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Abstract 
Courtyards as a traditional strategy were used to create a suitable microclimate for dwellers, but in contemporary 
architecture, inadequate knowledge of form and features of courtyards makes them deficient. This study presents 
practical solutions reaching optimal form and features of courtyards based on the traditional architecture of two 
contrasting climates of Iran. The ENVI-met.4 model was used for simulating the area percentage, water and 
vegetation level in a very cold climate of Ardabil and Hot-arid climate of Yazd. The simulated atmospheric 
parameters were imported to the Rayman1.2 to calculate PET thermal index. As the first step, 10% of the total 
area was advised to be considered a courtyard area for Yazd hot-arid climate, and 60% of the total area was 
recommended in a very cold climate of Ardabil. Next, the ratio of the water area to the total area of courtyards 
was simulated and the results advice, 0% of the courtyard to be considered a water area of Ardabil and 10% of 
the courtyard of Yazd is an optimum choice in hot-arid climate. In the final step, 20% of courtyards 
recommended the best condition of tree coverage in both climates. By these guidelines, designers can create a 
more adaptive architecture to the local climate. 

Keywords: outdoor thermal comfort, courtyards, microclimate, contrasting climates, ENVI-met4 

1. Introduction 

Open spaces usually cover more than two-thirds of the urban area in modern architecture; thus their 
microclimate dominates the urban canopy layer (UCL) climate. (Shashua-Bar & Hoffman, 2004). 
Perfecting the thermal environment of buildings and their surrounding outdoor environment is a 
multidisciplinary necessity to create an urban microclimate and achieving outdoor thermal comfort (Berkovic et 
al., 2012; Wong et al., 2003; Saito et al., 1990; Wong et al., 2011).  

Currently, in city development, the Urban Heat Island phenomenon is increasing and the effects of UHI on 
human health, energy consumption and air quality are considered by researchers. However, architectural tools 
and forms can play a part in mitigating the effects of UHI, and also in the climatic effect on human comfort 
levels. (Taleghani et al., 2015; Ali-Toudert et al., 2006; Ahmed, 2003; Johansson, 2006).  

Developing an understanding of suitable forms and materials can radically help to adopt thermal environment in 
outdoor settings, and thus reduce energy consumption in indoor conditions. The courtyard concept is a common 
and ancient method in architectural design, especially in Middle Eastern countries like Iran. (Edwards, 2006). 
The advantages of the courtyard and its thermal characteristics have been evaluated by some studies in different 
climates, both in measurement and computer modeling methods. (Safarzadeh et al., 2005; Taleghani et al., 2014; 
Aldawoud & Clark, 2008; Zhai & Previtali, 2010; Yao & Steemers, 2013).  

There are some studies of courtyard thermal features in the tropical climate (Makaremi et al., 2012; Fahmy & 
Sharples, 2009; Rajapaksha et al., 2003; Sadafi et al., 2011) but Iran’s courtyards feature in a wide range of 
different climates, so they warrant detailed investigation. Analogous application of courtyard form, material, and 
vegetation might cause a malfunction in the performance of courtyards in different climates of Iran. This study 
aims to evaluate quantitatively the comfort condition of the courtyards in two different climates of Iran in terms 
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of dimension, vegetation, and water level. This study is being carried out in order to develop guidelines for 
creating more sustainable environments in these climates. 

2. Material and Methods 

2.1 Simulation Software and Thermal Index 

The thermal performance features of the courtyards were analyzed based on the following design parameters: the 
dimension, vegetation, and water. These parameters are selected based on the real examples of the courtyard 
features in Iran. These 3 parameters are the most important issues in courtyard planning. It should be noted that 
there is enough research about other parameters (like albedo of the materials and the height and wall enclosure), 
and the results of the simulation are predictable. For example; materials with high albedo make outdoor 
conditions, more and more exposed to high radiation, and also SVF has an effect on the comfort condition. The 
result of these studies proved that shaded places have a better condition in terms of thermal comfort (Taleghani 
et al., 2015; Makaremi et al., 2012; Ghaffarianhoseini et al., 2015).  

So analyzing and simulating the local and practical parameters for local courtyards is a fundamental issue. 
ENVI-met 4, a three-dimensional fluid dynamics microclimate software, was used to simulate the outdoor 
thermal condition of the courtyards. With Version 4.0 the microclimate simulation ENVI-met takes a huge step 
forward in terms of the accuracy and realism of the simulations. Due to the new 3D format, there are no longer 
any limits to the architecturally detailed reproduction of the model area. 

The new features of the ENVI-met 4 are mentioned according to the following items: 

3: Forcing (Huttner, &Bruse, 2009).  

(i) Full 3D editor 

(ii) Advanced calculation of façade temperature and wall energy balance. 
(iii) Forcing (Huttner, &Bruse, 2009). 

One of the most important features of ENVi-met software is its capability to generate the accurate Tmrt for the 
outdoor condition (Huttner et al., 2008; Chow &Brazel, 2012) and to calculate the Physiological Equivalent 
Temperature (PET). 

 

Table 1. PET thermal comfort category (Hoppe, 1999) 
 

PET°C Thermal Perception A grade of physiological stress 

Below+4 Very cold Extreme cold stress 

4 to 8 Cold Strong cold stress 

8 to 13 Cool Moderate cold stress 

13 to 18 Slightly cool Slight cold stress 

18 to 23 Comfortable No thermal stress 

23 to 29 Slightly warm Slight heat stress 

29 to 35 Warm Moderate heat stress 

34 to 41 Hot Strong heat stress 

41< Very hot Extreme heat stress 

 

2.2 Study Area  

A simulation method was employed for analyzing the thermal effect of courtyards in Ardabil and Yazd, Iran. 
These two cities in Iran have completely different climates. Ardabil (48°18'E. Long, 38°15'N. lat) is located in 
the northwest of Iran and it has a very cold climate. Because of its rash, cold climate, designing the outdoor 
spaces in this city has some limits and specific principles. There is an impact of the cold wind and solar radiation, 
humidity, etc. (Jalilian & Tahbaz, 2006; Namin & Khoshvalad, 2015). Yazd (55°0'E. long, 32°0'N. lat) is situated 
in the center of Iran. This city has a hot and arid climate. Outdoor spaces in this region need special attention to 
possible ventilation and solar radiation (Hedari, 2010; Teimourtash, 2013). A very cold and long winter is one of 
the most significant features of the Ardabil climate. In table 1, the long-term climatic data of Ardabil are 
presented for the 1976 to 2010 period, and also the Physiological Equivalent Temperature (PET) is calculated. 
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The calculations of PET are done via Rayman for a normal 35-year-old male person of 1.75 m high and 75 kg, 
with a metabolic rate of 80 Watt (the Rayman default parameters). An activity level of 80 W arises when a 
normal person is walking with 1.2 m/s. PET frequency is presented in Fig1. 

 

Table 2. Longtime meteorological data of Ardabil (1976-2010) (chaharmahalmet. ir, 2016) 

 Ta(Min) Ta(Max) 
Ta 

(Mean) 

RH% 

(Min)

RH% 

(Max)

RH% 

(Mean)

Wind 

Dir 

Wind 

Speed 

m/s 

PET 

 

JAN -7.8 3.0 -2.4 61 87 75 225 18.0 -9.7 

FEB -5.8 4.9 -0.5 58 88 74 225 17.5 -7.2 

MAR -2.0 9.8 3.9 53 89 73 90 13.1 -1.4 

APR 2.9 16.6 9.7 46 88 68 90 13.3 4.9 

MAY 6.2 19.9 13.1 50 91 71 90 13.4 8.5 

JUNE 9.2 23.4 16.3 50 91 71 90 14.2 12.1 

JULY 11.7 25.1 18.4 51 88 69 90 15.1 14.3 

AUG 11.7 25.1 18.4 51 88 70 90 14.5 14.5 

SEP 8.9 22.7 15.8 51 92 74 90 13.7 11.8 

OCT 5.1 17.7 11.4 54 92 75 90 13.0 7.1 

NOV 0.3 11.6 5.9 55 90 74 225 16.5 0.3 

DEC -4.5 5.9 0.7 59 88 74 225 17.4 -5.8 

 

The rough cold climate of Ardabil can be understood from table 1, so in this paper; the coldest day of the Ardabil 
is chosen for the simulation and the calculated data. In contrast, the hot and arid climate of Yazd - with its 
long-term climatic data - is introduced in table 2. This data is for the period spanning from 1976-2010. The PET 
value is calculated via Ray man model. Long-term PET frequency of Yazd is presented in Fig2. The differences 
of the climate data in these cities definitely point to the need for different principles in architecture and urban 
planning. 

 

Table3. Longtime meteorological data of Yazd (1976-2010) (chaharmahalmet.ir, 2016) 

 Ta(Min) Ta(Max) 
Ta 

(Mean) 

RH% 

(Min)

RH% 

(Max)

RH% 

(Mean)

Wind 

Dir 

Wind 

Speed 

m/s 

PET 

 

JAN -0.4 12.3 5.9 35 73 54 135 6.6 -2.5 

FEB 2.1 15.7 8.9 26 65 44 270 8.1 1.00 

MAR 6.9 20.6 13.7 21 57 37 270 8.8 7.1 

APR 12.5 26.6 19.6 19 50 32 270 9.2 14.5 

MAY 17.6 32.3 24.9 15 39 25 315 9.7 20.8 

JUNE 22.4 37.8 30.1 12 27 18 315 9.0 29.2 

JULY 24.5 39.5 32.0 11 26 17 315 9.2 32.2 

AUG 22.0 38.0 30.0 11 26 17 315 8.5 28.3 

SEP 17.6 34.3 25.9 12 28 19 315 7.9 20.9 

OCT 11.5 27.7 19.6 14 39 27 270 7.0 13 

NOV 5.1 20.0 12.5 24 55 38 135 5.8 4.6 

DEC 0.7 14.3 7.5 32 68 50 135 6.4 -0.8 
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Figure 1. Long-term PET frequency(1976-2010) 

 

 

Figure 2. Long-term PET frequency (1967-2010) 

 

2.3 Selection of Typical Days 

Based on available information about the climate of Iran, and according to the meteorological report of Ardabil, 
the annual mean air temperature of the city is 9.22°C and the mean relative humidity is72.33%. The East wind 
(90°) is a prevailing local wind with 14.975 m/s wind speed. Based on Ardabil meteorological organization 
reports, February, 2nd of 1989 was the coldest day in Ardabil with -33.8 °C of air temperature (Ardabilmet, 
2016). 

Accordingly, Yazd meteorological organization reports show that annual mean air temperature of Yazd is 
19.21°C and mean relative humidity is 31.5, and also the wind velocity is 8.016m/s with northwest (315°) 
prevailing direction. According to the Yazd meteorological organization reports, 13 July 2012 was the hottest day 
in Yazd with an air temperature of 45.6°C. (Yazdmet, 2016). With this information, the thermal features of the 
two different climates of Iran will simulate in terms of better thermal comfort condition. The input data for 
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simulation is presented in table4. 

 

Table 4. Conditions used in the simulations with ENVI-met 4. 

Simulation parameters  Ardabil Yazd 

Simulation day 02.02.1989 13.07.2012 

Simulation period 11h(7:00-18:00) 14h(6:00-20:00) 

Spatial resolution 1m horizontally,2m vertically 1m horizontally,2m vertically

Initial Temperature 239.35 302.15 

Wind speed 3m/s 2 

Wind direction (N=0,E=90) 90 135 

Relative humidity(in 2m) 100% 23% 

Indoor temperature 300K(27°C) 293(20°C) 

Initial Temperature Upper Layer (0-20 

cm) 

239 302.15 

Initial Temperature Middle Layer (20-50 

cm) 

232.15 300 

Initial Temperature Deep Layer (below 

50 cm) 

229.4 297.15 

Relative Humidity Upper Layer (0-20 

cm) 

100 23 

Relative Humidity Middle Layer (20-50 

cm) 

100 25 

Relative Humidity Deep Layer (below 

50 cm) 

100 28 

Adjustment factor for solar radiation 1 1 

clouds Default Default 

Turbulence model Use default values Use default values 

LBC For 

Ta,RH:Open,turbulence;forced

For 

Ta,RH:Open,turbulence;forced

 
3. Literature Review  
3.1 Thermal Comfort Analyses of Courtyards 

Courtyards are enclosed or semi-closed, open spaces housed in building environments, especially in the context 
of traditional architecture, which use vegetation and water to provide thermal comfort and to suit the 
microclimate to its inhabitants. Courtyard concept is a common method of local house designing in the Middle 
East, especially in Iran. (Almhafdy et al., 2013; Costello, 1977; Mirmoghtadaee, 2009; Ghaffarianhoseini et al., 
2015).  

The main function of courtyards in all countries is to modify the effect of climatic parameters on inhabitants and 
to create a suitable microclimate based on local climate. In different climates, different strategies are used to 
modify the rough environment. (Aldawoud, 2008). A courtyard concept with different features based on the local 
climate is one of the main principles of vernacular architecture (Coch, 1998). For example, the use of passive 
ventilation to avoid the annoying humidity in tropical and humid areas is the most significant feature of 
courtyards in these regions. (Rajapaksha et al., 2003; Sadafi et al., 2011; Makaremi et al., 2012). In hot and arid 
regions, modification of the environment by water, vegetation, etc., is the most common solution to modify the 
climatic parameters. (Etzion, 1990; Attia, 2006; Al-Hemiddi et al., 2001). Cold climates also have their own 
features to avoid annoying wind and to reach sun rays. (Shokouhian et al., 2007; Song et al., 2015; Zhang et al., 



jsd.ccsenet.org Journal of Sustainable Development Vol. 11, No. 2; 2018 

117 
 

2015).  

The courtyard concept plays an important role in designing various public facilities such as education, residential 
areas, and healthcare facilities, but there are not enough strategies to enhance the thermal comfort of courtyards 
in the different climates of Iran. Uniform design of courtyards in diverse climates of Iran has caused lots of 
problems in terms of thermal comfort. Lack of sufficient knowledge of thermal characteristics of the courtyards 
is the main reason for this problem. Courtyards are mostly analyzed in terms of their airflow, solar radiation, and 
shadow features.  

The ventilation potential of the courtyards and their effect on the thermal comfort has been evaluated by CFD 
studies and wind tunnels in various climates. (Mousli & Semprini, 2015; Almhafdy et al., 2015; Jamaludin et al., 
2014). Shade and its effect on the thermal comfort in courtyards are reported as being an important issue in 
developing the comfort range and energy consumption. (Meir et al., 1995; Yaşa & Ok, 2014). Energy 
performance of courtyards has been investigated by many researchers (Aldawoud& Clark, 2008; Muhaisen & 
Gadi, 2006; Manioğlu & Yılmaz, 2008; Dunham, 1961; Al-Masri & Abu-Hijleh, 2012; Behbood et al, m2010; 
Safarzadeh & Bahadori, 2005). Aldawoud et al discussed the energy performance of the courtyard and of 
atrium-based buildings. They proved that in general, the open courtyard shows a better energy performance for 
lower buildings. As building height increases, however, at some point, the enclosed atrium exhibits a better 
energy performance than the courtyard. With atrium research, some case studies depend on other factors such as 
glazing and climatic parameters. (Aldawoud & Clark, 2008).  

Courtyard proportions and their effect on heat gain and energy requirement were investigated in a Rome climate 
by Ahmed & Muhaisen. The study, consequently showed that the proportions of the building that houses the 
courtyard considerably influence the need for heating and cooling. (Muhaisen & Gadi, 2006). In the hot and arid 
climate of Iran, Behbood et al showed that courtyard method is one of the efficient strategies in terms of energy 
consumption (Behbood et al., 2010).  

In another example of Iranian courtyard research, the passive cooling of courtyards has been investigated by the 
Safarzadeh et al, and they showed that a courtyard alone cannot make thermal comfort in Tehran, Iran but it can 
decrease the cooling energy load (Safarzadeh & Bahadori, 2005). Hedari, in his Ph.D. thesis, investigated the 
thermal comfort in the courtyards of Ilam, Iran. The findings of the study revealed that the people in Ilam could 
achieve comfort at higher indoor air temperatures compared to the recommendations by international standards 
like ISO 7730. The results also showed that passive systems such as the main comfort strategy could be applied 
to housing design in Ilam. By using the results of this study, strategies to minimize energy consumption, not only 
for Ilam but also for other regions, which have similar climates and cultures to Ilam, can be proposed. (Heidari, 
2000). 
Taban et al tried to get an optimal courtyard pattern in Dezful by local shadow analysis, and they revealed that 
courtyards with a length/width ratio of 1 to 1.4 (near to square form) and height/length ratio of 1.1 to 1.2 had the 
most proper shade on different courtyard surfaces. Results also showed that for the purpose of reducing the 
cooling load in summer, deep and square-shaped courtyard forms were the most preferable. The self-shading of 
the courtyard building acts to reduce the need for cooling by an average of about 4%. By using this proportion, 
the amount of shadows on the courtyard will be optimized (Taban et al., 2014). Modelling study showed that the 
effect of rectangular courtyard proportions on the shading and exposure conditions produced on the internal 
envelope of the form in four different locations in Kuala Lumpur, Cairo, Rome and Stockholm and the results 
showed that the shading conditions of the courtyard internal envelopes are significantly dependent on the form's 
proportions, location latitude, and available climatic conditions. (Muhaisen, 2006).  

A study by Taleghani et al, analyzed the energy performance and thermal comfort of the Netherlands with the 
light climate changes of this country. The results of this research, which analyzed monthly energy performance, 
comfort hours and climate scenarios, indicated that using an open courtyard from May through October and an 
atrium, i.e. a covered courtyard, in the rest of the year establishes an optimum balance between energy use and 
summer comfort for the severest climate scenario. (Taleghani et al., 2014). 

Al-Masri et al, evaluated the courtyard housing in mid-rise buildings of Dubai, United Arab Emirates. In this 
study, the courtyards have been assessed in terms of energy consumption and daylight factors, and the result of 
this study shows that the energy consumption of the optimal courtyard is 11.16% less than conventional form 
building and about the daylight factor. In the courtyard form in both winter and summer time, the courtyard has a 
better thermal condition. (Al-Masri et al., 2012). The effect of a courtyard’s shape and geometry on heat gain and 
energy efficiency in various climates has been assessed by Yaşa& Ok. In this study, the optimal shape of the 
courtyard was presented by CFD Fluent (Yaşa & Ok, 2014). 
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Climatic variables and their effect on thermal comfort are discussed by Sthapak & Bandyopadhyay. In this study, 
in addition to the placement of the rooms and the proportion of the openings, the degree of enclosure of the 
courtyards and also the breeze and shadow effect on thermal comfort - especially in light time - are scrutinized. 
(Sthapak & Bandyopadhyay, 2014). Because of the diverse climate of Iran, new bioclimatic research has been 
done by Pourvahidi & Ozdeniz. In this study, the bioclimatic conditions of Iranian cities were determined and as 
a result; five climates were identified in Iran.  

In order to prove that this new classification is valid, the traditional architecture of these regions was juxtaposed. 
It turned out that the traditional buildings have different features in these five regions. (Pourvahidi&Ozdeniz, 
2013). A study of the environmental effect of the residential building courtyards in different climates was done 
by Taleghani et al, The findings of these studies show that the different configurations of courtyard buildings, 
such as natural elements, and the situation of openings in different facades are the most important findings of this 
review paper. (Taleghani et al., 2012). 

Recently some studies have examined the comfort condition of the courtyards as a house and urban forms 
(Ghaffarianhoseini et al., 2015; Taleghani et al., 2015; Berkovic et al., 2012; Taleghani et al., 2014). Comfort 
condition of the courtyards is simulated by ENVI-met model software using the PMV thermal index and in this 
study, Berkovic et al presented the design guidelines for courtyards in Israel and compared various courtyard 
geometries and shading using trees, openings, and galleries (Berkovic et al., 2012). Cooling strategies of 
Netherlands courtyard were investigated by a parametric study, and results of this paper demonstrate three heat 
mitigation strategies for the urban courtyard. ENVI-met was validated for the Netherlands with measurement. 
(Taleghani et al., 2014).  

In another study of the thermal characteristic of the courtyard in a hot and humid climate of Tainan, Taiwan, by 
Yang et al, the results of this study showed that the integrated design approach can effectively reduce the 
frequency of heat stress from 79.7% to 40.5% and it is noticeable that by this study, the potential and limitations 
of the ENVI-met model, is applied in tropical climates (Yang et al., 2016). Thermal assessment of the Portland 
university courtyard is done by Taleghani et al, in this study, heat mitigation strategies in this university were 
examined by ENVI-met model and the results showed that the maximum PCI effect was 5.8 °C between a park 
and a parking lot. Vegetation and a water pond reduced 1.6 °C and 1.1 °C Ta for a bare courtyard, and finally, 
high albedo material increased Tmrt but reduced Ta. (Taleghani et al, 2014). The study by Ghaffarianhoseini et al, 
tries to represent the optimal forms of the courtyard in Malaysia. These courtyards have been examined by four 
parameters of orientation, vegetation, albedo, and height. Consequently, they have evaluated the optimal choice 
of these parameters represented by ENVI-met simulation for the Malaysian courtyards (Ghaffarianhoseini et al., 
2015). Taleghani et al examined the five urban forms of the Netherlands and the final results show that the 
courtyard form is the best form in terms of PET, Tmrt,… in the moderate climate of the Netherlands (Taleghani 
et al., 2015). 

3.2 Calculation of PET as Thermal Comfort Index 

The physiological equivalent temperature, PET, is a thermal index derived from the human energy balance. It is 
well suited to the evaluation of the thermal component of different climates, as well as having a detailed 
physiological basis (Prata-Shimomura et al., 2009). 

The PET index is often used in environmental comfort research for analyzing the physiological behavior of users 
and pedestrians, according to environmental conditions (effect of buildings and climate). (Matzarakis et al., 
1999). PET as thermal comfort has been used in several studies of outdoor thermal comfort (Thorsoson et al., 
2007; Andrade & Alcoforado, 2007; Oliveria & Andrade, 2007; Johansson, 2006; Emmanuel & Johansson, 2006) 
because the PET index has been primarily designed for outdoor use (Spagnolo & Dear RJ, 2003). PET can be 
calculated using free software (Rayman). This software is validated software for urban complex shading (Lin et 
al., 2006; Gulyas et al, 2006; Matzaraki et al., 2007). Environmental data for the PET calculation that is required 
in the Rayman model includes air temperature (Ta), relative humidity (RH%), wind velocity (v), mean radiant 
temperature (Tmrt) and vapor pressure (VP) and personal data such as human clothing and activity and local data 
such as the date of year, time and location. Comfort classification of PET scale is described by below table 1. 

4. Results and Discussion 
4.1 Reliability of ENVI-met4 

In this step, ENVI-met model (the courtyard shape as a sample) was validated through a comparison between 
field measurements and simulation results. The measurements were done in a courtyard building representing a 
traditional house of Ardabil and Yazd. Manafzadeh house in Ardabil and German house in Yazd were selected to 
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assess the reliability and calibration of ENVI-met4. For this assessment, two different days in two different 
climates of Iran were selected. The air temperature sensor was protected by a white shield to minimize the effect 
of the radiation. The courtyards’ environments were measured for 11 days in February for Ardabil and June for 
Yazd.  

Among these 11 days, two days for each city were selected randomly for Envi-met simulation. February 5th and 
13th of 2015 and June 15th and 23rd of 2015 were the random days. The weather data for the simulation process 
were taken from the local weather station. The data from simulations and measurements are compared to show 
the accuracy of the simulation results. To do this simulation, an Envimet Area input file and configuration files 
are needed. The input-file are described in table 5 and 6. 

 

Table 5. Ardabil configuration data for ENVI-met4 validation 

Simulation parameters Ardabil Ardabil 

Simulation day 05.02.2015 13.02.2015 

Simulation period 24h(21:00-21:00) 24h(21:00-21:00) 

Spatial resolution 1m horizontally,2m vertically 1m horizontally,2m vertically

Initial Temperature 273.15 272.15 

Wind speed 3m/s 9m/s 

Wind direction (N=0,E=90) 45 225 

Relative humidity(in 2m) 100% 100% 

Indoor temperature 300K(27°C) 300K(27°C) 

Initial Temperature Upper Layer (0-20 cm) 273.15 272.15 

Initial Temperature Middle Layer (20-50 

cm) 
269.45 269.45 

Initial Temperature Deep Layer (below 50 

cm) 
265.15 264.15 

Relative Humidity Upper Layer (0-20 cm) 100 100 

Relative Humidity Middle Layer (20-50 cm) 100 100 

Relative Humidity Deep Layer (below 50 

cm) 
100 100 

Adjustment factor for solar radiation 1 1 

clouds Default Default 

Turbulence model Use default values Use default values 

`LBC 
For 

Ta,RH:Open,turbulence;forced

For 

Ta,RH:Open,turbulence;forced
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Table 6. Yazd configuration data for ENVI-met4 validation 

Simulation parameters Yazd Ardabil 

Simulation day 15.06.2015 23.06.2015 

Simulation period 24h(21:00-21:00) 24h(21:00-21:00) 

Spatial resolution 1m horizontally,2m vertically 1m horizontally,2m vertically

Initial Temperature 301.15 305.15 

Wind speed 5m/s 1m/s 

Wind direction (N=0,E=90) 135 0 

Relative humidity(in 2m) 10.80% 8.5% 

Indoor temperature 300K(27°C) 300K(27°C) 

Initial Temperature Upper Layer (0-20 cm) 301.15 239 

Initial Temperature Middle Layer (20-50 cm) 298.15 298.15 

Initial Temperature Deep Layer (below 50 cm) 295.45 229.4 

Relative Humidity Upper Layer (0-20 cm) 10.80% 8.5% 

Relative Humidity Middle Layer (20-50 cm) 12% 10% 

Relative Humidity Deep Layer ( 

 

50 cm) 

15% 13% 

Adjustment factor for solar radiation 1 1 

clouds Default Default 

Turbulence model Use default values Use default values 

LBC 
For 

Ta,RH:Open,turbulence;forced

For 

Ta,RH:Open,turbulence;forced

 

For configuration file, four extra courtyard models have been modeled to reach the correct results in terms of the 
neighboring environment on the courtyard affects the output data, so accordingly the surrounding vegetation, 
pavement, and other real parameters are included in the simulation model. The measured and simulated Ta 
during the mentioned days in both cities are compared in Fig3 and 4. 
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Figure 3. Comparison of measured and simulated Ta in Ardabil 

 

 
Figure 4. Comparison of measured and simulated Ta in Yazd 

 

Comparisons of the air temperature in both cities show that correlation of measured and simulated Ta in the first 
day in Ardabil is 82 % (R=0.82), and also R-value for the second day is 0.88. Therefore, on average, the 
correlation factor is 0.71 which means that more than 88% of ENVI-met outputs are reliable in the cold climate 
of Ardabil. Correlation analyses of simulated and measured air temperature in Yazd represent the high correlation 
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between simulated and measured Ta. The first-day’s R-value is 0.98, and for the second day, it is 0.87. Therefore, 
ENVI-met outputs are completely reliable in the hot, arid climate of Yazd. The difference in the observed and 
simulated data could be the fact that ENVI-met does not include levels of cloudiness in its input parameters. 

4.2Physical Features of Traditional Courtyards of Ardabil & Yazd 

4.2.1Ardabil Traditional Courtyards 

In this section, traditional courtyards of Ardabil were selected to be assessed in terms of physical features: 

(i) The ratio of the courtyard area to total area of the house 

(ii) The ratio of the water area to total area of the courtyard 

(iii) The ratio of the vegetation area to total area of the courtyard 

For this study, 8 traditional courtyards were selected to be investigated: 

(i) Khadem house.  

(ii) Sadeghi house. 

(iii) Vakil Al-Roaya house 

(iv) Reza Zadeh house. 

(v) Ershadi House. 

(vi) Ebrahimi House. 

(vii) ManafZadeh House 

(viii) Khalil Zadeh house. 

 

Table 7. Physical features of Ardabil courtyard 

Vegetation area/ 

courtyard 

Water 

area/courtyard area

Total 

area/courtyard area
House name 

0.5 0.04 0.51 Khadem house 

0.36 0.03 0.48 Sadeghi house 

0.00 0.00 0.22 Vakil Al-roaya house 

0.43 0.02 0.51 Reza Zadeh house 

0.00 0.00 0.22 Ershadi House 

0.18 0.05 0.36 Ebrahimi House 

0.37 .03 0.60 ManafZadeh House 

0.09 0.02 0.46 .Khalil Zadeh house 

 

4.2.2 Yazd Traditional Courtyards 

In the second step, these 8 Yazd traditional courtyards were also selected to be assessed for the mentioned 
features: 

(i) MehrabanGoodarz house 

(ii) Lariha house 

(iii) Gerami house 

(iv) Golshan-e-Yazd house  

(v) Kolahdoozha house  

(vi) Arabha house 

(vii) Mortaz house 

(viii) Rasoulian house 

The mentioned features were described in Table 8: 
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Table 8. Physical features of Ardabil courtyard 

Vegetation area/ 

courtyard 

Water 

area/courtyard area

Total 

area/courtyard area
House name 

0.08 0.04 0.16 MehrabanGoodarz house 

0.19 0.12 0.21 Lariha house 

0.23 0.15 0.24 Gerami house 

0.15 0.21 0.22 Golshan-e-Yazd house 

0.20 0.15 0.26 Kolahdoozha house 

0.10 0.10 0.25 Arabha house 

0.25 0.14 0.38 Mortaz house 

0.10 0.17 0.30 Rasoulian house 

 

4.2.3 Comparison 

In a comparison of the data derived from the previous tables, it can be concluded that in Yazd’s hot-arid climate, 
due to a long and hotter summer, more water ponds were used. This is in contrast with the rough, cold climate of 
Ardabil where only a small area of water covers the courtyard. In terms of vegetation, a smaller area of 
courtyards in Yazd is covered by trees to reach optimum natural ventilation. In Ardabil’s cold climate, this 
percentage is more than Yazd. About total area of the courtyard in these two contrasting climates, the averages of 
the courtyard is about 42% of the total plan and 0.26% of the total plan consider as a courtyard. In table 9, a 
comparison of these mentioned features is portrayed: 

 

Table 9. Comparison of the physical features of both climate 

Vegetation area/ 

courtyard 

Water 

area/courtyard area

Total 

area/courtyard area
city 

0.23 0.03 0.42 Ardabil 

0.18 0.14 0.26 Yazd 

 

4.3 Results of Simulations 

The study scrutinized different courtyard configurations. The sample building and its courtyard dimension were 
chosen by the average of the real traditional courtyard houses of Ardabil and Yazd. The 360m2 (60*60 m) 2-story 
building (8 meters of height) and the other parameters of the courtyard (dimension, water amount, and the 
vegetation) were selected based on the minimum and maximum of the real courtyard houses of the Ardabil and 
Yazd. 

4.3.1 Effect of the Courtyard Area 

As a first step, it is crucial to determine the courtyard area percentage based on local climate. So, in this regard, 
10, 20, 40 and 60 percent of the block was considered as a courtyard and simulated for both climates. 

The impact of the different areas towards influencing the microclimate features such as relative humidity, wind 
velocity, Tmrt, and the ambient temperature were measured recording the different factors on the values assumed 
by previous parameters in the center of the courtyard spaces.  

4.3.1.1 Ardabil Courtyard Area 

A comparison of the courtyards in terms of the area shows that the average air temperature in all four conditions 
is stable, and is about -11. The differences between the highest and the lowest one is 0.4 °C (10%= -11.475, 20= 
-11.656, 40%= -11.856 and 60%= -11.906). However in terms of Tmrt, there is a different condition. The 
difference between the highest and the lowest is 11.73°C. The hourly frequency of Tmrt is described in Fig 5. 
Based on this Fig, (in all conditions) at the beginning of the morning (7.00-8:00 am) Tmrts are in the equal range. 
This is also true for the end of day (16.00-18:00 pm), but in the next hours, Tmrt of 60% area grows more 
quickly than the others, which means that the average air temperature of the Tmrt for 60% is higher than the 
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others (10%=24.58°C, 20%35.84°C, 40%=35.22°C, 60%=36.31°C). 

 

Figure 5.Hourly frequency of Tmrt of Ardabil 

 
Wind velocity is another important parameter of outdoor thermal comfort and was also investigated in these 
courtyards. There were not any significant differences between the conditions in terms of average wind speed. 
On average, there is a 0.251 m/s difference between the highest and the lowest velocity (10%=3.958m/s, 
20%=3.881, 40%=3.763 and 60%=3.701m/s). 

The average figures for the PET values in these courtyards demonstrates 3-degree differences (10%=-13.1°C, 
20%=-11.6, 40%=-10.9, 60%=-10.6) between all conditions. The 60% courtyard has a better condition, and 
because of its open sky condition, the 60% courtyard reaches longer direct and diffuse radiation and by this 
means R-value (correlation) between PET value and Tmrt, SW.dir, SW.diff are 0.915, 0.9, and 0.8715. 

Hourly frequency of PET is described in Fig6. In FIG7, Leonardo visualization describes the Tmrt and wind 
speed conditions in a different configuration. 
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Figure 6. Hourly frequency of PET based on area. Ardabil 
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Figure 7. Tmrt and Wind speed condition of Ardabil courtyard (Leonardo) 
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4.3.1.2 Yazd Courtyard Is 

The courtyards were compared with their related Ta and the results show that there are not that many differences 
between the courtyards (10% = 24.89°C, 20% = 24.92, 40% = 24.94, 60% = 25°C). However, the different sky 
exposure means that the Tmrt values are different, and by this means there are 3.17°C differences between the 
maximum and the minimum Tmrt. The hourly frequency of Tmrt is described in Fig 8. Based on this Fig, in all 
conditions, at the beginning (7.00-8:00 am) of the morning, the mean radiant temperature values are in the equal 
range but as the sun rises the radiation amount increase too.  

 
Figure 8. Hourly frequency of Tmrt of Yazd 

 
In the next few hours, the 60% courtyards’ Tmrt grows, quicker than the other courtyards’. Based on the graph, 
the thermal behavior of all conditions between 10:00-14:00 are equal, but the 10% courtyard loses its Tmrt faster 
than the others and at the end of the day (20:00) it reaches the lowest Tmrt among the courtyards. Therefore, on 
average, the 10% courtyard has the lowest Tmrt (10% = 52.69°C, 20% = 54.26, 40% = 55.08, 60% = 55.86°C). 

The average PET value in each courtyard represents a 1.8°C difference (10% = 31.4°C, 20% = 32.2, 40% = 32.6. 
60% = 33.2) between all conditions. The 10% courtyard has a better condition, and because of the closer sky 
condition of the 60% courtyard, it reaches less long direct and diffuse radiation. This means the R values 
(correlation) between PET value and Tmrt, SW.dir, and SW.diff are 0.95, 0.94, and 0.96. The hourly frequency of 
related PET is described by Fig9. In FIG 10, Leonardo visualization describes the Tmrt and wind speed 
conditions in a different configuration. 
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Figure 9. Hourly frequency of PET based on area.Yazd 
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Figure 10. Tmrt and Wind speed condition of Yazd courtyard(Leonardo) 
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4.3.2 Effect of Courtyard Water Level 

The presence of water in Iranian traditional courtyards is a common principle, and water is also the main 
component of contemporary courtyards. This means that 0, 10, 15, and 20 are the typical percentages of water in 
traditional courtyard areas in both climates. In this regard, these percentages have been considered as a courtyard 
and simulated for both climates. 

The impact that different water amounts have upon microclimate features such as relative humidity and Tmrt 
was considered when recording the different factors for the values assumed by previous parameters in the center 
of the courtyard spaces.  

4.3.2.1 Ardabil Water Amount Analyze 

A comparison of the water level in the 60% area highlights the fact that air temperatures are in a roughly equal 
range (0% = -12.26°C, 10% = -12.33, 15% = -12.36, 20% = -11.62). It also demonstrates that owing to the cold 
air temperature, the relative humidity of these conditions is 100%, and, accordingly, the wind speed parameter is 
equal to all conditions. Radiant temperatures differ notably with different water amounts. The courtyard contains 
0% water featured 10°C higher on the Tmrt scale (0% = 36.49°C, 10% = 26.24, 15% = 26.26, 20% = 26.56), and 
the hourly frequency of the Tmrt is described in Fig11. 

 
Figure 11. Hourly frequency of Tmrt(water amount) 

 
According to the seven, all other conditions except the 0% have a colder Tmrt. At the beginning of the 
referenced day (7.00-8:00 am), all conditions have equal Tmrt but by sunrise, the thermal behavior of the 
courtyards changes - the courtyard containing no water reaches the highest Tmrt. Then, from 9:00 to 16:00, it 
maintains the highest Tmrt. At the end of the day, the thermal behavior of the courtyards is similar to each other. 
The main atmospheric parameters of these courtyards are approximately equal, but Rlw warming has a different 
value for each courtyard. These values represent the air temperature change due to longwave flux divergence. 
This value shows higher changes compared to the others (0% = 0.65 K/h, 10% = 0.43, 15% = 0.41, 20% = 0.44 
K/h), and higher air temperature variations based on long wave flux divergence will definitely cause higher 
Tmrt.  

The results discussed in this section are represented by PET thermal index. On average, the courtyard containing 
0% water in the cold climate of Ardabil has a better thermal condition than the other conditions (0% = -10.8, 
10% = -13.1, 15% = -13.1, 20% = -12.4°C). The hourly frequency of PET is described in Fig 12. 
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Figure 12. Hourly frequency of PET based on water.Ardabil 

 
4.3.2.2 Yazd Water Amount Analyze 

A comparison of the results of the water levels in the 10% area (as a better condition of courtyards) shows that 
air temperatures are different with different amounts of water (0 & 10 % = 24.36°C and 15 & 20% = 27.5). It 
also shows that the relative humidity is changed by Ta changing and water percentage. There is a 3.41% 
difference between the highest and lowest relative humidity of the courtyards (0 & 10% = 56.05%, 15 & 20% = 
52.65%). Accordingly, there are different Tmrt in these courtyards based on different levels of water percentage. 
On average, the courtyard that is covered 10% by water has the better thermal condition and it is 9.05°C cooler 
than the hottest courtyard (0% = 44.25°C, 10% = 38.58°C, 15&20% = 47.53°C). The hourly frequency of the 
mean radiant temperatures of courtyards is described in Fig13.  

 
Figure 13. Hourly frequency of Tmrt of Yazd(water amount) 
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Based on Fig13, with the exception of the 20% courtyard, the courtyards have equal Tmrt at the beginning of the 
morning. By sunrise, the thermal behavior of the courtyards is different. At 12:00, the 0% courtyard has the 
highest and the 15% and 20% have the lowest Tmrt. The 10% is in the middle. In the afternoon, the 20% is still 
in the highest condition, but the 10% reaches the lowest Tmrt and - according to what has been discussed before 
- on average. The 10% courtyard has a 10°C cooler environment in terms of Tmrt. The PET values of these 
conditions have been calculated and the results demonstrate that, on average, the 10% courtyard has a more 
comfort condition (0% = 27.6°C, 10% = 25.4°C, 15 & 20% = 31.9°C). The hourly frequency is described in 
Fig14. 

 

Figure 14. Hourly frequency of PET based on water amount.Yazd 

 
4.3.3 Effect of Vegetation 

Green spaces and utilization of vegetation in the courtyard will modify the different environmental parameters in 
open spaces and also in courtyards. Based on the traditional courtyards in both climates, four levels of greening 
were examined and stimulated with 0%, 20%, 40% and 60% of the courtyard being covered by vegetation. The 
use of different vegetation will affect the climatic features such as Ta, Tmrt, wind speed and humidity. These 
results were recorded using the values assumed by previous parameters in the center of the courtyard spaces. 

4.3.3.1 Microclimatic Effect of Vegetation in the Courtyard of Ardabil 

In this section, as a final step, the different levels of greening were simulated in the best area percentage of the 
courtyard in the very cold climate of Ardabil. A comparison of the data shows that the air temperature of 
different greening conditions varies by 1.6°C (0% = -11.475°C, 20% = -12.38°C, 40% = -12.87°C, 60% = -
13.1°C). As was the case because of frozen degrees, the relative humidities of all conditions are 100%, besides 
the Ta, wind velocities and mean radiant temperatures are changing correspondingly by vegetation changes. On 
average, the wind speed of the courtyards are decreasing with the vegetation percentage (0% = 3.96, 20% = 3.23, 
40% = 2.99, 60% = 2.9°C), and there is 1.06 m/s of difference between the 60% tree-covered spaces and non-
covered one.  

The next step is to calculate the PET thermal index. The mean radiant temperatures were used to analyze the 
effect of vegetation on outdoor thermal comfort. Therefore, on average the 20% covered courtyard has the 
highest Tmrt on the coldest day of winter (0% = 24.58, 20% = 31.49, 40% = 26.05, 60% = 24.49°C).The hourly 
frequency of Tmrt is described in Fig15. 
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Figure 15. Hourly frequency of Tmrt based on vegetation percentage 

 

According to the calculation formula of the Tmrt in ENVI-met model in its initial stage, (Thorsson et al., 2007): =		 ( + 273.14 + 1.1 ∗ 10 Va .ᵟ ∗ 	 . ∗ ( − ) . / 	273.15 

Where 

Tmrt is the mean radiant temperature (K), 

GT is the globe temperature (K), 

Va is the air velocity near the globe (m/s), ᵟis the emissivity of the globe which normally is assumed 0.95, 

D is the diameter of the globe (m) which typically is 0.15 m, and 

Ta is the air temperature (K). 

Accordingly, Tmrt is the total amount of direct and diffuse radiation on a specific point. Wind speed has an 
inverted effect on the Tmrt by 108 * 0.6 near to Globe. This means that an increase in wind velocity results in a 
decrease in radiant temperature, so Tmrt is affected by SWdir, SWdiff and also wind speed. In the 20% covered 
courtyard, the sum of wind speed and the radiation amount create suitable for a combination of these two. So the 
PET average values (0% = -12.68, 20% = -10.60, 40% = -12.06, 60% = -12.61°C) show that the 20% courtyard 
is 2°C warmer on the PET scale. The hourly frequency of PET is described in Fig 16: 
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Figure 16. Hourly frequency of PET based on vegetation in Ardabil 

 
According to Fig 16, the 20% covered courtyard achieves the highest PET value. 

4.3.3.2 Microclimatic Effect of Vegetation in the Courtyard of Yazd 

Based on the methods used in Ardabil courtyards, the effects of vegetation were investigated by simulation. In 
comparison of Ta, the results shows that there is less than 0.25°C between the maximum and minimum (0% = 
24.51, 20% = 27.31, 40% = 27.27, 60% = 27.24°C). In contrast to the conditions in Ardabil, there is different 
relative humidity due to the different Ta and vapor content of the air. On average, there is 1.28% difference 
between the highest and lowest relative humidity in these simulations (0% = 52.64, 20% = 53.33, 40% = 53.67, 
60% = 53.92°C). Wind velocities are changing in line with alterations to vegetation levels, and by increasing the 
vegetation percentage in these courtyards wind speeds are decreased (0% = 2.35, 20% = 1.92, 40% = 1.60, 60% 
= 1.43°C). On average, the 20% courtyard has the lowest Tmrt (0% = 59.32, 20% = 54.65, 40% = 56.45, 60% = 
56.32°C) . Hourly frequency of Tmrt is described in Fig17. 
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Figure 17. Hourly frequency of Tmrt based vegetation in Yazd 

 
The Tmrt were derived and compared in order to determine the coolest courtyards in terms of vegetation 
different percentages. The results show the 20% covered has the lowest Tmrt among all conditions. According to 
what has been discussed in the previous section, and based on a formula to have a lower Tmrt, the courtyard 
needs less direct and diffuse radiation and also high wind speed. The optimum combination of vegetation and 
wind speed occurs in a 20% courtyard. 

The final step is to calculate the PET thermal index by Rayman 1.2, to find each average (0% = 37.3, 20% = 
35.37, 40% = 37.21, 60% = 37.7°C). 

In order to assess the comfort condition, the hourly frequency of PET value described in FIG18. 
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Figure 18. Hourly frequency of pet based on vegetation in Yazd 

 
As shown in Fig12, the 20% tree-covered courtyard has a significantly cooler PET value based on what has 
previously been explained. This courtyard has the best combination of wind speed and tree coverage. 

5. Conclusion 
Open spaces and their quality roughly depend on their thermal condition. Better thermal comfort condition of 
courtyards was proved in many types of research, and it is a common strategy in traditional architecture to 
modify the climatic conditions. Courtyards were mostly investigated in hot-arid and humid conditions. Uniform 
use of the courtyards in a different climate is a contemporary architecture issue. Therefore, a study of the 
physical features of traditional courtyards in a different climate in Iran could be undertaken. The results could 
then be compared to those found in Iranian conditions, and contextual guidelines for courtyards in fewer arid 
conditions could be drawn up.  

Accordingly, the thermal comfort achieved during the critical day of each climate (rough clod of Ardabil, hot-
arid of Yazd) was selected to assess the thermal comfort condition in low contrast courtyards. Results presented 
new practical guidelines as to how to best adapt the contemporarily-built environment with the climate based on 
traditional factors to reach sustainable contextual courtyards. Reliable simulation methods present optimum 
solutions to create thermally comfortable courtyards in the real world. As a first step, physical features of 16 
traditional courtyards of both climates were analyzed. Three main features of the courtyard were considered in 
analyzing: 

(i) The ratio of the courtyard area to the total area of the house 

(ii) The ratio of the water area to the total area of the courtyard 

(iii) The ratio of the vegetation area to the total area of the courtyard 

Based on the results of this section, the range of the simulation parameters was determined. 

1) Initially, in order to have optimum solar radiation in both direct and diffuse conditions, the area of the 
courtyard was simulated. The simulation showed that the optimum courtyard size for the hot and arid climate of 
Yazd was 10% of the total area of the house. In contrast, to have more radiation in the rough winters of Ardabil, 
the optimum courtyard size is 60% of the total area of the house. Based on the PET results, there are 6.8°C 
differences between the 10% and 60% courtyards area in Ardabil, and by increasing the sky exposure condition 
the60% courtyard reaches the more SW.dir and SW.diff. Therefore, high Tmrt causes high PET values. In 
contrast, the area percentage of the courtyards of Yazd, due to having less solar radiation in hot summer day 10% 
percent courtyard area were recommended with ENVI-met4 results. By this means in average the 10% courtyard 
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area reaches less solar radiation and it has more shaded surfaces on a hot summer day of Yazd. Pet results 
demonstrate the cooler environment of Yazd accordingly at 15:00 there is a 9.8°C differences between the hottest 
and the coolest courtyard. 

2) The second step was to analyze the effect of using water as the main component in a traditional courtyard. The 
ratio of the water area to the total area of courtyards was simulated, and the results show that every condition 
except the 0% (water) courtyards produced a cooler environment in very cold winter of Ardabil (as happens in 
traditional courtyards). There was a 16.59°C difference between the 0% courtyards and the others at 13:00. PET 
values demonstrate the warmer environment of a 0% courtyard in comparison with the others by 4.7°C of PET. 

Water area simulation results for Yazd’s hot climate demonstrate that 10% of the water area is the optimum 
option in the hot and arid climate of Yazd. However, at 12:00 the 20% water courtyard has the coolest 
environment. During the day it has a high Tmrt temperature, but the 10% water area courtyard has a low 
temperature rather than the other models in average condition (during the referenced day). 

3) The final step in courtyard simulation. The courtyards were simulated in 4 conditions (0%, 20%, 40%, and 
60% tree covered area). At the Tmrt calculation formula present, it is summed up the direct and diffuse radiation 
and it is affected by wind speed inversely. The optimum conditions in which to have higher Tmrt in the presence 
of vegetation is a 20% tree covered area. The PET values of the show that effectively the 20% courtyard has a 
warmer environment in the rough, cold winter day in Ardabil. 

These conditions were simulated to the hot-arid climate of Yazd, and the results show that the optimum tree 
covering of 20% results in less radiation and enough wind speed in the Yazd hot-arid climate. The hourly 
frequency of the Tmrt shows that, on average, there are 4.65°C differences between the highest and lowest Tmrt 
and accordingly the results of PET values demonstrate that among the different tree coverage, the 20% tree 
covered courtyard has better conditions than the others and, on average, has a 2.33°C cooler environment  than 
the hottest one. 
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