 + ∑ 𝛽𝑗8𝑗=1 𝑋𝑗 + γTi      (9) 
Equation (9) is the conventional logistic regression model that is usually encountered in clinical and 
epidemiological research. The regression parameter γ is the log-odds ratio for the treatment effect. The model 
assumes that the logit of the probability of outcomes changes with a subject’s change in treatment status. The odds 
ratio is exp (γ) and has been described as a conditional or adjusted treatment effect (Austin, 2010).   The 
logarithmic link function in Equation (9) does not require covariates from a distribution with support over the real 
line. For this reason, covariates from (9) are reduced to only the five binary covariates. Therefore, Equation (9) 
reduces to: 

Logit (P(Yi=1)) = β0 + ∑ 𝛽𝑗5𝑗=1 𝑋𝑗 + γTi    (10) 
Coefficient γ is set to 1, while the estimated treatment effects were transformed to be on the odds ratio scale. 
3.2.2 Data Generation – Count Outcomes (Poisson Distribution) 
For count outcomes, Equation (8) becomes: 

Log (ηi) = β0 + ∑ 𝛽𝑗8𝑗=1 𝑋𝑗 + γTi     (11) 
The regression parameter γ is the expected change in log count, as treatment status changes from treated to control. 
The continuous covariates were scaled to have zero mean and unit variance, to permit the possible values of the 
log link function. Coefficient γ is set to 1, while the estimated treatment effects are on the log-rate ratio scale. 
3.2.3 Data Generation – Skewed Continuous Outcomes (Gamma distribution) 
For skewed continuous outcomes, Equation (8) becomes: 

1 /(ηi) = β0 + ∑ 𝛽𝑗8𝑗=1 𝑋𝑗 + γTi     (12) 
The regression parameter γ is the expected change in the inverse of outcomes, as treatment status changes from 
treated to control. Coefficient γ is set to 1500, while the estimated treatment effects are on a natural scale. 
3.3 Kang and Schafer Design 
This second phase of simulation follows the Kang and Schafer (Kang & Schafer, 2007) design, which showed that 
misspecification of a propensity score model could adversely affect weighting methods that depend on the 
propensity score. This design has been used in the literature to evaluate the performance of propensity score 
methods when the true propensity score is known, and when it is unknown. Note that the true propensity score was 
unknown in the earlier phase of simulations. Also, this phase of simulations is only introduced for the estimation 
of treatment effects. Though this simulation phase may achieve other objectives, the main aim is to compare the 
proposed method and IPW method, under the case where IPW is expected to perform optimally.  
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We replicate the Kang and Schafer simulation study, using 1000 Monte Carlo simulation runs, for sample sizes, 
200, 1000, and 5000. In brief, the design’s data generation is as follows: 
Yi = 210 + 27.4 Xi1 + 13.7(Xi2 + Xi3 + Xi4) + εi, where   εi ~ N (0,1), the Xi’s are independently standard normally 
distributed, and the true propensity scores are 𝜋i = 11+ 𝑒(−𝑋𝑖1 +0.5𝑋𝑖2− 0.25𝑋𝑖3 − 0.1𝑋𝑖4)  
3.4 Assessing Performance of Treatment Effects  
For each phase, scenario and model, 1000 datasets were simulated. The performance of estimated treatment effects 
was assessed by calculating the mean γ of the 1000 regression coefficients. The bias was calculated as γ – γ, and 
the root mean square error (RMSE) as  (γ − γ ) + 𝑣𝑎𝑟 (γ). 
4. Results 
4.1 Monte Carlo Simulations - Results 
In this subsection, we present and explain the results obtained from analysing the simulated datasets. Figures 1 
and 2 visualises balance of each of the ten covariates after applying the proposed method and IPW. We 
superimposed horizontal lines on each panel to denote ASB of 0.25, as some authors have suggested that ASB 
values that exceed this threshold may indicate significant imbalance(Ho, Imai, King, & Stuart, 2007; Imai, King, 
& Stuart, 2008; McCaffrey et al., 2013). Simulations from the heavily imbalanced Lalonde data, produced datasets 
whose average ASB values ranged from 0.125 to 1.850. Our proposed method substantially improved the balance 
on the ten covariates, with average ASB values ranging from 0.023 to 0.219, while the IPW adjusted data have 
average ASB values ranging from 0.125 to 1.850 and 0.146 to 0.887, respectively. The Lindner data is moderately 
imbalanced, as datasets simulated from it, had average ASB values ranging from 0.052 to 0.428. Both set of 
weights substantially improved the balance, as average ASB values ranging from 0.007 to 0.176 for the proposed 
method, and 0.019 to 0.049 for the IPW adjusted data.  
 

 
Figure 1. Plot of mean absolute standardized bias of covariates in the Lalonde data, under each weighting 

method 
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Figure 2. Plot of mean absolute standardized bias of covariates in the Lindner data, under each weighting method 
 
In the first scenario, where the datasets were simulated from the Lalonde-PSID data and outcome variable is 
assumed normally distributed, there is an excellent performance of the proposed method, in terms of absolute bias 
and RMSE of estimated treatment effects. The proposed technique, as compared to others, has the least absolute 
bias and RMSE, resulting in a 65% reduction in these performance metrics. The extremely high values of the bias 
and RMSE is not surprising, given the high variance of the outcome variable. The average absolute biases and 
RMSEs of the weighting methods are shown in Table 1. 
 
Table 1. Relative performance of the weighting methods under Scenario I 

Method   

 Absolute bias RMSE 
Unweighted 67265.76 67274.98    
Proposed 22908.59    23320.30    
IPW 28584.00  31722.93  

Note: values were averaged over 1000 Monte Carlo replications. 
 
The estimated treatment effects for the weighting methods, under each type of outcome distribution, are reported 
in Figure 3. The lower left panel of the plot shown the treatments for the normally distributed outcomes, lower 
right panel for the binomially distributed outcomes, upper left panel for the Poisson distributed outcomes, and the 
upper right panel for the Gamma distributed outcomes. 
Except for binomially distributed outcomes, the proposed method dominates the others both in terms of absolute 
bias and RMSE, as shown in Table 2. The most substantial outperformance for the proposed method was observed 
for Poisson distributed outcomes, where approximately 75% reduction in both absolute bias and RMSE was 
achieved. IPW method had the least absolute bias and RMSE for binomial outcomes, even though the difference, 
as compared to the other methods was not of considerable importance. For Gamma distributed outcomes, IPW 
method had no reduction in the absolute bias and RMSE, but slightly increased it instead; while the proposed 
method reduced the performance metrics by approximately 16%.  
 
Table 2. Relative performance of the weighting methods under Scenario II 

Method Gamma Poisson Binomial 
 Absolute bias RMSE Absolute bias RMSE Absolute bias RMSE 
Unweighted 1491.92 1494.21 15.95 15.96 1.88 1.95 
Proposed 1255.06 1276.16 3.94 4.09 1.80 1.93 
IPW 1492.27 1494.72 13.15 13.18 1.73 1.82 

Note: values were averaged over 1000 Monte Carlo replications. 
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Having established the performance of the proposed method under situations where the true propensity is unknown, 
Table 3 shows the result from an unusual situation where the correct propensity score model is specified. There is 
a bias-variance trade-off, as the proposed method consistently (over the considered sample sizes) had the least 
absolute bias at the expense of some increase in RMSE. Both weighting methods show an overall reduction in bias 
and RMSE, as compared to the unadjusted data. Also, there is a pattern of improved performance of the proposed 
method and the IPW method, when the sample size increases. This experiment has shown that the performance of 
IPW method (when the correct propensity score model is known) will only be better than the proposed method in 
terms of efficiency and not bias reduction.  
 

 

 

 

 

Figure 3. Boxplot of estimated treatment effects for the weighting methods. 
 
Table 3. Relative performance of the weighting methods under a correct propensity score, based on Kang and 
Schafer (2007) 

Sample size Method Bias RMSE 
200 Unweighted 19.958 20.523 

 Proposed 0.101 7.468 
 IPW 0.421 4.815 

1000 Unweighted 19.979 20.100 
 Proposed 0.061 3.354 
 IPW 0.069 2.344 

5000 Unweighted 20.026 20.051 
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 Proposed 0.007 1.071 
 IPW 0.007 1.565 

10000 Unweighted 19.995 20.007 
 Proposed 0.002 1.122 
  IPW 0.006 0.722 

Note: values were averaged over 1000 Monte Carlo replications 
 
5. Case Study 
In this section, we apply the proposed method to extracted data from the Nigeria Demographic Health Survey of 
2013. The Demographic and Health Survey (DHS) provides cross-sectional data on demographic and health 
indicators, including information on fertility and family planning, knowledge and current use of contraception 
methods, as well as sexually transmitted diseases (NDHS, 2013). Further details of this data can be found 
elsewhere (Amusa, 2018). 
The sample consists of 18842 married respondents aged 15-49, 6373 of whom had at least a secondary school 
education, subsequently regarded as ‘treated’ group, and others 12469 had primary school or no formal education, 
regarded as ‘control’ group. The research question of interest is whether educational exposure causes a higher 
desired number of children (outcome variable). The data set includes information on ten covariates that potentially 
confound the treatment-outcome relationship. Table 4 presents the description of data variables and summary 
statistics, including averages and standard deviations for continuous variables, and percentages for categorical 
variables, as well as the absolute standardized bias as the balance metric. 
 
Table 4. Summary statistics of baseline covariates of the two treatment groups in the case study. For continuous 
variables, the mean (standard deviation) is presented; for binary variables, the frequency (percentage) is presented 

Label Variable Description Treated Control  
  N = 6373 N = 12469 ASB

Bmi Body Mass Index 25.30 (5.00) 22.64 (4.14) 0.58
Age Age of respondent 32.09 (7.81) 31.99 (8.74) 0.01

Agebirth Age at first birth 28.87 (6.09) 28.94 (7.33) 0.01
Mbirth Interval of marriage to birth (months) 18.41 (19.39) 27.98 (27.57) 0.40
Siblings Number of siblings of respondent 5.39 (2.44) 5.42 (2.80) 0.01

Knowledge Knowledge of any birth control method 6272 (38.20%) 10145 (61.90%) 0.59
Wealth Wealth index (poor = 1) 980 (27.83%) 2541 (72.17%) 1.58

Res Residence type (rural = 1) 3909 (57.74%) 2861 (42.26%) 0.84
Sexhead Sex of household head (male = 1) 5436 (31.82%) 11649 (68.18%) 0.27
Working Respondent is working 5099 (37.39%) 8538 (62.61%) 0.27

Note: ASB denotes absolute standardized bias. 
 
The ASB values, using the >0.25 threshold (as used in the simulation study), suggest that the covariates balance is 
not satisfactory for all seven out of the ten background covariates. The ASB values ranged from 0.01 to 1.58. We 
applied the proposed method using the ten variables. We also implemented the IPW method by estimating 
propensity scores from a linear logit specification of treatment-covariates relationship on all ten covariates. For 
each of the ten covariates, Figure 4 visualises the covariate balance obtained from the different weighting methods 
as measured by the conventional balance statistics – absolute standardized bias. A horizontal line at ASB = 0.25 
was superimposed (as in the simulation study) to denote the balance threshold of the covariates. 
Results from Figure 4 reveal that, though the proposed method maximized the improvement in balance, better than 
the IPW method, they both substantially improved the mean balance compared to the raw data. The proposed 
method has ASB values ranging from as small as zero to 0.062; while the IPW method had values ranging from 
0.003 – 0.060.  
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Figure 1. Plot of mean absolute standardized bias of covariates in the case study data, under each weighting 

method 
 
Table 5 shows the point estimates, p-value, and associated 95% confidence interval from the weighting methods. 
The standard errors used to calculate confidence intervals for the proposed method and IPW are based on the robust 
sandwich variance estimator (Austin & Stuart, 2015; Joffe, Ten Have, Feldman, & Kimmel, 2004). Estimates from 
the weighted estimators were entirely different from the unweighted estimator. All the estimators were negative 
and statistically significant (p<0.05) at the 5% level, which suggests that educational exposure (having at least a 
secondary school education) decreases the expected number of desired children by married couples. The proposed 
weighted estimator produced a confidence interval with a slightly shorter length compared to the IPW estimator.  
 
Table 5. Causal effect estimation of educational exposure on desired family size, using the various methods 

Estimator Point Estimate 95% Confidence Interval (CI)  CI Length P-value
Unweighted -0.444 (-0.4573, -0.4327) 0.0246 <0.0001
Proposed -0.244 (-0.2644, -0.2242) 0.0402 <0.0001
IPW -0.28 (-0.3095, -0.2505) 0.059 <0.0001

Note: Standard errors of the weighted estimators were based on the robust sandwich variance estimators 
 
6. Discussion 
Estimation of causal effects is central to health outcomes. In this study, we have proposed a new weighting method 
which is based on computations from a rank-based Mahalanobis distance. We showed through simulations and an 
empirical application, the effectiveness of the proposed method in terms of improvement in covariates balance, 
bias reduction and efficient estimation of treatment effects.  
The proposed covariate balancing rank-based Mahalanobis distance (CBRMD) method is a novel approach to 
estimating causal effects, in the presence of confounding factors, as the case of observational studies. We have 
been able to demonstrate numerically, the excellent performance of the proposed method, to induce balance on 
background covariates, as well as, a notable reduction in the bias and increased efficiency of the estimated 
treatment effects.  Notably also, is the fact that the CBRMD method performs at its best when the sample size is 
huge - this was evident from the results obtained from the simulations, and the case study from the large sample 
NDHS data, that was done in this study. Large sample sizes are typical of epidemiological studies and national 
surveys.   
There has been overwhelming usage of propensity score weighting methods among applied researchers in various 
disciplines who conduct causal inference in observational studies. We only acknowledge that propensity score 
methods have become more familiar, hence the reason for adoption.  
The commonly used IPW method relies heavily on the correct propensity score model specification. Model 
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misspecification will substantially bias its estimation of treatment effects. However, as shown from the simulations, 
the proposed method still favourably competes with the IPW, under situations where the correct propensity score 
model is specified. An interesting bias-variance trade-off was observed from our simulations when the correct 
propensity score was known, with our proposed method consistently having the least absolute bias but slightly 
trailing the IPW method in terms of efficiency, as measured by root mean squared error. 
One of the major strength of this study is the development of the simulation study based on notable existing real-
life studies. This approach of designing simulations based on real-life studies is increasingly becoming the norm, 
as it allows the researcher to incorporate complex and realistic associations within the data structure. The fact that 
outcome variables from different distributions under the GLM framework were considered is also a strength of 
this study.  
We acknowledge that the IPW method was only used as a benchmark for evaluating the performance of the 
proposed method. Though this study has briefly compared the IPW method under the situation where the correct 
propensity score model is known, future research is required for extensively comparing the two methods under 
varying scenarios before we can recommend one over the other.  For now, evidence from this study can only 
advise researchers and applied practitioners to adopt the proposed method when the correct propensity score model 
is not known. Future researches may consider the combination of CBRMD with other pre-processing methods. We 
are currently exploring these. 
7. Conclusions 
When causal effects are of interest in the presence of confounding variables, as the case of observational studies, 
the proposed covariate balancing rank-based Mahalanobis Distance (CBRMD) method is a viable alternative 
method, that can improve covariates balance, bias reduction and efficient estimation of treatment effects. 
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